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Terahertz Plasmonic Technology
Michael S. Shur , Life Fellow, IEEE

Abstract—The terahertz (THz) technology has found appli-
cations ranging from astronomical science and earth obser-
vation to compact radars, non-destructive testing, chemical
analysis, explosive detection, moisture content determina-
tion, coating thickness control, film uniformity determination,
structural integrity testing wireless covert communications,
medical applications (including skin cancer detection), imag-
ing, and concealed weapons detection. Beyond 5G Wi-Fi and
Internet of Things (IoT) are the expected killer applications of
the THz technology. Plasmonic TeraFETs such as Si CMOS
with feature sizes down to 3 nm could enable a dramatic
expansion of all these applications. At the FET channel sizes
below 100 nm, the physics of the electron transport changes
from the collision dominated to the ballistic or quasi-ballistic transport. In the ballistic regime, the electron inertia and
the waves of the electron density (plasma waves) determine the high frequency response that extends into the THz range
of frequencies. The rectification and instabilities of the plasma waves support a new generation of THz and sub-THz
plasmonic devices. The plasmonic electronics technology has a potential become a dominant THz electronics sensing
technology when the plasmonic THz sources join the compact, efficient, and fast plasmonic TeraFET THz detectors already
demonstrated and being commercialized.

Index Terms— Field effect transistors, TeraFETs, plasmonics, terahertz technology, ballistic transport, ballistic mobility.

I. INTRODUCTION

THE terahertz (THz) frequency range (often referred to
as the THz gap) lies between the frequency ranges of

the electronic and photonic devices. It is the next frontier
of ultra-high speed electronics. First applications of the THz
technology were in astronomical science [1], [2] and earth
observation [3], [4]. In addition to radio astronomy and earth
remote sensing, numerous applications of the THz technology
include vehicle radars [5] and compact radars [6], [7],
non-destructive testing [8], [9], sensing [10]–[12], chemical
analysis [13], explosive detection [14], moisture content
determination, coating thickness control [15], film uniformity
determination [16], structural integrity testing, wireless and
wireless covert communications [17]–[22], biotechnology
[23]–[30], semiconductor characterization, [31], medical
applications [32], [33] (including cancer detection [34], [35]),
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imaging [36], [37], quantum measurements [38], [39],
semiconductor wafer characterization, [40], [41], VLSI
testing [42]–[48] concealed weapons detection [49], and food
safety control [50], [51]. The expected killer applications
are in beyond 5GWi-Fi [52], [53] (with estimated market
potential of $730 billion by year 2030 [54]) and Internet
of Things (approximately $20 billion market potential
in 10 years [55]) using the 230-340 GHz band [19], [20], [56].
The overall THz market has remained modest but is expected
to grow from approximately $220 million in 2020 to
$1.3 billion in 2027 [57]. However, this growth rate might
increase dramatically because of the emerging THz plasmonic
technology enabling fast, inexpensive THz detectors, mixers,
frequency multipliers, and sources, Focused plane Arrays
(FPAs), and THz cameras [58]. This technology is compatible
with modern Si VLSI technology and could take advantages
of well-developed Si VLSI readout technology used for
infrared FPAs and infrared cameras. Figure 1 shows the THz
application areas, where the expected impact of the plasmonic
THz technology will be the largest.

The paper is organized as follows. Section II considers
existing and potential applications of the THz technology that
are expected to be impacted by field effect transistors operating
in the plasmonic regime (TeraFETs). Section III describes
the physics of ballistic and quasi-ballistic transport in short
channel TeraFETs and the physics of resonant and overdamped
plasma waves. Section IV reviews the state-of-the performance
of the THz plasmonic devices. The focus of Section V is
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Fig. 1. Subranges of the THz radiation spectrum mapped into different
applications. Shaded region show the range, where plasmonics THz
technology will have an impact.

Fig. 2. Chelyabinsk meteorite explosion.

on the new ideas of using plasmonic crystals for detecting,
processing, and generating THz radiation.

II. APPLICATIONS

The Chelyabinsk meteor entered Earth’s atmosphere over
Russia on 15 February 15, 2013. This undetected near-Earth
asteroid travelling with a speed of over 60,000 km/h exploded
in an air over the Chelyabinsk region [59] (see Fig. 2). The
total kinetic energy of the explosion was over 30 times larger
than the energy released by the atomic bomb detonated over
Hiroshima. The blast damaged 7,200 buildings and injured
1,500 people. Miraculously, nobody died.

This catastrophic event highlighted the importance of mon-
itoring the space, and THz radiation is an important tool
of space exploration. A sub-THz interferometer (IRAM) in
Plateau de Bure, French Alps operates at 230 GHz. The of six
15 meters diameter antennas of the IRAM interferometer can
move on rail tracks up to a maximum separation of 408 m
in the East-West direction and 232 m in the North-South

Fig. 3. The image the Iras-Araki-Alcock Comet taken at 12 THz [61].

Fig. 4. Stars invisible in a dense dust cloud appear as bright stripe
in the THz image [62]. Copyright: Michael Hauser (Space Telescope
Science Institute), the COBE/DIRBE Science Team, and NASA.

Fig. 5. THz gas spectroscopy [63].

direction. The instrument resolution of 0.5 arcsecs is sufficient
to resolving an apple at a distance of 30 km).

COBE, MIRO, ODIN, AKARI, AURA, HERSHEL, IRAS,
PLANK, SMILES are examples of THz instruments or mis-
sions in space [60]. Fig. 3 shows the image of a comet (called
the Iras-Araki-Alcock Comet) was discovered by Infrared
Astronomical Satellite (IRAS) in its 560-mile-high, near-polar
orbit above the Earth.

Fig. 4 presents another striking example of the THz appli-
cations in radio astronomy. THz detects cold matter (140 K
or less), such as clouds of gas and dust in our and nearby
galaxies. New stars radiate heat are clearly seen in the THz
range. Stars invisible in a dense cloud of dust appear as very
bright stripe in the THz image because they heat the dust that
glows in far-infrared range [62].

THz gas spectroscopy is perfect for detection and
identification of gases (see Fig. 5)
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Fig. 6. Ozone hole revealed the NASA study [65].

Fig. 7. THz communication on a nanoscale [66].

NASA used the THz spectroscopy for monitoring the
ozone and other gases (see Fig. 6). The ozone hole in upper
atmosphere lets dangerous ultraviolet radiation pass through
causing skin cancer. One out of five Americans will develop
skin cancer over their lifetime [64].

THz radiationt penetrates fog and dust, goes through walls,
allows for line-of-sight communications with or without reflec-
tions, very secure, hard to jam. The communication range
varies from light years in space exploration to hundreds of
meters in a city environment to the nanoscale for commu-
nications inside of a computer board or a computer chip
(see Fig. 7). THz communication links are perfect for creating
driverless car infrastructure in a large urban environment
(see Fig. 8).

Fig. 9 illustrates the increasing demand for the bandwidth
by the generations of the cellular networks that could be
only addressed by sub-THz (220 GHz to 340 GHz) and THz
technologies.

Fig. 10 shows the results of the explosive detection uisng
the THz radiation. Fig. 11 shows an example of using sub-THz
radiation for identifying toxic gases [67].

Fig. 12 shows the heparin detection by a TeraFET. The
sensivity is oreder of magnitude larger that for the ChemFET
operation monitoring the changes in the transfer characterisicts
when the FET is exposed to heparin.

Fig. 8. THz communication links for driverless car infrastructure in a
large urban environment.

Fig. 9. Increasing demand for the bandwidth by the generations of the
cellular networks.

Fig. 10. Diffuse reflection of THz radiation for explosive detection [14].

Fig. 13 present a few more applications that are expected
to benefit from the plasmonic TeraFET technology.

Another recently emerging application is in cyber security
and defect and reliability studies of short channel field effect
transistors (see Fig. 14 and 15). This technique could com-
plement and improve upon more traditional VLSI THz testing
(see. Fig. 16 and 17).

III. PHYSICS OF TERAFETS: BALLISTIC

TRANSPORT AND PLASMONICS

Fig. 18 shows the power levels achieved by different THz
electronic sources [44]. As seen powers generated by Si
CMOS and InP-based HEMTs fit well into the overall power
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Fig. 11. THz spectra of acetaldehyde (black), acetonitrile (red),
ethanol (green), water (yellow), methanol (blue), ammonia (magenta),
propionaldehyde, propioaldehyde (cyan), and propanenitrile propionitrile
(gray) [67].

Fig. 12. Transfer characteristics with and without heparin and response
of the plasma wave detector [29].

Fig. 13. The results of inspection of space shuttle insulation foam defects
using a 0.2 THzGunn diode oscillator (circles indicate the found faults)
[9] (a); schematics of THz skin cancer detection (b); THz communication
[17] (c); sub-THz image of I7 microprocessor at f = 288 GHz [68] (d).

versus frequency dependence. Further improvement of their
performance require design optimization based on better
understanding of the device physics of ultra-short devices.

Fig. 14. Measured transfer characteristics (a), 0.2 THz responses
(b) of two Si NMOS devices. Lg = 180 nm, 0.2 THz response images of
normal (c) and defective (d) Si MOS. (After [44]).

Fig. 15. Testing MMIC under bias by measuring voltage at the package
pins: MMIC photograph (a), working device (b) and damaged device (c)
responses [47].

Scaling the FET feature sizes below 20 nm required a
radically different FIN FET geometry. Further scaling down
to 5 nm and 3 nm feature sizes required all around gate
design. Such design concepts were first proposed in late
1990’s [71]–[73] (see Figures 19 and 20) but it took nearly
20 years for these designs to become mainstream Si MOS
VLSI technology.

The physics of the electron transport in such devices
involves ballistic and quasi-ballistic transport [74]–[92]. The
electron inertia responsible for the excitations of the oscilla-
tions of the electron density (the plasma waves) plays a key
role in determining the high frequency response.
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Fig. 16. THz emission image of an LSI microprocessor superimposed
on its optical image. From [69].

Fig. 17. Optical and THz images of genuine and counterfeit VLSI [48].

Fig. 18. Power levels of different electronic THz sources [70].

Fig. 19. Conventional, Fin FET and All around Gate designs.

Fig. 21 illustrates ballistic, hydrodynamic ballistic, colli-
sion dominated, and hydrodynamic ballistic transport strongly
affected by contacts modes of the electron transport in the FET
channels.

Fig. 20. Heterodimensional HFET designs with the gates on three sides
of the channel (like in a FINFET) (a) and coaxial FET (like an all around
gate) [71], [72] (b).

Fig. 21. Electron transport in FET channels: (a) ballistic trans-
port: no electron collisions with impurities and lattice vibrations and
no electron-electron collisions; (b) hydrodynamic ballistic transport: no
electron collisions with impurities and lattice vibrations and dominant
electron-electron collisions; (c) drift-diffusion transport: electron colli-
sions with impurities and lattice vibrations and electron-electron colli-
sions; (d) hydrodynamic ballistic transport strongly affected by contacts.
Here v is the largest of the thermal velocity and the Fermi velocity, is the
momentum relaxation time.

The characteristic distance determing the modes of the
electron transport is the mean free path λ = vthτ and
λ = vFτ for a non-degenerate and a degenerate semicon-
ductor, respectively. Here vth and vF are the thermal and
Fermi velocity, respectively, and τ is the momentum relaxation
time. The ballistic regime takes place when the electron transit
length, L � λ.

Fig. 22 showing the evolution of the electron velocity for
electrons injected into semiconductor for different values of
the electric field illustrates this point. As seen, the electron
velocity is higher than the steady-state value reached deep
inside the semiconductor. This “ overshoot” effect is due to
the finite energy relaxation time it takes for the electrons to
gain energy from the electric field and, hence, an ability to emit
optical phonons. Even more interesting is the electron velocity
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Fig. 22. Evolution of the electron velocity for electrons injected into
semiconductor for different values of the electric field [74].

Fig. 23. Mean free path for the two-dimensional electron gas (2DEG)
for Si and GaN at 300 K and 77 K.

dependence on distance at very small distances shown in the
inset in Fig. 22. At such short distances smaller than the mean
free path, the electron transport is not affected by the electron
collisions with the impu\rities or lattice vibrations.

Fig. 23 shows typical values of the mean free path for Si
and GaN. As seen, the 2DEG mean free path is much larger
than the minimum feature size of modern Si CMOS even at
room temperature. Therefore, understanding of the physics of
the ballistic transport is crucial for the design of modern VLSI.

Fig. 24 illustrates one of the consequences of the hydrody-
namic ballistic transport strongly affected by contacts, which
the dependence of the apparent (measured) electron mobility
on the channel length. As shown in [76], [77] the apparent
“ballistic” mobility μbal = αq L/ (mv) is determined by the
contacts is dominant at short channel length and is proportional
to the channel length L : Here m is the electron effective mass,
and the constant α and velocity v are listed in Table I.

The AC impedance of a ballistic device is also dramatically
different from that for long channel devices, since that phase
relations between the electron fluxes injected form the opposite
contacts start playing a dominant role [87].

Hydrodynamic model decribing electrons in TeraFET chan-
nels as an electronic fluid provides an insight into the conse-
quencies of the ballistic transport.

Fig. 25 shows the characteristic response time of a semicon-
ductor calculated in the frame of a hydrodynamic model [93].

Fig. 24. Ballistic mobility versus channel length for Si. [91] (a) [92] ©
IEEE2016 (b).

TABLE I
EFFECTIVE VELOCITY v = vF OR v = vth

AND CONSTANT α [AFTER [87]

As seen, at low mobility values (corresponding to the
collision-dominated regime) the response time decreases with
the electron mobility because it is determined by the electron
transit time. However, for high mobilities, when the momen-
tum relaxation time becomes larger than the transit time,
the response time increases with the mobility. The reason for
this increase is the oscillations of the electron density – plasma
waves – that become resonant at high momentum relaxation
times, i.e. at high mobility values. For very momentum
relaxation times, the electron viscosity becomes a dominant
attenuation mechanism and, as seen in Fig. 25, the response
time saturates in the viscous electron transport regime.

The saturation level depends on the channel length and
on the momentum relaxation time [94]–[96]. The detailed
COMSOL simulations of the minimum response time based on
the hydrodynamic model are presented in [96] for the 2DEG
in InGaAs, Si, GaN, and for the two-dimensional hole gas in
p-diamond.
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Fig. 25. Characteristic response time of a semiconductor as a function
of the electron mobility [94].

The simulation results reported in [96] agree well with
analytical theory developed in [94] yielding the characteristic
inverse response time 1/τr in the frame of the hydrodynamic
model
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Here s is the plasma wave velocity given by [97]
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Vo is the gate voltage swing (Vo = VG − VT with VG and
VT being the gate and threshold voltage, respectively), T is
temperature, so = √

ηkB T/m, η is the subthreshold ideality
factor, T is temperature, kB is the Boltzmann constant. The
typical values of the plasma velocity are much larger that
the electron drift velocity and the values of the fundamental
plasma frequency correspond to the THz range (see Fig. 25).
The fundamental frequency of the plasma waves for electrons
in a gated MOS channel biased above threshold is f pa =
s/(4L) and f ps = s/(2L) for asymmetric and symmetric
boundary conditions, respectively.

As seen from Fig. 26, the plasma wave velocity is much
larger than the electron drift velocity in long channel devices,
and a typical fundamental plasma frequency is much large than
the FET cutoff frequency, which is on the order of the inverse
transit time.

Fig. 27 (from [98]) shows the dispersion relations for the
plasma waves in different TeraFET regions.

As seen from Fig. 26, the plasma wave velocity and the
fundamental plasma frequency could vary from 2 × 105 m/s
to over 106 m/s and from 0.2 THz to 10 THz, respectively.
Hence, the plasmonic TeraFETs could cover most of the THz
range (0.3 THz to 30 THz). Plasma wave excitation in submi-
cron FET and related device structures could support a new
generation of solid-state terahertz tunable devices discussed in
the next section.

The phenomena described in this Section could be affected
by contacts, surface scattering, and impedance mismatch.

Fig. 26. Comparison of plasma, drift, and thermal velocities for Si FETs.
(From [98]).

Fig. 27. Dispersion relations for plasma waves. N2D and N3d are sheet
and bulk carrier concentrations, k is the wave vector. (From [98]).

The compact models [99] and TCAD simulations [92] are very
useful in evaluating the contribution of these non-ideal effects.

IV. THZ PLASMONIC DEVICES

The first proposal to use the plasma instability in a ballistic
or quasi-ballistic TeraFET channel for generating THz radia-
tion [100] relied on the different plasma wave reflections from
the channel boundaries with the channel serving as a resonant
cavity for the plasma waves. This instability now (called the
Dyakonov-Shur instability) predicts a relatively narrow THz
emission spectrum. The Ryzhii-Satou-Shur transit time plas-
monic instability [101] involving the transit time delay shifting
the phase between the THz voltage and current should result
in the narrow band THz emission as well. However, most
papers reported on the broadband THz radiation emitted from
TeraFETs [102]–[109]. A strong and narrow band emission
from a single GaAs TeraFET was reported in [110]. The power
level was the highest reported for the TeraFETs (63 mW
at 300 and 278 mW at 77 K with 0.0486% conversion
efficiency) [110]. Further studies are required to understand
the mechanism responsible for this emission. Obtaining still
higher power levels and higher conversion efficiencies might
require collecting radiation from larger areas than just a single
short channel TeraFET (see the next Section).

The rectification of the resonant or overdamped plasma
oscillations could be used for the detection of the THz radia-
tion [111], [112]. Fig. 28 (from [113]) shows the schematics
of a TeraFET THz detectors with a THz signal coupled to the
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Fig. 28. Plasmonic FET under THz radiation modeled with multiple
segments in the channel accounting for the THz current distribution.
(From [113] © IEEE2020.

TABLE II
THE VALUES OF Qm AND fm FOR SI, GAN, INGAAS, AND p-DIAMOND

TERAFETS AT 300 AND 77 K. THE GATE SWING IS CHOSEN TO

MAXIMIZE THE QUALITY FACTOR. (FROM [115])

TeraFET via the source contact and inducing the oscillations
of the electron density in the channel. The figure shows the
characteristic distance of the oscillations spatial decay [97]:
Lo = �

μVgte/ (2π f )
�0.5. Here Vgte is the effective gate

voltage swing [114]. The response depends on the relationship
between L and Lo and on the quality factor Qm = ωpτ , where
ωp = 2π f p , f p is the fundamental plasma frequency, and τ
is the momentum relaxation time.

The THz voltage source in Fig. 28 represents the THz signal
coupled to the TeraFET via the source contact. Also shown
is the equivalent circuit of the TeraFET channel subdivided
into many nonlinear transmission line segments to account
for the nonuniform distribution of the electron density along
the channel. This approach allows for the accurate compact
modeling of TeraFETs using ADS or SPICE [99], [113].

Table II (from [115]) shows the estimated values of Qm and
f p for Si, GaN, InGaAs, and p-diamond TeraFETs at 300 and
77 K. The gate swing was chosen to maximize the quality
factor. As seen, a resonant detection (Qm � 1) is possible
even at room temperature even though non-resonant detection
is much easier to achieve.

Fig. 29 (from [116]) shows a typical non-resonant response
of Si TeraFET.

Fig. 30 (from [117] shows the Si FINFET response up
to approximately 5 THz. A large responsivity drop with an

Fig. 29. Sub-THz detection by Si CMOS (from [116]). © IEEE 2007.

Fig. 30. Plasmonic detectors work up to 5 THz (from [117]).

Fig. 31. TeraFET with two antennas [120].

increasing frequency is due to the effect of contacts, parasitics,
and skin effect.

As seen from the Table II, Si TeraFETs might become
primary candidates for THz components and p-diamond has
superb properties for THz applications, especially at the lower
frequencies of the THz band [118]. Graphene TeraFETs are
also emerging as competitive plasmonic THz detectors [119].

The THz radiation could couple to the both sides of the
TeraFET channel (see Fig. 31). The phase difference between
the plasma waves excited at the source and drain depends on
the plasma frequency and, hence, could be adjusted by the
gate bias [113], [120], [121].

An important application of this effect is a vector detection
(detecting both the amplitude and the phase of a signal) to
be used for a line-of-sight detection. Measuring the gate bias,
at which the response becomes equal to zero, allows using
TeraFET as a THz spectrometer of interferometer. Fig. 32
shows the simulated frequency ranges, in which TeraFETs
could operate as spectrometers.
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Fig. 32. Cross-over frequency ranges for TeraFETs implemented in
different materials [121].

Fig. 33. Stub-split cavity RF-to-THz plasmonic converter crystal [147].

At lower frequencies, plasmonic THz detection becomes
inefficient and the dominant detection mechanism becomes a
resistive mixing, see [122] for more details.

V. PLASMONIC CRYSTALS AS POTENTIAL THZ

RADIATION SOURCES AND DETECTORS

The attempts to increase the responsivity involve using the
ratchet effect [123]–[128], grated gate structures [129]–[133],
plasmonic boom [134], [135], and variable width
devices [115]. We call such structures plasmonic crystals with
the unit cells smaller or comparable to the mean free path
but capable of capturing and processing a larger THz flux.

FET arrays and grating structures already demonstrated
superior performance as THz detectors [136]–[141] in a good
agreement with theoretical predictions [142]–[145]. Both the
Dyakonov-Shur instability [100], [146] and “plasmonic boom”
instability [134], [135] can develop in the plasmonic crystals.
The plasmonic boom instability develops in a plasmonic crys-
tal with two regions per unit cell with plasma wave velocities
in these cells s1 and s2, such that s1 < v < s2, where v is the
velocity of electron flow. This coulbe achieved using different
theshold voltages in the cells 1 and 2 or by the cells having a
different width. Narrow protruding regions (plasmonic stubs)
could adjust the boundary conditions between the sections and
the plasmonic crystal with stubs could support RF to THz
conversion (see Fig. 33).

VI. CONCLUSION

Small sizes (making it easy to fabricate arrays), high sen-
sitivity, broad spectral range, band selectivity and tuneability

fast temporal response and the compatibility of Si plasmonic
TeraFETs with VLSI technology make plasmonic THz tech-
nology to be a prime candidate for closing the famous THz gap
in the electromagnetic spectrum applications. THz sensing,
imaging, and communications are the prime candidates for the
application of the THz plasmonics with a strong commercial
appeal for deploying Si based 240 GHz to 300 GHz technology
for beyond 5G WI FI and IoT applications. Recently reported
high narrow-band THz power emitted by a single GaAs-based
TeraFET [110] is a breakthrough highlighting the emerging
commercial potential of the THz plasmonic technology.
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