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Abstract—The human olfactory system remains one of the
most challengingbiologicalsystems to replicate. Humans use
it without thinking, where it can measure offer protection from
harm and bring enjoyment in equal measure. It is the system’s
real-time ability to detect and analyze complex odors that
makes it difficult to replicate. The field of artificial olfaction
has recruited and stimulated interdisciplinary research and
commercial development for several applications that include
malodor measurement, medical diagnostics, food and bever-
age quality, environment and security. Over the last century,
innovative engineers and scientists have been focused on
solving a range of problems associated with measurement
and control of odor. The IEEE Sensors Journal has published
Special Issues on olfaction in 2002 and 2012. Here we continue
that coverage. In this article, we summarize early work in the
20th Century that served as the foundation upon which we
have been building our odor-monitoring instrumental and measurement systems. We then examine the current state of
the art that has been achieved over the last two decades as we have transitioned into the 21st Century. Much has been
accomplished, but great progress is needed in sensor technology, system design, product manufacture and performance
standards. In the final section, we predict levels of performance and ubiquitous applications that will be realized during
in the mid to late 21st Century.

Index Terms— Artificial olfaction, electronic nose, machine olfaction, odor detection, machine learning, headspace
sampling, VOC analysis.

I. INTRODUCTION

RESEARCHERS and sensor professionals have taken
on the formidable challenge of accurately, repeatably,

and conveniently measuring and characterizing odors that
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regularly occur in our indoor and outdoor environments. In the
human nose (see Fig. 1), a sniff of incoming air carrying
odor-generating molecules is directed via the nasal conchae
onto the olfactory sensory mucosa located at the top of
the nasal cavity. There the mixture of odorous molecules
interacts with olfactory sensory neurons that house thousands
of biomolecular receptors, which serve as odor sensors. This
sensory information converges in the olfactory bulb. For each
sniff, the bulb creates an outgoing response that is relayed to
higher levels in the brain.

Now let us imagine humans living near a malodor
generating source such as a garbage landfill as depicted
in Fig. 2. Their olfactory sensory systems in Fig. 1 will
be fully engaged, all-day and all-night, monitoring plumes
of odor passing their way. Their higher brain levels will
receive the olfactory signals and decision making will result
(ignore, complain, deploy air freshener, wear a gas mask,
buy a new house, etc.). The individual doing the sniffing
is the odor monitoring instrument in this scenario. Let us
replace that human with an electronic odor sensing device
and a micro-processor/computer. Such an odor sensing device
is often called an electronic nose (eNose), though it also
comes with many other names, such as artificial or machine
olfaction. We then have the case as shown in Fig. 2 entitled
“An eNose in action.”
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Fig. 1. Human olfactory anatomy (Adapted from [1]).

Fig. 2. An eNose in action. Example odor source from a landfill site.

The eNose system in this application should be able to
operate continuously and accurately measure and document
the odor challenge (in human perception terms) at that par-
ticular location. This odor monitoring system should generate
specific helpful reports for the odor producer, the odor sniffer,
and local regulatory authorities. Such an affordable device
is not currently available for this application. Even though
thousands of such devices are needed around the world, that
market has not yet produced a commercially viable unit to
meet this unfulfilled need.

In 2002, the IEEE Sensors Journal published its first Spe-
cial Issue. Its title was Artificial Olfaction (Guest editors:
H. T. Nagle, J. W. Gardner, and K. C. Persaud) [2].
Ten years later in 2012, another IEEE Sensors Journal
Special Issue appeared that was entitled Machine Olfaction
(Guest editors: J. W. Gardner, K. C. Persaud, P. Gouma, and
R. Gutierrez-Osuna) [3]. As we approach the 20th anniversary
of that first olfaction special issue, we offer this appraisal of
past accomplishments and potential upcoming advances in the
olfaction field. First, we provide a brief history of gas sensing
technologies in the 20th Century that have served as the basis
for modern developments. Then we review progress made in
the early decades of the 21st Century. Those advances have
produced numerous unique eNose devices for many different
applications. We conclude this article with an assortment of
our predictions that we envision as the 21st Century advances.
We hope you enjoy it.

II. THE 20TH CENTURY

Throughout history, the presence of disagreeable odors in
ambient air from poor sanitation and hygiene, tainted food, and
industrial processing of materials and waste has been a concern
across all cultures. Approximately a century ago, the technical
challenges of measuring malodorous emissions were addressed
in an article entitled “Odors and their Travel Habits” by Louis
Tribus [4] published in Transactions of the American Society
of Civil Engineers. Tribus discussed the difficulties of iden-
tification of offensive gases and their chemical constituents,
quantifying odor dispersion and its dependence on atmospheric
conditions as well as individual differences in odor perception
and tolerance of persons exposed to the odors. Since that time,
progress in the instrumental documentation and quantification
of odors has been a slow and laborious process. The first
step forward was the introduction of gas chromatography
(GC), a powerful analytical chemistry technique that was first
formalized by James and Martin in 1952 [5]. GC was quickly
adopted to separate the individual compounds in complex odor
mixtures with each detected compound appearing as a single
peak in the analysis [6], [7]. The goal of GC analysis was
to provide a characteristic signature for odor samples that
would provide identifiable and predictable patterns. However,
GC analysis has been found to have limitations for charac-
terizing odor quality since the amplitude of the peaks is not
consistent with sensory relevance. Small peaks can correspond
to potent sensory compounds with low odor thresholds, and
large peaks can correspond to compounds with no odor at all.

The development of compound-specific sensors for detec-
tion of targeted odorous chemicals including hydrogen sul-
fide (H2S), ammonia (NH3), and ethanol (C2H6O or EtOH)
emerged during the decades of the 1960’s and 1970’s
[11]–[28]. The impetus to develop H2S sensors arose from
the fact that this colorless chalcogen hydride gas (often called
sour gas) has the characteristic foul odor of rotten eggs and
can cause sudden death at elevated concentrations. H2S is
generated from the microbial breakdown of organic matter
in anaerobic environments such sewers, swamps, landfills,
and confined animal operations. It is also released during
drilling activities for oil and natural gas and during volcanic
eruptions. A variety of sensor principles were utilized to
detect H2S during this early historical period. Representative
examples include: an electrochemical cell with a gold working
electrode [8], a thin film semiconductor with film principally
comprised of stannic oxide with several dopants [9], silver
deposited on a thin dielectic film [10], a combined specific
ion and reference electrode structure having an air gap, gas
permeable membrane [11], a gas-sensing electrochemical cell
comprised of a potentiometric sulfide ion sensitive electrode
and a fluoride ion-sensitive electrode [12], a PbSe epitaxial
film [13], a hydrogen ion selective (pH) electrode with a
reference electrode and a sulfide ion selective electrode [14],
and a thin film of metal oxide with a surface activated by the
deposition of a catalyst [15].

Numerous commercial portable direct-reading H2S meters
as well as line-operated AC instruments were devel-
oped by the mid-1970s utilizing three different principles
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of operation: solid state electrochemical, wet electrochem-
ical, and photoionization. Thompkins [16] assessed the
performance characteristics of nine prominent commercial
H2S instruments under a contract for the National Insti-
tute for Occupational Safety and Health (NIOSH) in the
United States. He evaluated these instruments on thirteen
performance characteristics including: response time, linear-
ity/accuracy/precision characteristics, zero and span drifts,
stability of the calibration setting, useful range of the meter,
temperature effects, humidity effects, interference effects (with
water vapor, CO, SO2, and benzene), reliability information,
warm-up time, accuracy of the manufacturer’s calibration,
noise, and recommended use technique. The results showed
that the majority of these instruments had performance flaws
including slow or marginal response time, negative bias for
high concentrations, imprecision and deterioration of accuracy
over time, large temperature and humidity effects or malfunc-
tions during temperature and humidity protocols, interference
from water vapor, CO, or SO2, zeroing difficulties, and inabil-
ity to adjust to full span response. The conclusion of this
analysis was that new standards were needed for instruments
designed to monitor H2S for conformance to safety and health
standards set by regulatory agencies. These standards included
performance and construction characteristics that would ensure
accurate H2S concentration measurements and provide protec-
tion from exposures that might endanger health.

During the decades of the 1960’s and 1970’s, electro-
chemical sensors were also developed to detect the presence
of ammonia that has a sharp, suffocating odor [17]–[19].
In nature, ammonia occurs in human sweat [20] and is
generated during decomposition of plants, animals, and animal
waste. The United States military utilized a device called a
“people sniffer” during the Viet Nam War that could detect
traces of ammonia produced in sweat to locate enemy troops
hiding in the jungles [7]. During the same time period, a
variety of sensor types were designed to detect ethanol that has
a pungent somewhat sweet odor. Examples include perovskite
oxides [21], a sintered SnO-ZnO-FeO pearl with a resistance
wire [22], and an electrochemical oxidation device [23]. Other
sensor technologies were also introduced during this early
historical period. Odorous organic vapor from the air within
reusable glass and plastic containers was sensed by a hydrogen
flame detector that generated ions and gave rise to a small
electric current [24]. An array of electronic olfactory detectors
with an organic semiconductor barrier layer was developed by
Meinhard [25]. The organic materials utilized in the detectors
had electrical properties analogous to N and P conduction in
inorganic semiconductors and gave characteristic responses
to sulfur dioxide and certain amines. Other early devices
for sensing odors included a film-coated thermistor [26],
an electrolyte-metal interface to which a low DC potential
was applied [27], and a polar vapor detector based on thermal
modulation of contact potential [28].

Although early sensory devices were able to detect single
odorous compounds, their applications were limited, and a
functional artificial or machine olfaction device that incorpo-
rated design principles similar to mammalian olfaction did not
emerge until the 1980’s. Persaud and Dodd [29] introduced

the first intelligent chemical multisensor array that could
classify multiple types of odorants including mixtures of
odorous volatile compounds as well as single gases. Their
array consisted of three commercial gas sensors composed
of metal oxide semiconductor materials with differing relative
sensitivities, and the pattern or response spectrum across these
sensors corresponded to the odor quality. A similar instrument
based on six different semiconductor oxides was constructed
several years later by Kaneyasu et al. [30]. Gardner and
Bartlett [31] provided the first definition in the archival scien-
tific literature for these artificial, instrument-based olfactory
devices as follows: “An electronic nose is an instrument,
which comprises an array of electronic chemical sensors
with partial specificity and an appropriate pattern-recognition
system, capable of recognizing simple or complex odours.”

During the last decade of the 20th century, research into
eNose technology exploded with the introduction of innovative
sensor materials, methods for odor handling and delivery, and
instrumentation. New strategies were generated for performing
signal conditioning and preprocessing, pattern recognition and
analysis, and classification of the characteristic fingerprints
from the sensor array. Applications of eNose technology were
introduced into domains of environmental monitoring, medical
diagnostics and health monitoring, recognition of natural prod-
ucts, process monitoring, food and beverage quality assurance,
automotive and aerospace applications, detection of explosives
and cosmetics and fragrances. Dozens of companies began
designing and selling eNose instruments globally to meet the
demand in expanding markets for desktop-based and handheld
devices. These advances were summarized in “Handbook of
Machine Olfaction: Electronic Nose Technology” published
in 2003 [32]. While immense progress was made in instru-
mental odor sensing and eNose technology by the end of
the 20th century, there continue to be challenges that require
substantial refinement and improvement in the performance of
these instruments as we move further into the 21st century.

III. THE EARLY 21ST CENTURY

Based on the solid foundations developed during the
20th Century, many eNose devices like the one depicted in
Fig. 2 have been commercialized. In this section of this article,
the functionality of these eNose units is examined using the
configuration depicted in Fig. 3. Each eNose must provide
the functionality of three subsystems (Sampling, Sensors,
and Data Analysis). Each of these subsystems will now be
summarized in more detail.

A. Sampling
Sampling is the first subsystem in an eNose system. Gas

samples enter from the source and are delivered to the sensor
chamber. The various stages along the way can be described as
capture, transfer, conversion, and preconcentration as shown
in Fig. 4. The specific application for which the eNose is
designed specifies which of these stages are needed and
the importance of those that are implemented. For example,
an eNose instrument in which a sensor array is inserted directly
into a gaseous environment will require none of these stages.
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Fig. 3. eNose subsystems.

Fig. 4. Sampling.

On the other hand, all the stages of Fig. 4 will be required if
the eNose employs a preconcentrating cloth patch (coated with
a chemical agent for conversion to a more detectable molecular
form) that is placed in a gaseous environment for several
days, then capture-sealed in a plastic bag and transferred to
an analysis laboratory. There the patch is removed from the
plastic bag and placed in an instrument that is heated to release
converted odorous molecules over a sensor array.

It is clear that an extremely good instrument can give
extremely poor results if attention is not paid to sampling and
the context of what is being measured. Many eNose instru-
ments are based on sensors that transduce a physicochemical
interaction that occurs when molecules adsorb onto the active
surface. An odor normally comprises a complex mixture of
different compounds that bind with varying affinities to the
surface of the sensor. Molecules compete for adsorption based
on their affinity and relative concentration and these dynamic
processes are influenced by factors such as temperature and
pressure. Chemical molecules also interact with each other and
both physical interactions as well as chemical reactions occur,
changing the nature of what is being sensed. Electronic nose
devices are based on arrays of sensors that display differences
in selectivity to different classes of chemical species and are
not devices that separate compounds sequentially as in the case
of a gas chromatograph. Hence, to obtain repeatable results
requires good understanding of the matrices that are being
measured, as well as carefully framing the questions that are
being asked of the system. As shown in Fig. 5 the process

Fig. 5. Headspace sampling strategies.

of sampling involves generation of a representative headspace,
transferring it to the measurement device without losing it and
may optionally involve converting or modifying the sample
e.g. to remove interferents or preconcentrating the sample to
achieve detection at low concentrations or to selectively detect
certain components.

Many of the sampling methods used for eNoses are well
established from methods used for sample preparation in gas
chromatography. Sampling methods for eNoses have been
reviewed by Burlachenko et al. [33], Rouseff and Cadwal-
lader [34], with many applications especially in food and
beverage analysis [35]. The fundamental concepts can be sum-
marized in terms of static and dynamic headspace sampling,
often combined with preconcentration methods such as purge
and trap or solid phase microextraction.

1) Static Headspace Sampling: Often, we wish to measure
volatile compounds that are present in a liquid or solid matrix.
So, for example a perfume may consist of a matrix of water,
alcohol, and a mixture of essential oils. If we place a sample
in a glass vial, close it and allow it to equilibrate, what appears
in the headspace that is sniffed depends on the thermodynamic
equilibria between all of these components and the headspace
above (Fig. 5a). These thermodynamic properties dictate the
distribution of molecules and is described through the partition
coefficient, K.

K = CS

CG
(1)

where CS is the concentration of a component in the sample
phase and CG the concentration of the component in the
vapor phase when an equilibrium is achieved. Compounds
with a high value for K will favor the liquid phase whereas
compounds with a low K will favor the headspace phase. With
an eNose we analyze the headspace phase and we need to
ensure that the values of K for the analytes of interest are much
lower than that of unwanted components in the sample matrix.
The value of K will be dependent on both the compound
and the sample matrix and it will also be strongly affected
by temperature. A useful equation associated with headspace
sampling is

CG = C0

(K + β)
(2)
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where C0 is the total concentration of the compound in the
sample and β is the phase ratio VG

VS
where V is the volume

of gas or sample. This equation implies that decreasing β
increases the concentration of all compounds in the headspace
and decreasing K, for example by increasing temperature, will
increase the concentration of the compound in the headspace.

If the temperature and the sample matrix are consistent
then K is constant. However, while this is true for dilute
solutions, inter-molecular interactions may cause deviations
at higher concentrations. In our vial there may be a variety
of compounds present. Each compound vapor will contribute
to the total vapor pressure observed inside the vial and the
partition coefficient K is given by

K =ptotal

p0
i γi

(3)

where p0
i is the vapor pressure of the pure compound i in

the headspace vapor, that is proportional to xS(i) which is the
mole fraction of compound i in the liquid phase and Υ is the
activity coefficient which will change with concentration of
the compound.

However, when we are dealing with very dilute solutions
both K and Υ are essentially constants as there is little oppor-
tunity for intermolecular interactions. In this case Henry’s law
is applicable which states that the amount of a gas dissolved in
a liquid is directly proportional to the partial pressure of that
gas at equilibrium with that liquid at a constant temperature.
This can be written as

pi = HixS(i) (4)

where H is Henry’s constant [36]. This is most useful for
electronic nose applications especially when the sample of
interest is hydrophobic in nature, favoring the build-up of
high headspace concentrations from an aqueous matrix. For
example, a concentration of only 0.0005 mol fraction of
2-butanol in water will provide about 236 ppm of 2-butanol
in air at the air-water interface [37].

This technique has been implemented by many researchers
as exemplified by [38]–[41] for quality control of hams, many
liquid samples, wine ageing and others, while instruments
for non-invasive measurement of water quality based on
the principles of Henry’s law have been commercialized by
Multisensor Systems Ltd, UK for detection of traces of oil,
BTEX, trihalomethanes and ammonia in an aqueous matrix
(www.multisensors.co.uk).

2) Dynamic Headspace Sampling: Dynamic headspace is
a technique very similar to equilibrium (static) headspace
sampling but is intended to direct most of the headspace vapor
across the sensor array in the eNose instrument (Fig. 5b). Two
needles are used to puncture the headspace vial seal - one to
introduce a carrier gas, which may be air or an inert gas, and
the other to provide an outlet. This produces an exponential
dilution of headspace described by:

Ct = C0ex p

(−Fpt

VG

)
(5)

where Ct is the concentration of a compound in the headspace
after time t, C0 is the initial concentration in the vial, Fp is

the purge rate of the carrier gas at the temperature and
pressure of the vial, t is the purge time, VG is the headspace
volume in the vial. Variations on this technique include placing
the inlet tube below the liquid matrix in the vial (Fig. 5c),
essentially stripping volatiles without generating an equilib-
rium headspace. These techniques are reviewed in detail by
Wojnowski et al. [42].

For many applications it may be advantageous to trap
the volatiles from the headspace on an absorbent bed and
then subsequentially thermally desorb this directly into the
inlet of the eNose (Fig. 5d). This is a method of precon-
centration known as purge and trap that is often used in gas
chromatography.

Dynamic headspace sampling has been optimized for many
applications including drug detection [43], food volatiles [44]
and has been refined to inside needle dynamic extrac-
tion (INDEX) technology to extract headspace of juice aroma
volatiles [45].

3) Solid Phase Microextraction: Solid phase microextraction
(SPME) [46] is another technique that can be used to extract
and concentrate compounds from headspace vapor. Instead of
using carrier gas to sweep or pulse the headspace vapor out of
the sample, SPME essentially inserts a ‘sorbent material’ into
the headspace vapor inside the vial. The preconcentration that
occurs reflects a partition coefficient between the adsorbent
and the headspace vapor and is normally implemented in the
form of a coating applied to a fused silica fiber which is located
within the needle of a special syringe as shown in Fig. 5e.
The needle pierces the seal of a vial containing the sample
and the coated fiber extends down into the headspace absorbs
compounds from the vapor. After a period of equilibration,
the fiber is drawn back into the syringe needle which itself
is withdrawn from the vial and inserted into a heated inlet of
an eNose instrument where the trapped volatiles are desorbed
directly on to a gas sensor array. Apart from preconcentration,
this method allows selective sampling based on the sorbent
matrix used, eliminating interferents such as water vapor that
plague many sensor measurements. Hence it is of widespread
use in eNose technology e.g. for rancidity in oils [47], dairy
products [48], potato pathogens [49], wound monitoring [50]
and cancer detection from urinary volatiles [51]. Choice of
the appropriate SPME fiber is often crucial to success and
requires understanding of the nature of the compounds to be
preconcentrated. SPME materials may be based on absorbents
or adsorbents. Absorbent fibers partition analytes into a coating
material. The ability of the coating to retain and release
the analyte is dependent on the polarity, thickness of the
coating and the size of the analyte. Thick film coatings have
high sample capacity. Adsorbent type fibers extract analytes
by physically interacting with the analytes. Adsorbents are
generally solids that contain pores or high surface areas.
There are several commercially available SPME sorbents
with different polarities, such as hydrophobic (Polydimethyl-
siloxane (PDMS)), hydrophilic such as polyacrylate (PA) as
well as bipolar materials such as Carboxen-PDMS (supplied
by Supelco).

4) Complex Sampling Applications: Electronic noses are
now addressing applications that previously required very
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sophisticated instrumentation for analysis. One active area is
the non-invasive metabolomic analysis of breath for diagnosis
of several medical conditions, where compounds of interest
are often found at ppb levels in a matrix of water vapor,
oxygen and carbon dioxide at percentage levels [53]–[57].
It is the presence of multiple biomarkers at trace levels that
allow diagnosis of a condition such as lung cancer. The lungs
are in a dynamic equilibrium with the volatile compounds
dissolved in the bloodstream and this reflects the sampling
theory described above. As the composition of air taken from
upper part of the lungs is different from deeper alveolar
air this means that differential sampling of exhaled breath
of a patient may be required [58]. Sampling is a critical
issue in terms of the results� quality and measurements�
success. Interference from atmospheric contaminants, patient
preparation and sample collection are among the issues of
concern for disease diagnosis by breath testing. Increasing
multidisciplinary holistic knowledge about the matrices to be
measured and interferents is driving the engineering of better
sampling systems.

5) Integration of Sampling Systems With Sensors: Sam-
pling delivers odorant molecules to the sensor technologies
described in the next section. The utilization of silicon micro-
machining technology and inkjet printing are now push-
ing the integration of micro-preconcentrators [59], separation
columns, and many types of detectors (including micro ther-
mal conductivity detectors, microflame ionization detectors,
surface acoustic waves, chemiresistors and micro differential
mobility spectrometers) [60], taking eNose technology into
new directions for the future.

B. Sensors
Figs. 3 and 4 provide details of the capture and delivery of

odorous gas sample to the sensor subsystem. Once the sample
arrives, the following actions are performed as outlined in
Fig. 6. Here, the first step is the initialization of the micro-
controller. This then applies an excitation signal to the sensing
element, through a signal conversion stage. This excitation
could be the application of a voltage to the sensing or heating
element (as in chemoresistive sensor) or initializing a power
setting on an optical sensor. (note, the micro-controller and
signal conversion stages may not be present in all odor detec-
tion systems and some sensors undertake this task internally
- as in digital sensors described later). The sensing element
is generally a device that converts chemical information into
an electrical signal. This conversation could operate through
principles including a change in conductance, capacitance,
frequency, work function, optical absorbance, charge or similar
approach [61]. The sensing and transduction steps are also
very dependent on the sensing technology being employed.
The modulation/detection, signal conditioning, and signal con-
version steps are all electronic operations common in many
electronic noses. The following section provides an overview
of current commonly used sensor technologies deployed in
electronic noses.

1) Discrete Gas Sensors: The array of gas sensors within
an eNose is one of the most critical and challenging aspects
of these units; it is the part that interacts directly with the

Fig. 6. Sensors.

odor. A major issue for an eNose designer is where to obtain
their sensors. There are a small number of commercial gas
sensor companies (a fraction of the total number of instru-
ment manufacturers), but their sensors are often not designed
specifically for eNose applications, whilst in-house gas sensors
are challenging to produce reliably in large numbers, resulting
in a high sensor unit cost. This has led to many eNoses
using commercially available sensors, even if they are not
ideal. For an eNose, these sensors are formed into arrays and
must have a number of characteristics to be useable; these
include diversity (that is, differences between different sen-
sors), high sensitivity, rapid response times, a return to baseline
and be tolerant of environmental conditions (e.g. changes to
temperature and humidity). The first eNoses used chemore-
sistive metal-oxide (MOX) material gas sensors, initially 3-4,
climbing to 10-18 in the larger commercial systems produced,
among others, by AlphaMOS (FOX, France) and Airsense
(PEN3, Germany) [62]. MOX sensors fulfilled many of the
requirements for these eNoses, but often had issues surround-
ing diversity, the environment and drift. Most MOX sensors
use SnO2, WO3 or ZnO in their construction, with some vari-
ance created by doping and operating temperature. They typi-
cally have high power consumption (>100mW) and operate in
excess of 150oC. Furthermore, these n-type materials are badly
affected by humidity and long-term drift [63]. Most common
manufacturers are Figaro and FIS gas sensors (Japan), though
more recently Winsen Sensors (China) are producing sensors
of similar characteristics and Alphasense (UK) producing a
p-type sensor [64]–[67]. These devices have only had small
improvements over the last 10 years, with a slight reduction
in power consumption, some improvements in sensitivity
and repeatability. The biggest advancement by far is that of
MOX based gas sensors now being miniaturised and being
produced on silicon based micro-hot plates. This micro-level
device uses thin layers of silicon oxide with embedded heaters
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to reduce the power consumption. This has meant that these
sensors can be more easily integrated with modern electronics
and can be packaged in standard electronic packages [68].
This is revolutionising gas sensing, as sensor systems can be
battery powered, easily fitted onto PCBs and be much lower
cost. Both traditional gas sensor companies (such as Figaro)
are now being challenged by traditional electronic compa-
nies (such as Bosch and IDT), as well as newer companies
(such as Sensirion and ScioSense). A further advancement
on these has been the creation of digital gas sensors from
a number of these manufacturers. The inclusion of an ASIC
(Application Specific Integrated Circuit) or microcontroller
with the gas sensor has allowed digital interrogation of the
sensing material without the need of additional electronics.
These sensors are now becoming common for indoor and auto-
motive cabin quality applications [69]. However, unlike their
analogue counterparts, for the eNose developer, the opportu-
nity to alter the operational mode of the sensor (for example
change the temperature or the way the sensor resistance is
measured) is closed off. In addition, these sensors often have
algorithms within the device that are not designed for eNose
operation and give a faulty output to rapid changes in odor
concentration. The long-term reliability of these sensors and
repeatability is still questionable, but over time as these sensors
improve, it is very likely that they will become more common
place in eNose systems [70].

Though MOX sensors are the most commonly used in
eNoses, they are not the only ones. As detailed earlier,
electrochemical sensors were very common in eNoses in the
early years, but now only rarely used, even though there
have been great strides in repeatability, sensitivity and envi-
ronmental tolerance to meet the growing demands of safety
and pollution monitoring. Such sensors are now being applied
in arrays to the measurement of inorganic gases, with a
few examples using them as electronic noses in agricultural
settings [71], [72].

A further previously common family of sensors were poly-
mers. These were either conducting polymers (CP) or compos-
ite polymers, with the former using the material themselves
as the conduction channel, whilst the latter used an additive
to create a conductive path, which was then reduced with
exposure to an odor through a swelling effect, with carbon
being commonly used. Though researchers are continuing
to work on these sensors and which are deployed in the
Sensigent Cyrano and Roboscientific Electronic noses, their
widespread use is still limited, and sensors are not being
produced in large numbers [73]–[76]. There is some evi-
dence of a return, as these sensors can be manufactured to
be very small and can operate at room temperature. They
are particularly beneficial to areas including flexible sensors,
where there is the need for flexibility and low operating
temperature [77].

Another common eNose gas sensor is mass measurement
through quartz crystal microbalances (QCM) and similar
piezoelectric devices (such as SAW devices). Instead of mea-
suring a change in resistance or output current, these sensors
operate through a change in natural resonance, where the
odorant adheres to a chemical sensitive layer on the device,

increasing its mass and altering its frequency. A broad range
of different sensing materials has been used for mass sensors,
however, common materials are conducting polymers, station-
ary phase materials and MOX materials (as mentioned earlier)
[78]–[80]. More recently, MIPS (molecular imprinted polymer
sensors) and MOFs (metal organic frameworks) have found
favour with mass devices due to their greater sensitivity over
more traditional polymers sensors, and still have the advantage
of room temperature operation [81], [82]. In the case of MIPs
the sensors are formed using a templating approach whilst the
target chemical is present. Thus, after the removal of the target
chemical, receptors are formed in the polymers with an affinity
and sensitivity to that target molecule [83]. This makes it ideal
for QCM based sensors [84]. QCMs are incredibly sensitive
and have previously led to the development of commercial
eNose instruments, such as the LibraNose (Italy) [72], [60].
However, integration of the sensor with electronics remains
challenging, partly due to temperature intolerance.

There are also families of sensors based on carbon
nanomaterials and more recently graphene. Large sums of
research funds have been spent on these devices – poten-
tially more than the total value of the gas sensor market.
They offer high-diversity and high sensitivity with small form
factor [74], [85]. There have been a number of start-ups in
the field, (such as AlphaSenzor, Aernos and C2Sensor), but
challenges of repeatability, reliability and market access are
limiting their widespread use.

However, many researchers have produced electronic nose
systems using these carbon-based sensors. In this case, they
have both manufactured the array and then applied to an appli-
cation. These sensors are formed from either single-wall or
multi-wall carbon nanotubes that are configured in a chemire-
sistor or ChemFET (where the CNT forms the channel of the
transistor). The CNT can be used pristine, used singularly or in
bundles, but they have limited selectivity and so are commonly
doped with, for example, a noble metal (such as Pd), added
to a polymer (working on a swelling principle) or a metal-
oxide [86]–[88]. These sensors can then be created into sensor
arrays to operate as an electronic nose [89]–[91]. An alterna-
tive carbon-based material is graphene and reduced graphene
oxide. These 2D materials can be operated in a chemiresistor,
chemFET or chem-capacitor, similarly to CNTs and formed
into various shapes with sheets or ribbons being common [92].
The materials are often doped to improve selectivity with
noble metals, polymers and metal-oxides again being common
choice material [93]–[95]. A number of researchers have also
produced electronic nose instruments by creating arrays of
graphene sensors for a number of applications [96], [97].
Another common nanosensing material is the combination of
metal nanoparticles (e.g. Ag or Au) and a polymer to form a
chemiresistive sensor. The metallic particle is formed into a
monolayer with an organic film component. The VOC either
expands or contracts the polymer film causing a reduction or
increase in resistance [98]. These sensors have been formed
into a number of sensor arrays for a range of electronic nose
applications [99], [100]. These are only exemplars of the broad
range of nanosensors in development and it is an open question
on how successful these sensors will be, but they may provide
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new opportunities for eNoses to become smaller, cheaper and
widespread in our consumer lives.

A parallel sensor development in eNoses has been the
use of optical dyes as chemical sensors. These devices pro-
duce a colour change when exposed to an odor (chemical
response), which can be measured using a modern CCD or
CMOS camera [101], [102]. The most common materials
are based on Lewis acid/base dyes, Brønsted acidic or basic
dyes and dyes with large permanent dipoles (i.e., zwitterionic
solvatochromic dyes), though other dyes are available. These
materials can be printed onto paper or plastic to create ultra-
low-cost gas sensors. In use, images are taken before and
after exposure to create a differential image. Such sensors
can be made to be reproducible or single use, depending
on the need [103]. An alternative technique based on an
optical approach is surface plasmon resonance (SPR). Here
a cross-sensitive micro-array of sensors is interrogated using
an optical light source (usually an LED) and detector. The
system measures the absorbance of an odor onto a metallic
or organic molecule, though metal oxides and nanomaterials
are commonly used [104]. These molecules are deposited
onto a gold coated prism and the response measured as a
function of the reflectivity [105]. These sensors have been
shown to be able to detect a broad range of VOCs and offer
real opportunities for portable eNose systems, for example the
NeOse Pro (Aryballe, France) [106].

2) Tuneable Gas Sensors: A traditionalist approach to
eNoses is the need to use a sensor array in its construction.
However, it is now being accepted that using a single sensor
and sweeping its characteristics to create an array of “virtual”
sensors is equally as valid. In this case, we have defined
tuneable as the application of a method that alters the sensi-
tivity or specificity of a sensor to chemical groups. This may
not be as simple as changing the magnitude of the response,
but could also be an alteration of response and recovery
times. Though it may seem a better approach to use a large
array of different discrete sensors, the diversity in commercial
sensors is relatively low and gaining more information out of
a single sensor is a relatively cheap. Previous to this, the only
approach possible to increase diversity was to make large
arrays of sensors (either MOX or polymers). These arrays
are not the typical 6 to 32, but had more than 100 elements.
For polymers this was done by using different materials,
which is time consuming and difficult to construct [107].
However, for MOX sensors the same can be achieved by
having a large array of sensors at different temperatures
(such as the Kamina Nose). Though successful, it didn’t
achieve commercial success and the power consumption was
considerable (>4W) [108]. With the creation of micro-hot
plate sensors, the same could now be achieved with a smaller
number of sensors that can be thermally modulated. The low
time constants (sub second) means that the sensor temperature
can be swept whilst in the presence of an odor producing a
much higher dimensional information. This technique is used
in a number of commercial electronic noses, with the AeoNose
(eNose company, Netherlands) being a good example [109].
This is useful as the sensitivity and specificity of MOX
sensors is a function of operating temperature [110], [111].

The same approach can also be applied to polymer sensors,
using micro-hot plates to thermally modulate sensor temper-
ature as a means of single chemical identification [112]. The
advantage here is that the operating temperatures are much
lower than MOX materials. This is now a common approach
for many eNoses [113]. A similar approach is to measure
the sensor resistance using an impedance AC approach, rather
than the traditional DC technique. The AC approach provides
additional information as MOX films have trapped charge
on the surface of the material film, thus both the real and
imaginary parts of the impedance measurement hold useful
information [114]. Further work in this area has recently been
found to make the MOX response linear, increase the sensitiv-
ity range and the reduce the effects of changes in humidity and
environmental temperature, making it an interesting method
for eNoses [115].

A more recent variant is to use UV light to modu-
late the sensor surface [116]. By changing the frequency,
amplitude and duration of the UV exposure, more informa-
tion can be gained from the MOX sensor, again producing
multi-dimensional data. Furthermore, it has the advantage of
decreasing response and recovery times and helping to stabilise
the sensor before use.

3) Physical Sensor Measurement: For higher-end/more-
expensive eNose systems, many researchers have moved away
from the traditional chemical based sensing model to develop
approaches that measure physical properties of molecules.
Such systems offer more stability and repeatability as phys-
ical measurements are less prone to drift compared with
chemical reactions. The most successful type has been the
development of Ion Mobility Spectrometers (IMS) deployed
as eNoses. With such instruments, it is often difficult to
identify specific molecules and thus pattern-based techniques
have been applied. They operate by ionising odors and then
measuring the resultant ions in a high electric field. Most
common types are based either on a drift tube, where the
time an ion takes to traverse a tube against a buffer gas is
measured, or using FAIMS (field asymmetric IMS), where
the movement of ions in high and low electric fields are
measured [117]. These instruments can operate close to room
pressure using air as the carrier. Example instruments include
Lonestar (Owlstone, UK) and ChemProX (Environics,
Finland) [118], [119]. They also offer incredible sensitivity
(down to parts per trillion) for some chemical families. How-
ever, they are often not tolerant to higher humidity levels
and require high voltages, making them challenging to use in
certain applications. A similar type of product is based on opti-
cal detection. It is well known that certain molecules absorb
various frequencies of light (mostly in the infra-red) and that
these changes can be measured. For odor analysis, either non-
dispersive approaches (using a wide spectrum light source and
optical filters) or laser scanning approaches (common detector
with tuneable laser) are not common for eNoses as they are
often used for single chemical detection [120]. This is because
most uses of these tools are focussed on single gas detection
applications, though a large range of optical designs are
available [121]–[123]. Other options include optical frequency
comb spectroscopy and laser based photoacoustic gas sensors.
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The first one allows a broad range of optical frequencies to be
measured but has lower sensitivity than fixed frequency sys-
tems and are produced by manufacturers such as Protea [124].
Photoacoustic approaches use a laser to excite a molecule
which is detected by a microphone. However, it is also possible
to achieve the same result using a wide-band light source and
optical filters. These devices are often used for detection of
small molecules including ethylene and carbon dioxide [125].

4) Biological Odorant-Related Proteins: Immobilized
odorant-related proteins can also serve as sensors in eNose
applications, but practical implementation of this transducer
type is still in its infancy. Two types of odorant-associated
proteins have been incorporated into biosensors for a variety
of applications. These include: 1) odorant receptors (ORs) that
are expressed in vivo on olfactory receptor neurons and relay
qualitative information about odorous ligands to the brain,
and 2) odorant-binding proteins (OBPs) that capture odorants
in the nasal mucous of vertebrates and transport the odorants
to the ORs. Approximately 400 functional types of ORs have
been identified in humans [1]. Multiple receptor types are
typically stimulated by a single odorant, and the patterns of
activation across the spectrum of receptors allow humans to
distinguish more than one trillion structurally diverse odorous
molecules. Sensors consisting of five fractionated ORs from
bullfrogs and one referenced phospholipid probe were able
to respond to multiple odorant types in a piezoelectric
biosensor [126]. Carbon nanotube field effect transistors
have been successfully functionalized with ORs to detect
numerous odorous analytes [127]–[129]. A carbon nanotube
transistor biosensor that incorporated a canine OR was
used to detect hexanal, an indicator of the oxidation of
food [130]. Arrays comprised of human ORs expressed on
neurons in cell culture medium are in development as eNose
devices [131]. OBPs from pig immobilized on quartz crystals
responded to pyrazines as well as pyridine [132], [133].
A simple multisensor array based on bovine OBPs also
showed responses to odorants [134]. A water-gated field
effect transistor using a pig OBP successfully detected chiral
molecules of carvone [135]. Arrays have now been developed
using major urinary proteins of similar structure to OBPs on
diamond-based resonators [136] and have been applied to
detection of traces of explosives and drugs [137]. Devices that
incorporated ORs detected odorants at lower concentrations
that those that utilized OBPs. Use of biological ORs in a
sensor array has the potential for greater sensitivity and
discrimination than non-biological gas sensors but further
development is necessary.

5) Combined Systems: As stated earlier, diversity within
the sensor array remains a challenge with eNoses. A fur-
ther solution to this has been to combine different sensing
approaches into the same unit to offer orthogonal detection and
provide more information on the sample under test. The most
common of these approaches has been to use gas chromatog-
raphy (GC) as a means of separating out complex mixtures
of chemicals and then exposing these single chemicals to a
more traditional detector. For eNoses, it is not critical that
the GC provides full separation, more than it enriches the
information content available. The two best known commercial

TABLE I
COMPARISON OF COMMON ENOSE DISCRETE

SENSOR TECHNOLOGIES

instruments are the zNose (Electronic Sensor Technology,
US) and Hercules (AlphaMOS, France) [138], [139]. The
former uses a short column and a plain surface acoustic wave
(SAW) pick-up, while the latter is a two column GC with
standard detectors. Both instruments operate with helium and
therefore, may not be considered traditional eNoses, but do
create arrays of “virtual” sensors based on temporal output,
rather than spatial responses. Instruments that more closely
mimic an eNose are devices such as the FIS SGC (Sensor
Gas Chromatograph) that operate a GC column followed by
the MOX sensor [140]. By changing the MOX sensor and
the GC column, a high level of selectivity can be acquired.
There are research level developments using MOX arrays as
the detector to increase the diversity, but they have yet to
be commonplace. Such techniques can also be applied to
those tuneable instruments and units that operate by GC-IMS.
With a pre-separation and a highly tuneable detector, these
units provide excellent performance [141]. However, all of
these instruments are large and bulky driving the need to
produce micro-GCs. This has been an active area of research
for almost 30 years, but there are very few commercial sys-
tems. One example is the Frog from Defiant Industries, which
combines a micro-GC with a pre-concentration and a PID
(photo ionisation detector) pick-up, though similar systems
exist at the research level [142], [143]. Table I provides a
simple comparison of some of the more common eNose sensor
technologies and Table II of alternative approaches (note: we
are defining GC-Sensor as a GC column as a pre-separation
stage. In this case the sensor may be MOX, QCM, polymer
or IMS based).

6) Electronic Advancements: One of the many improve-
ments in eNoses has been the electronics within them. Driven
by the rise in consumer products and IoT applications, there
has been rapid development in electronics, with a reduction
on power and size, whilst at the same time improvements in
performance [144]. For traditional gas sensors, these advance-
ments have not been so significant as sensor voltages and
power levels remain high. However, as sensors have been
miniaturised and drive voltages have reduced, then sensor
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TABLE II
COMPARISON OF ALTERNATIVE ENOSE TECHNOLOGIES

interrogation becomes easier. In analogue electronics, there
have been significant advances in passive components, with
a reduction in size and much higher component accuracies.
In active components, op-amps are now commonly operating
at low voltages down to 1.2V, with rail-to-rail input and output
characteristics, ultra-low power, high input impedances and
zero drift. Similar improvements can be found in compara-
tors, power systems, transistors and nearly all other common
electronic components [145].

For digital electronics, with the advancements in analog-
to-digital converter (ADC) resolution and cost – going from a
8 or 12-bit world to 18, 24 or even 31 bits and high-resolution,
digital-to-analog converters (DACs) now common place, more
granularity can be gained from sensors. In addition, with the
advancements in advanced reduced-instruction-set-computing
machine (ARM) processors, micro-controllers are now hugely
powerful and at a cost of cents. These units are more powerful
than computer based eNoses just 10 years ago. This com-
bination has also created system on a chip (SoC) solutions
that integrated analogue and digital components onto a single
device, where the sensor can be biased and the responses
measured. This has been applied to a range of different sensor
solutions, including polymers, MOX and QCMs [60], [146],
[147]. Beyond the integrated digital solutions, mainstream
electronic manufacturers are now producing SoC devices for
widespread use by eNose designers [148], [149].

Furthermore, the drive for communication and the use of
cloud processing may bring significant changes to the use
of eNoses. Wi-fi, Bluetooth® and now LoRa® have started
to be seen in eNose systems and cloud computing of eNose
data is likely be common soon. Current uses of distributed,
low-cost air quality monitors are already using the internet for
this purpose [150].

C. Data Analysis: Signal Processing & Machine Learning
Pattern recognition and by extension, signal and data

processing has been considered a key element of artificial
olfaction [31]. At this point it is worth noting that eNoses
are not the only instrumental platform characterized by the

Fig. 7. Data analysis.

importance of data processing. This characteristic is shared by
chemical instrumentation such as NIR near infrared spectrom-
etry [151], [152], or ion mobility spectroscopy (IMS) [153].
In the last decade, the strong stimulus received by the analysis
of omics data, has consolidated the role of statistical data
processing and machine learning for chemical instrumentation
in areas such as metabolomics [155] and foodomics [156].

In its most basic architecture, the main building blocks or
artificial olfactory systems from the signal and data processing
point of view are displayed in Fig. 7. Raw sensors data require
some signal preprocessing for bandwidth control, and basic
feature extraction. Due to feature correlation, data can be
projected to lower dimensionality spaces where classifiers
or regressors are finally built. Many different versions and
modifications of this basic scheme have been proposed in
the literature for the last 20 years. However, in this last
decade the contributions in signal and data processing go
well beyond these individual blocks and try to face relevant
problems of chemical sensor arrays. The state of the art in
data processing for artificial olfaction has been reviewed on
different occasions [157], [158] in this journal. In this section
we are going to present novel and differential elements with
respect to these previous reviews. For the sake of brevity the
readers are referred to the original publications for technical
details.

This last decade has meant substantial progress in the
methodological maturity in the research area of signal process-
ing as well as predictive model building and validation with an
important emphasis on algorithms that improve the robustness
of eNoses [159], [160]. In the following, we highlight several
avenues of research that have taken an important leap forward.

1) Calibration Transfer and Datashift Correction: The instru-
mental stability of eNoses has been a constant concern in
the community and a barrier to commercial adoption of the
technology. Electronic noses often require a high number
of calibration points [161], making frequent recalibration
not feasible either for practical reasons or for reasons of
economic cost. This limitation motivated the development of
automatic and unsupervised drift correction algorithms two
decades ago [162], [163]. However, the use of these algorithms
was limited to research and academic settings. On the other
hand, there has been increasing interest in the calibration
transfer and datashift correction algorithms. These algorithms
allow an update of the calibration models with a minimum
number of additional calibration points instead of a complete
recalibration [164]–[168]. Alternative strategies to improve
sensors stability have been based on semi-supervised learning
algorithms that take advantage of the availability of unlabeled
samples [169]. Adaptive machine learning calibration methods
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are still the object of new developments, as for instance those
based on the Artificial Immune System [170].

Along the same lines, there is great interest in calibration
models that can be transferred between identical instruments
at the construction level. It is known that due to tolerances
in sensor devices, the same model is not usually directly
transferable from one instrument to another. It is in this context
that transfer techniques allow full calibration of the primary
instrument only and easy transfer with few points to secondary
instruments [171]–[173].

Recent works have proposed methodologies for the
complete elimination of transfer points by selecting predic-
tive models that can reject instrumental variability providing
instrument specific predictive models without individual
calibration [174].

2) Fault Detection, Identification and Recovery: Unless care-
ful algorithmic design is considered, poisoning events or in
general sensor faults can make prediction models obsolete.
Fault identification and correction has been a topic of research
in the community for the last 20 years [175]. In this area,
a self-repairing algorithm has been proposed based on an
unsupervised online selection of reliable features [176], [177].
An alternative proposal from the same group relies on coop-
erative classifiers that operate in a subset of the sensor array,
in such a way, that by consensus analysis it is possible to
determine if some classifiers have to be discarded or added
to the pool in order to have a stable performance [178].
A similar approach using SVM with kernels on subsets of
sensors demonstrated the robustness of this approach towards
sensors failure [179].

3) Methodological Improvements in the Construction and
Validation of Predictive Models: A fundamental barrier to the
commercial adoption of eNoses has been the difficult indus-
trialization of apparently positive results in the laboratory,
for their use in practical conditions in industrial, clinical,
or environmental scenarios. In this sense, several studies have
emphasized the importance of rejecting potential confounding
factors (a deeply rooted concept from the omics sciences and
epidemiology) that could be behind an apparent classification
success that was not generalizable in less controlled working
conditions [180], [181]. A clear example is the importance of
a random ordering in the presentation of calibration samples,
the use of quality control samples and blanks. Considering
that eNoses are time-varying instruments, the sometimes-
overlooked main confounder is the instrument drift itself
during calibration, either due to environmental factors or
memory effects in the system. That is why, in addition to a
good experimental design in the calibration, great emphasis is
placed on controlling the rigor of the validation, avoiding the
pervasive but limited in scope intra-study validations. More
and more studies are being found that propose validations that
allow verifying instrumental robustness to small methodolog-
ical, instrumental, or relative variations to the samples under
study [182], [183].

4) Figures of Merit of the Calibration Model: A mature
treatment of eNoses as measurement and monitoring instru-
ments goes through an adequate definition and calculation of
figures of merit that allows the objective comparison of various

instruments. These figures of merit are well established for
univariate sensors, but their definition and widespread use for
chemical sensor arrays have been hampered by aspects such as
the non-linearity of the sensors, the use of multivariate tools
based on machine learning or the difficulties associated with
the measured magnitude, when it is it is expressed in terms of
human perception. In the last decade we have seen new pro-
posals for the definition and estimation of important figures of
merit such as selectivity [184], limit of detection [185]–[187]
or chemical resolution [188]. Many of these new proposals are
based on prior art [189], [190].

As mentioned previously, the characterization of the per-
formance of the instruments goes through their comparison
with human perceptions, be they qualitative or quantitative.
A paradigmatic case with important environmental implica-
tions is the use of eNoses to estimate the intensity of the
odor. In this case, the variability of human perception is
controlled using a panel and by the use of standardized
methodologies based on dynamic olfactometry [191]. In any
case, instrumental validation cannot assume that the reference
technique has a quasi-zero error, and alternative methodolo-
gies based on model comparison must be used, techniques
that are otherwise common in the domain of biomedical
engineering. Among them we can find the classic Bland-
Altman method [192], [193], where the main idea is whether
the objective determination can differ from the subjective
one above a predefined limit dependent on the application.
We speak then of the calculation of the limit of accep-
tance (LoA) of the differences. An alternative treatment is
based on the use of regression methods that accept errors
in both axes, such as Deming Regression or Passing-Bablok
Regression [194].

5) Chemical Mapping and Chemical Source Localization:
In recent years we have seen a renewed interest in the use
of eNoses to estimate a map of the odor distribution and
eventually determine its source. Substantial algorithmic devel-
opments have been proposed in the last decade on the best
ways to build those maps. These algorithmic developments
slightly differ in ambition and scope, whether the eNoses are
mounted in mobile platforms based on terrestrial or aerial
robots [195]–[199], or by deploying chemical sensor networks
over the area of interest [200]–[202]. The use of machine
learning methods for sensor array calibration in this applica-
tion scenario has been widely explored [203]. This application
must face additional difficulties such as the turbulent nature
of atmospheric transport, which can be further complicated
by the presence of obstacles, and changes in the direction
and intensity of the wind. This gives rise to signals with
a chaotic character, with rapid variations, particularly near
the point of emission and even characterized by periods of
intermittence [204]–[206].

In this sense, various groups have made algorithmic pro-
posals to determine which is the best extraction of char-
acteristics to obtain information from the chaotic chemical
signal that excites the sensor elements. To the traditional
use of the instantaneous value of the signal has been added
the use of variance, or more complicated or bio-inspired
methods [207]–[209].
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Fig. 8. Reservoir computers, a kind of recurrent neural network, has
been proposed with success to improve the dynamics of eNoses subject
to fast transients in continuous monitoring. Adapted from [220].

Fig. 9. Linear inverse filters may improve chemical sensors time
response one order of magnitude, opening new possibilities for their use
in robotic platforms. Adapted from [209].

These readings obtained at various points in time and space
must be fused with some underlying probabilistic model to
reduce the variance of the map [210], [211]. This underly-
ing probabilistic map can be created using interpolation and
smoothing methods [212] based on convolution kernels [213]
or on physical models of dispersion [214], [215]. When the
objective is only to obtain the position of the source, Bayesian
inference methods can be used from the detection of events
or the readings of the signal itself [216], [217].

6) Improving Sensor Array Dynamics: Electronic noses can
have especially slow response times on the order of tens
of seconds or even minutes depending on the instrument
setup [218]. These response times pale in comparison to the
dynamic response of insect antennas that can reach bandwidths
of 100 Hz [219]. This slow response makes it difficult to
use eNoses for applications in robotics or even in continuous
monitoring in the presence of variations. rapid concentration.
Dynamic behavior is very complex since non-linearities are
often observed not only in static behavior, but also in dynamic
behavior. That is why predictive models based on dynamic
neural networks [220], [221] (see Fig. 8), or extended Kalman
filters have often been used with good results [222]. It has
been shown however that, if the objective is only the detection
of events, the use of linear inverse digital filters is sufficient
to improve response times by approximately one order of
magnitude [209] (see Fig. 9).

7) Bioinspired Algorithms: The biological olfactory system
of both vertebrates and insects in its information processor
aspect has always been a source of inspiration in the commu-
nity [223], [224]. This line of activity, continues to be active,
particularly in the context of increasing interest in neuromor-
phic computing [225], [226]. The olfactory system performs a
multitude of computational functions. Beyond a poor estimate
of odor intensity, smell demonstrates excellent capabilities for

detection, rejection of background noise, odor discrimination,
contrast enhancement, gain control, combinatorial coding,
pattern completion, and error correction [227]. Various groups
have implemented bioinspired algorithms, in both insects and
vertebrates, with different levels of abstraction [228], [229] and
their operation has even been demonstrated in real time on a
mobile robotic platforms [230]. In this sense, a recent highlight
is the implementation of a bioinspired algorithm for chemical
sensors on the Loihi neuromorphic chip by Intel [231].

The comparison between the combinatorial coding capac-
ity between olfactory receptors at the level of the olfactive
epithelium or in their response integrated by glomeruli at the
level of the olfactory bulb and MOX sensors has also been
the object of analysis. The results show that for the dataset
studied the biological sensors are less correlated than the
artificial sensors and more sensitive, which gives biological
receptors greater molecular range of coverage. While limited
in scope, this type of analysis sheds light on why artificial
olfaction shows a limited chemical resolution compared to
their biological counterparts [232], [233].

8) Data and Computational Resources Availability: Beyond
algorithmic advances and changes in research focus, the last
decade has witnessed a major change that improves the repro-
ducibility of research in the field of signal and data processing.
It is increasingly common for researchers to share the data
sets under study and sometimes even the computational tools
developed for their analysis. Data repositories such as the
UCI machine learning repository [234] allow researchers to
access previously analyzed data sets, reproduce the results
and propose algorithmic improvements and compare them
in homogeneous terms. It is expected that this trend will
be completed with the possibility of sharing also the tools
developed via repositories such as CRAN in R [235] and the
Python Package Index [236], or directly through github [237].

D. Applications
In the past 20 years, the application of electronic nose tech-

nology has accelerated in many sectors including environmen-
tal quality of indoor and outdoor air, medical diagnostics and
treatment, food quality and contamination, agriculture, foren-
sics, and safety. Representative recent applications reported
in the scientific literature are given in Table III [1], [238].
Although significant progress has been made in the perfor-
mance of eNoses for these applications, challenges remain
in obtaining accurate, consistent, and reproducible results
over time. In 1976, Thompkins [16] noted sensor sensitivity,
selectivity, nonlinearity, drift, and stability as challenges for
that era’s hydrogen sulfide sensors. These challenges remain
for today’s eNose devices. These issues must be solved as we
move forward in time.

E. Standards
During the first two decades of this 21st Century, odor

monitoring standards have garnered attention from academic
researchers who measure odors, government regulators who
specify exposure limits, and industrial facilities that release
odorous gas plumes. Since international standards have proven
to be very valuable in many technology sectors, the stakehold-
ers in industries that generate, and control, odor emissions
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TABLE III
RECENT APPLICATIONS USING AN ENOSE [1], [238]

are turning to standards to aid their goals for developing
functional and reliable products for the global marketplace.
Standards set performance criteria that guide the design and
manufacture products and optimize their reliability and safety.
For products that are monitoring odor exposure of human
beings, the perception of that odor has great influence on
the impacted people’s wellbeing. Therefore, important para-
meters to be measured, reported, and archived include the
perceived odor intensity, irritation, and pleasantness. To date,
several odor standard-writing groups have been established,
but published standards are just emerging. Activities in Europe
began about 20 years ago [239]. Recently, the IEEE Stan-
dards Association (IEEE-SA) established a collaboration with

TABLE IV
SUMMARY OF ACTIVE ODOR MONITORING

STANDARDS WORK GROUPS (WGS)

the International Society for Olfaction and Chemical Sens-
ing (ISOCS) to develop a series of standards for machine
olfaction devices and systems. Table IV summarizes several
eNose-oriented standards activities from the European Union
and the IEEE Standards Association. Individuals who are
interested in participating in the IEEE-SA Working Groups
can inquire via the references in Table IV.

IV. THE REST OF THE 21ST CENTURY

Though progress has been made during the last 20 years,
much more was predicted by experts in the field. For example,
Stetter and Penrose (2002) [246] gave some predictions, but no
specific timeline. They foresaw improved chemical sensors and
better drift correction. They envisioned chemical sensors that
mimicked nature by being self-amplifying and regenerating.
They suggested that chemical sensors would measure funda-
mental properties like solubility and binding constants. They
believed that sensor arrays would compensate for patterns and
sensor heterogeneity and would integrate into microfluidic sys-
tems with sampling and separation systems. They anticipated
that sensor arrays would be spatially and temporally separated
as is the human olfactory system. Finally, they expected pattern
classification to improve. Some of their goals were achieved,
and some were not. From this point forward, the future of arti-
ficial olfaction will rest on significant technical improvements
that are forthcoming. These improvements include hybrid
biophysical sensor technologies to capture the odor samples,
ubiquitous distributed computing nodes at the edge of the
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Cloud to manage and archive odor-sample data, and AI
and machine-learning algorithms to make sense of massive
aggregations of real-time and archived odor data. Due the
recent exponential increase in processor computational speeds,
reductions in electrical component power consumption, and
Cloud storage capacity that seems infinite, we believe that
tremendous progress in artificial olfaction is before us. Here
we give our predictions. We leave it to the researchers to
decide how best to get there. Please give us a grade in 25 years!

A. Predictions for 2025
1) Sampling 2025:
• Adsorbent materials with highly selective properties –

Nanoparticle based materials carbon nanotubes, graphene,
2D layered materials such as metal chalcogenides, tran-
sition metal oxides, emerging materials such as layered
transition metal dichalcogenides.

• Microfluidic technologies integrating sampling with
sensing

• Innovative additive manufacturing utilizing printable
materials for sampling, and preconcentration

• Distributed sampling and sensing for the environment.
2) Sensors 2025:
• Traditional gas sensors will remain the same, due to

the conservative nature of the gas sensors industry, with
incremental changes in sensitivity and specificity.

• High-end (>$20k) eNose market will move further
towards physical measurement systems, such as IMS and
optical measurement, and further away from traditional
sensor array based eNoses.

• These high-end systems will provide significantly more
chemical information on an odor and will facilitate
improvements in data analysis

• Further material integration into modern electronics, with
thin film MOX materials being the most common. This
will facilitate wide-spread use of these devices

• Reduction in power of commercial gas sensors – achieved
through a combination of size reduction, thin films and
the development of materials able to operate closer to
room temperature.

• Continual development of 2D, graphene, gold nanopar-
ticle sensors. Mostly at the research level with further
small start-up companies being created.

3) Data Analysis 2025:
• Algorithmic solutions for chemical mapping and odor

source localization will be tested and demonstrated in
real scenarios, when mounted in terrestrial and aerial
unmanned vehicles. Algorithms will be sufficiently robust
to wind variations in direction and intensity, as well to
the perturbations due to vehicle motion.

• Commercial eNoses and chemical sensing systems will
include by default auto diagnostic capabilities, informing
the user about drifts and sensor faults. The faulty unit will
be identified, and their signal automatically corrected.

• eNoses deployed in smart cities will provide high spatial
and temporal resolution data that will be fused with
environmental dispersion models.

• eNoses will self-calibrate when collocated with mobile
reference environmental monitoring stations.

• Full standard pre-processing and machine learning work-
flows will appear for Ion Mobility Spectrometry data,
enabling the use of the instruments for food qual-
ity control and food fraud detection. These workflows
will include fully automated signal processing including
smoothing, peak detection, peak alignment, signal decon-
volution followed by predictive machine learning without
any human supervision. Systems will be used without
expert knowledge in data processing.

• Smart eNoses with embedded signal processing will
be trained to differentiate hedonic tone in very limited
application scenarios but of commercial relevance such
as of malodors in home appliances

• eNoses will have subsecond response time by the combi-
nation of proper system design (sensors and fluidics) and
signal processing based in inverse filters.

• Further progress will be observed in the use of insect
antennae and electrode recordings of the antennal lobe
neural circuitry to control demonstration robots.

4) Applications 2025:
• Several personal-use eNose devices will have been con-

ceived, each with a large potential market. Startup com-
panies to commercialize those devices will be operating
with the support of a stable group of investors.

• More medically targeted devices will be available with
regulatory approvals.

• Automobile manufacturers will be including eNose
devices in the interior of some of their high-end models.

• Rental car agencies and demand-ride services will begin
including eNose devices in their vehicles to promote
driver and passenger safety.

• eNose devices will begin to appear in high-security areas
to detect intruders, drugs, and other contraband.

• Large numbers of home safety and fire alarms will be
offered with eNose device options.

• Some smartphone companies will be investigating eNose
sensors for their high-end devices, other options will be
available for beta testing.

5) Standards 2025:
• European standards will continue to develop. One or two

will have been published and be in wide use.
• Several new IEEE odor-monitoring Working Groups will

have been initiated, bringing the total to more than a
dozen.

• Three to five IEEE odor monitoring standards will have
been published with two or three gaining commercial
adoption.

• IEEE Conformity Assessment Program (ICAP) sites are
being organized.

B. Forecast for 2050
1) Sampling 2050:
• Biomimetic sampling systems using sustainable

materials.
• Integration of biological materials into sampling systems

– proteins, cells, intelligent antennae.
• Sampling, sensing and data processing integrated into

single components.
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• Ubiquitous sampling systems for biological fluids for
medical diagnosis.

2) Sensors 2050:
• Most traditional sensors will be phased out and be

replaced by miniature physical measurement systems,
based on ion mobility, mass measurement or optical. This
will be the size of current sensors.

• Nearly all sensors will be digitally integrated and where
needed, linked to the cloud.

• For industrial processes, mains power will still domi-
nate, but sensors will be developed with ultra-low power
consumption that are able to scavenge energy from the
environment.

• 2D and more exotic materials will become common place
for consumer products, where price point and size are
important. However, MOX materials will still be around
and common.

• There will be a diversity in sensor manufacturing, with
new companies dominating the consumer setting with the
production of these next generation materials.

• Flexible and plastic based sensors will be developed–
allowing sensors to be placed in any location.

• Wearable sensors will be more widely utilized, with more
digital inclusion.

• Personal odor will be used as a means of identification.
• Wearable glasses that allow visualisation – the equivalent

of thermal cameras for odors.
• Biological sensor systems will be developed, that contain

replicated biological receptors
• Smell capture of environments to be replicated on display

devices.
3) Data Analysis 2050:
• Electronic noses will include neuromorphic computing

hardware and they will implement bioinspired computing.
These computing solutions based on event driven signal
processing and spike based neural networks will demand
less computing power and they will be available in small
form factor hardware for implementation in miniature
sensing systems.

• Dramatic improvements in component tolerances will
make calibration models available across identical instru-
ments without or minimal additional calibrations

• eNoses size will decrease dramatically, and all the
requirements regarding signal processing and machine
learning will be integrated in single chip computers with
minimum power requirements

• Databases related to the response of vertebrate’s/insect’s
olfactory receptors (ORs) for a large palette of odorants
will be widely available. The term olfactome will gain
widespread use to represent the response of biological OR
to a palette of odorants. International efforts will populate
worldwide databases with the response of thousands of
OR to millions of odorants.

• First demonstrators of realistic and bioinspired olfactory
coding will appear. A proxy for the number of required
channels will the number of active olfactory genes in
humans. Odor analysis will allow to predict the response
of human OR to this odor beforehand. This prediction will

be enabled by machine learning models in large databases
previously mentioned

• A side effect of the previous points and together with
improvements in sensor technology, machine learning
will allow to tailor the response of the sensor array
to mimic the response of subsets of OR, to obtain a
biomimetic enose output for particular biological species.
Demonstrators for insect olfaction will appear.

• Brain computer interfaces for the olfactory system of
dogs will allow to use the canine olfactory system for
applications demanding maximum sensitivity and speci-
ficity. Dedicated signal processing for the acquired neural
signals will allow interpretation and further processing of
the dog olfactory response.

4) Applications 2050:

• eNose devices will be included in every household
appliance, including the vacuum cleaner. Realtime odor
identification and level will be reported to a home data
center. Offending odors will be traceable to the generating
source and event.

• eNose devices will be in every moving vehicle to accu-
rately record the interior and exterior air quality. The exte-
rior data will be routed to community processing nodes
for second-to-second geo-mapping of problem conditions.
Generators of the offending conditions will be identified,
and appropriate action will then be possible to quickly
mediate the problems.

• Every smartphone will include an eNose as an aug-
mentation to the human nose. Specific options for the
augmentation will be offered. For the elderly, general
olfactory support will help them compensate for smell
degradation. For those who work in special environments
(like a chemical factory), a tailored eNose sensor array
will be available.

• Robots, such as helpers or dogs, will have integrated
eNoses and be able to recognise their owners based on
smell.

• Small individual eNose units will be inexpensive and
versatile for use in thousands of applications. They will
use energy harvesting to operate for years without main-
tenance. They will be self-calibrating and capable of
restoring their sensors to baseline operation millions of
times before their end of life. All units will be disposable
and biodegradable.

5) Standards 2050:

• The European and IEEE standards will be collaborating
on joint projects.

• Fifty or more odor-monitoring and control standards will
have been published with 30 or more them undergoing
revision for continued relevance to the eNose manufac-
turers.

• Each year, 30 to 40 new Working Groups are formed,
with 20 or more new standards being published.

• eNose manufacturers are finding the IEEE ICAP an
important part of their efforts to develop great products
with high market demand. Twenty or more ICAP sites
will be in operation.
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• More than a dozen eNose companies will be publicly
traded and viewed as very successful commercial entities
and green employers.

C. Forecast for 2075
1) Sampling 2075:
• Autonomous systems for sampling, sensing and remedial

action.
• Bioengineered sampling and sensing systems.
• Intelligent materials for sampling and sensing capable of

self-healing and self-reproduction.
• Fully biomimetic systems.
2) Sensors 2075:
• eNoses will be integrated into the fabric of structures and

be invisible. It will become a national standard to have
smart odor analysis systems built into our environment.

• Ability to control materials and material properties at
the atomic level will allow many materials to operate
as chemical sensors – measuring physical and chemical
properties of molecules.

• We will move around the environment with our clothes,
buildings and personal transport devices. These systems
will be able to track individuals based on their odor
profile.

• Global odor maps will be created and updated on a
second-by-second basis.

• Bio-replacement human noses for those who lose their
sense of smell.

• Bio-enhancement of the human nose to be the same as a
dog or beyond.

3) Data Analysis 2075:
• The problem of olfactory coding will be fully understood.

Deep learning will be available to predict in-silico odor
perception for arbitrary odorant molecules not yet syn-
thesized.

• Electronic noses will implement theoretical neuroscience
models of the olfactory circuitry in neuromorphic hard-
ware. This implementation will take as inputs the pre-
dicted OR response from sensor signals (either by direct
OR biosensors or biomimetic inorganic sensors plus
signal processing), but beyond that it will be capable to
predict non-linear and dynamic synergistic and antago-
nistic response for a full biomimetic prediction of human
perception experience.

• First attempts to use chemical sensors for olfactory proth-
esis for anosmic people. While successful, the olfactory
experience will be limited in richness and span. However,
people will have augmented olfaction capabilities being
able to perceive dangerous gases such as CO.

4) Applications 2075:
• eNose units of varying complexities are ubiquitous in our

indoor and outdoor environment. As old eNose devices
fail and fade away, new units are routinely introduced
into the same or a nearby location. Cloud-based data
centers collect vast amounts of data. Each eNose includes
its health status in every report. Replacement geo-maps
will show users where new units are needed, and what
capabilities should be included in replacement units.

• Since each eNose will be biodegradable, collection cen-
ters will only be needed if recycling any of the eNose
materials is profitable or helps maintain the health of the
planet in any manner.

5) Standards 2075:
• Hundreds of odor-monitoring and control standards will

be available to support eNose performance claims by the
manufacturers. Purchasers of eNose devices that are certi-
fied to meet the published standards are happy customers
and will return decade after decade to purchase newer,
more sophisticated units.

• More than 50 ICAP testing sites are available, reaching
all continents.

• There are more than 100 successful eNose companies,
with mergers and acquisitions occurring multiple times
each year.

V. CONCLUSION

The artificial olfaction field has been built on a strong
foundation. The founders of the field have set us on a creative
voyage that is well underway. Past efforts have proven that
eNose technology can solve odor monitoring and control prob-
lems in a wide variety of applications. Commercial success has
been challenging because specific designs that are cost-limited,
trustworthy, and tailored to unique markets are not easy to find.
As sensors become more accurate and interfacing electronics
get smaller, while both get cheaper and more reliable, those
hard-to-find applications will emerge, and the commercial
firms will flourish. We hope that the inquisitive young minds
of current and future brilliant science and engineering students
will see artificial olfaction as a green technology that can help
save the world.
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