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A Rapid Electrochemical Impedance
Spectroscopy and Sensor-Based Method

for Monitoring Freeze-Damage
in Tangerines

Pablo Albelda Aparisi , Elena Fortes Sánchez , Laura Contat Rodrigo ,
Rafael Masot Peris , and Nicolás Laguarda-Miró

Abstract—This study focuses on the analysis and early
detection of freeze-damage in tangerines using a specific
double-needle sensor and Electrochemical Impedance Spec-
troscopy (EIS). Freeze damage may appear in citrus fruits both
in the field and in postharvest processes resulting in quality
loss and a difficult commercialization of the fruit. EIS has
been used to test a set of homogeneous tangerine samples
both fresh and later frozen to analyze electrochemical and
biological differences. A double-needle electrode associated
to a specifically designed electronic device and software has
been designed and used to send an AC electric sinusoidal
signal 1 V in amplitude and frequency range [100Hz to 1MHz]
to the analyzed samples and then receive the electrochemical
impedance response. EIS measurements lead to distinct values of both impedance module and phase of fresh and frozen
samples over a wide frequency range. Statistical treatment of the received data set by Principal Components Analysis
(PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) shows a clear classification of the samples depending
on the experienced freeze phenomenon, with high sensitivity (1.00), specificity (≥ 0.95) and confidence level (95%). Later
Artificial Neural Networks (ANN) analysis based on 20-3-1 architecture has allowed to create a mathematical prediction
model able to correctly classify 100% of the analyzed samples (CCR =100% for training, validation and test phases,
and overall classification), being fast, easy, robust and reliable, and an interesting alternative method to the traditional
laboratory analyses.

Index Terms— Double-needle sensor, electrode, electrochemical impedance spectroscopy (EIS), tangerine, freeze
damage, detection, artificial neural networks (ANN).

I. INTRODUCTION

TANGERINE (Citrus reticulata) is the second most pro-
duced citrus variety in the world (33,414 thousand tons),
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only behind orange production (73,313 thousand tons) and far
away of lemons and other citrus varieties, representing 22.8%
of total citrus production [1], [2]. Spain (1,967 thousand tons)
is the first tangerine producer country in the Mediterranean
region, only behind China which is the first world power in the
sector with 19,000 thousand tons. On the other hand, in terms
of exports, Spain is a world leader, dedicating 1,367 thousand
tons to international marketing, almost 70% of its annual
production. Therefore, this is a sector in which cultivation,
harvesting, post-harvest and commercialization are of capital
importance for the country.

Cultivation and postharvest of tangerines, as oranges [3]
and lemons [4], have a serious problem with freeze-damage
[5], [6], despite their different cultivar characteristics [7]. Cold
winter nights when temperature drops below freezing may
affect the fruit. Furthermore, inadequate management of the
refrigerated storage and transport of these fruits can also lead
to freezing and quality loss of the fruits [8]. This can occur
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TABLE I
REPORTED METHODS FOR FREEZE DAMAGE

DETECTION IN CITRUS FRUITS

if the fruits reach temperatures below −1.7◦C to −2.8◦C [9].
Intensity and duration of the frost, variety, maturity and other
bioclimatic factors influence the severity of the freeze-damage
in the fruits [10], [11]. If it is rapid, which can occur in a
poorly regulated container, ice crystals will break the cell wall
as they form both outside and inside the cells, without time
for any adaptation. Then, cell death (necrosis) appears and
the impossibility of tissue recovery. Consequently, the fruit
becomes unsuitable for normal marketing [12]. Conversely, if
freezing occurs slowly enough, initial freezing of the intersti-
tial fluid may allow a progressive osmotic balance between
the liquids inside and outside the cells. If this process and the
subsequent thawing are not too demanding for the cells, they
can recover without further damage [4].

Some of the physical and metabolic effects of chilling
in tangerines are scald or oil-gland darkening and pitting
[13], necrosis, rind staining [14], red blotches and watering
breakdown on the flavedo [15], and internal drying [16].
The particular problem of these effects is that some of them
are neither immediate nor obvious, so chilling injuries are
sometimes difficult to identify.

Fortunately, advances in research and technology have
allowed quality control methods to evolve and improve [17]
and, focusing on the aim of this study, those devoted to freeze
damage by sensing [18]. Specifically, several methods have
been developed to identify freezing damage in citrus fruit
(table I) ranging from observation of the fruit [19] and physi-
cal techniques such as separation by flotation [20], [21] to the
use of vision sensors [22] and other laboratory methods like
ethanol detection [23], gas chromatography/mass spectroscopy
(GC/MS) [24], fluorescence [25] or nuclear magnetic reso-
nance [26]. Most of these methods are complex, expensive, and
time-consuming and they are only carried out by specialized
laboratories and personnel.

By contrast, EIS is revealing as a fast, easy-to-use, inex-
pensive, and reliable technique [27]. Once it is implemented,
no specialized personnel or complex laboratory equipment is
needed so it can be used directly on-site for measurements
in field or in the agri-food industry [28]. Essentially, EIS

consists in the electrical characterization of a material by
means of sensors and the association of the electrical response
to certain parameters of the material [29]. EIS is already
being used in agri-food industry for quality control of products
[30] like vegetables such as potatoes [31], carrots [32], [33],
eggplants [34] and tomatoes [35], some fruits like kiwis [36],
bananas [37] and mangoes [38], meat [39], [40] and fish [27],
honey [41] processed products [42] and the valorization of
agri-food wastes [43], [44].

Nowadays, the evolution of computer systems allows the
use of significant amounts of information in statistical data-
processing [45]. Thus, specific statistical software allows us
to carry out complex analyses of the electrical responses of
EIS tests [46]. In this sense, PCA and PLS analyses [47]–[49]
and even Artificial Neural Networks modelling [50], [51]
can be conducted in a fast and reliable way. ANNs, due to
their characteristics (flexibility, adaptability, and easy fitting
to non-linear systems) [52], are powerful tools for this type of
applications [53], [54]. They allow obtaining relatively simple,
self-corrective and self-learning mathematical models, easily
implementable in a microprocessor, being particularly reliable,
and robust [55], [56]. Thus, ANNs are ideal for detecting elec-
trochemical changes in agri-food products and their correlation
with variations in specific quality parameters [57].

The objective of the present study is to develop a method-
ology based on the combination of EIS and Artificial Neural
Networks for a rapid, economic, and reliable freeze-damage
detection in tangerines.

II. MATERIALS AND METHODS

A. Selection and Preparation of the Samples
Tangerines cv. ‘Clemenvilla’ (Citrus reticulata Hort. ex

Tanaka) were purchased from a local market choosing those
as similar as possible (same cultivar, origin and batch, caliber,
physical aspect, ripeness. . .) in order to assure homogeneity
in the set [51]. Once in the laboratory, a set of 10 tangerines
was selected, washed, dried and stored at room temperature
for at least 12 hours for fruit tempering.

For post-freezing assays, the selected samples were intro-
duced in a freezer (LIEBHERR Model GGU 1500 Premium,
Liebherr- International Deutschland GmbH, Biberach an der
Riß, Germany) time enough to reach the freezing temperature
of the fruit, simulating the effect of a chilling night. Sam-
ples were then stored in the laboratory at room temperature
for 12 hours to be tempered again and proceed with the
corresponding assays.

B. Electrochemical Impedance Spectroscopy
EIS was the selected technique to carry out the assays as

it is showing promising results in several fields and partic-
ularly in agri-food applications [30]. This technique consists
of a) applying a sinusoidal voltage for a certain frequency
between two electrodes inserted in a sample, b) measuring the
electrical intensity between them, that is, the current through
the sample and finally, c) obtaining the impedance for the
established frequency by means of the voltage and current
values. Then, the process is repeated for another frequency
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TABLE II
SPECIFICATIONS OF THE DESIGNED EIS DEVICE

and so on within a determined frequency range, obtaining the
impedance spectrum of the studied sample. Impedance will
depend on the properties of the material so differences in the
received signals can be associated with specific changes in the
samples [58].

There are several electronic systems able to pro-
vide the impedance spectrum of a sample, such as
those referred by Wu et al. [34], Rehman et al. [59],
Juansah et al. [60], Ando et al. [61], Ando et al. [32],
Ando et al. [62], Imaizumi et al. [63], Chowdhury et al. [37],
Tian-Hao Chen et al. [64] and Lima et al. [65]. In order to
gain in versatility most of these commercial systems are
expensive and large devices, compared to the one introduced
in this paper.

On the contrary, the applied EIS system was designed by
the Group of Electronic Development and Printed Sensors
(GED+PS), a research group inside the Interuniversity Insti-
tute for Molecular Recognition and Technological Develop-
ment (IDM) at the Universitat Politècnica de València (UPV).
The system consists of an electronic device and a software
application to be run in a computer [66] and has been
particularly designed and optimized to obtain the impedance
spectrum of food samples.

C. Electronic Device
The designed hardware is able to generate sinusoidal voltage

signals in specific frequency [1Hz to 1MHz] and amplitude
[−0.5V to +0.5V] ranges and receive the corresponding
current responses to generate EIS datasets according to the
specifications described in table II.

In order to do so, the device is connected to a per-
sonal computer (PC) or laptop via USB port and consists
of two complex programmable logic devices (CPLD, Altera
EPM7160SLC84). The first CPLD, associated with a 10-bit
digital-analogue converter (DAC) and a static 2KB (2048bytes)
random access memory (RAM), is devoted to receiving the
process data from the software in the PC. The second one, with
two 8-bit analogue-digital converters (ADC), several analogue
signal adaption circuits and a configurable current sensor, is
programmed to sample the signals corresponding to both the
applied voltage and the received current response [29] (fig. 1).

A specifically designed sensor allowed both applying and
measuring voltage and current. This sensor consists of a couple
of parallel stainless-steel needles (electrodes) 1,5 cm in length
and 1 mm in diameter. The needles were fixed in an epoxy
cylinder to ensure a constant distance of 1 cm between the

USB
to PC

Double
needle
sensor

Fig. 1. Scheme of the designed EIS Device and sensor.

Fig. 2. The stainless-steel double-needle sensor.

electrodes as well as the necessary resistance and durability
of the sensor (fig. 2).

D. Software Application
The software was designed to be easily configurable by

the user. It is able to generate the defined electric signal
(frequency sweep and amplitude) and send the commands for
its application via the USB port of the PC to the electronic
device that generates the sinusoidal waveform.

The sampled current and voltage signals are sent to the PC.
Then, the software uses the data and a discrete Fourier trans-
form (DFT) to determine amplitude and phase for both voltage
and current signals. Then, the corresponding impedance (mod-
ule and phase) of the sample for each one of the analyzed
frequencies is calculated and stored. The system is able to
sample up to 100 data (50 for modules and 50 for phases) per
assay.

E. Cryo-Field Emission Scanning Electron Microscopy
Morphology and microstructural changes in the samples

were studied by Cryo-FESEM on a microscope ZEISS
ULTRA 55 (Oxford Instruments, Abingdon,UK) in the Elec-
tron Microscopy Service at the UPV.

Firstly, samples were prepared and mounted on a sample
holder, in order to be frozen in slush nitrogen and transferred
to a preparation chamber. Then, samples were fractured,
sublimated for 10 minutes at −90 celsius degrees to reveal
the inner structure and coated with platinum for 15 seconds.
Finally, they were introduced in the microscope chamber to be
observed. Imaging conditions were 2 kV acceleration voltage
and 5 mm working distance (WD).
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Fig. 3. The electrical equivalent circuit (modified Hayden model).

F. EIS Analyses
After selection and preparation of the samples, the fruits

were analyzed in the following ways, introducing the sensor
a) directly into the peel, b) into a section of the fruit without
the peel, and c) between two sections trying to keep the
membrane between sections in the middle of the electrodes.
These three different sets of assays were designed to let us
know which part of the tangerine changed its electrochemical
properties in a more remarkable way. In other words, these
assays would discriminate the most sensitive part of the
tangerines to freeze. Additionally, each test was repeated in
three different parts of the sample, with three iterations per
test summing up a total of 27 dataset per fruit. As each
sample was tested twice (fresh and frozen), and each data set
consisted of 100 data (50 module and 50 phase values), up to
5400 values per tangerine were obtained for an overall studied
dataset of 54.000 values.

Assays were carried out following a previously defined
test-protocol: First, the complete EIS-measuring system was
checked to assure it was well connected and then turned on.
Afterwards, the conditions of the assay to be performed were
designed by introducing the appropriate instructions into the
software. Next, the sample to be analyzed was attached to
a specific support and temperature was measured by using
a multimeter (FLUKE 16 Multimeter, FLUKE, Everett, WA,
USA). Then, the corresponding sample was punctured with the
sensor and the measurement started by generating the previ-
ously defined electric wave. The connection wire transmitted
the signal to the sensor and it was in charge to transmit it
into the sample between the electrodes and also receive the
response that was immediately showed in the PC screen and
stored as a dataset for further data treatment.

G. Data Treatment
An appropriate data treatment was required as the response

signal for each assay consisted of 100 data (50 module data
and 50 phase data) resulting in an overall data set both large in
volume and complex in interpretation. Data preprocessing was
carried out by Exponential Smoothing [66]. This technique
was used as a filter in order to reduce noise in the obtained
raw EIS data.

Then, the EIS dataset was analyzed using an equivalent
circuit model. To do this, the modified Hayden model was
selected as it shows a better fit to the EIS of biological
tissues than other simpler models as those proposed by Cole
and Hayden [62] (fig. 3). Essentially, CPE is conceived as a
combination of resistances and capacitors or as an imperfect
capacitor [32] able to explain the inhomogeneous distribution
of cells in the biological tissues [63].

Proteus©software (Labcenter Electronics, North Yorkshire,
England) and the Generalized Reduced Gradient (GRG) non-
linear algorithm (Excel Solver) were used to both determine
the different parameters of the equivalent circuit and fit the
model with the experimental EIS data.

Next, a double statistical, data treatment was performed:
first, a multivariate data analysis was carried out both in a
non-supervised and supervised analysis via PCA and PLS-DA
and then an ANN analysis to model the freeze phenomenon
in the samples. Multivariate data treatment was conducted
by using the software SOLO©(Eigenvector Research, Ind.,
Manson, WA, USA). These analyses were performed in a
double way. First, a PCA was carried out in order identify
natural aggrupation of samples and try to correlate groupings
with some particularity of the samples (e.g. having experienced
a freeze phenomenon). Then, a PLS-DA was conducted in
order to discriminate samples attending to the studied variables
and find out significant differences, as this type of regression
analysis has a dependent variable that is categorical (the class
to which samples belong) and several numerical independent
variables [67], [68]. In PLS-DA analyses, these independent
variables were new and were obtained systematically from the
original ones: 100 data per assay (50 modules and 50 phases).
In order to conduct these PLS-DA analyses, the original data
set was divided as follows: 67% of the data were used for
calibration and the remaining 33% were devoted to test the
obtained model [69]. Data pre-processing was conducted by
auto-scale (standardization and mean centering). Additionally,
Venetian blinds were used for cross-validation. Robustness and
validity of the obtained models were analyzed by the coeffi-
cient of determination (R2) and the root mean square errors
for cross validations (RMSCV) and prediction (RMSEP).

Attending to the particularities of the samples in this study,
being natural in origin and potentially affected in terms of
electrochemical response by several variables (size, ripeness,
temperature, acidity, sugar content…) an alternative data treat-
ment analysis was conducted by ANNs. This type of networks
is of interest as the obtained models are flexible, adaptative,
easy to program and use, easy fitting to non-linear systems,
self-learning and low in computational requirements [52, 53].
Additionally, these networks are already successfully used
with complex and variable data sets to implement easy, low
demanding, adaptative and reliable models in microprocessors
for multiple purposes by using simplified ANNs.

ANN analyses were carried out by using the software
Alyuda Neurointelligence 2.2 ©(Alyuda Research Inc., Cuper-
tino, CA, USA). To do so, the obtained EIS data were ran-
domly divided into three different sets in order to conduct the
network training (70% of the data) and proceed with the model
validation (15%) and test (15%). The training phase allowed
the design of the appropriate ANN model while validation
and test phases assessed the soundness of the selected model
by using previously used and independent data, respectively.
A series of preliminary trials helped to select the type and
structure of the ANN thus designing the essentials of the
network architecture. Then, a more in-depth study allowed to
set the details of the selected ANN (layers and number of
neurons in each layer, neuron functions and functions to work
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Fig. 4. Averaged a) Module and b) Phase of the EIS results for tangerines
both fresh (1) and frozen (2) punctured between two sections.

within the layers) thus being the selected ANN completely
defined.

The handicap of overfitting ANN-based prediction models
was avoided by using a proportional structure of the net-
work, cross-validation, and early stopping. Finally, accuracy
and robustness of the obtained neural prediction model were
expressed by the correct classification rate (CCR%) and the
confusion matrix (clearly showing success in the predic-
tion process by indicating hits and mistakes in the samples
classification).

III. RESULTS AND DISCUSION

A. EIS Results
Electrochemical responses to the conducted EIS assays

in the fruit samples composed a set of 50 modules
and 50 phase values per assay for an overall of
54.000 dataset (100 data/assay, 10 samples, 2 freeze exposure
conditions/sample, 3 different types of assay/sample,
3 repetitions/assay, and 3 iterations/repetition). The obtained
values were appropriately sampled in the PC and represented
in a graphical interface as shown in fig. 4.

Figure 4a shows a trend to separation between modules
of fresh samples and those previously frozen. This trend is
particularly clear in frequencies in the range [100Hz to 1kHz]
being modules in the higher part of the figure corresponding
to fresh fruits and the ones in the lower those corresponding
to the frozen samples. Looking at the phases (fig. 4b), the
opposite behavior is observed: phases remain quite mixed in
the lower frequency ranges and become more clearly separated
depending on freezing exposure in the middle frequencies of
the analyzed range [1kHz to 100kHz]. In this case, phases for

Fig. 5. Nyquist diagram of the averaged EIS results for tangerines both
fresh (1) and frozen (2).

the fresh samples are in the lower part of the graphic and those
belonging to frozen fruit samples are in the higher part.

Nyquist diagrams were also available in the graphic inter-
face of the software providing graphical plots of both real
and imaginary parts of the impedance in a determined fre-
quency range. For the specific case of EIS analyses for
tangerine n◦4 punctured between two sections in the range
[100Hz to 1 MHz] the Nyquist diagram was as shown in
figure 5.

This figure shows how the capacitive component (the imag-
inary part of the impedance) of the frozen samples (2) is
remarkably lower than the one of the fresh samples (1). This
is due to the freeze/thaw process altering the cells and thus
the biological tissue provoking cell shrinkage and liquid loss,
vacuole membrane breakdown and cell wall dissolution, ion
leakage to the intercellular liquid and, in terms of biologic
tissue, cell separation and larger intercellular spaces [18], [70].

Specifically, Nyquist plots in the studied frequency range
[100kHz-1MHz] allow to analyze changes in the cell mem-
branes as this frequency correspond to the β dispersion
area [71] in which polarization of proteins, organic macro-
molecules and other elements constitutive of the cell mem-
branes occur [72]. Thus, it is possible to identify fresh and
frozen tangerine samples as freeze-damage alters the cell wall
and inner cell membranes that are those electrically acting as
capacitors in the electrical equivalent circuit (fig. 2). The affec-
tion to the cells and the overall biological tissue decreases their
capacitive ability and, therefore, their impedance, showing a
different electric behavior (fig. 5).

B. Cryo-FESEM Results
It has been reported that the extent of freeze-damage in fruit

tissue is related to the distribution and the size of crystals,
which are determined by the freezing rate. Cryo-FESEM was
used to investigate the microstructure of fresh and frozen
tangerine tissues. The bright regions in the micrographs cor-
respond to the freeze concentrated matrix, the cytoplasmic
membrane and the cell walls, whereas the darker regions
correspond to the ghost of ice microcrystals that sublimed
during etching.
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Fig. 6. Cryo-FESEM images of a) fresh and b) frozen at −1.5 ◦C
tangerine tissue. Ice crystals are arrowed. (a) scale bar = 20 mm and
(b) scale bar = 2 mm).

Fig. 7. The electrical equivalent model fitting with the experimental
a) Module and b) Phase EIS results for tangerines both fresh (1) and
frozen (2).

The tissue of fresh samples is composed of uniformly
distributed cells, and the cell walls appear intact and with no
sign of damage (fig. 6a). The appearance of frozen samples is
shown in figure 6b. The sublimation of the ice crystals formed
during freezing reveals the fingerprint of the microcrystals’
sizes and shapes. As expected, slow freezing at −1.5 ◦C
induces the formation of large ice crystals. Furthermore, the
cell walls seem to be less regular after freezing.

C. Data Treatment Results
Similarly, the complete data set (module and phase data in

the complete frequency range) was used to carry out the data
treatment.

Firstly, an analysis of the obtained EIS data was performed.
Figure 7 shows the results of fitting the theoretical model with
the experimental data for tangerines both natural and frozen

TABLE III
CHARACTERIZATION OF THE OBTAINED ELECTRIC EQUIVALENT MODEL

TABLE IV
PCA COMPARISON RESULTS. CUMULATIVE PERCENTAGE

OF THE VARIANCE

punctured between two sections. The ability of the model to
fit with the experimental data in the frequency range [1kHz to
100kHz] is particularly remarkable.

The electrical parameters of the designed electrical equiva-
lent model and the goodness of its fitting with the experimental
data are shown in Table III. In the resistive part of the
model, an increase in the Ri value and the corresponding
decrease of Re can be seen when freezing and thawing
occurs. Correspondingly, a decrease in α, and CPE values
is observed. All these changes in the electrical parameters
are directly linked to the physical-chemical and biological
alterations experienced by the samples’ tissues when freezing,
as explained in section III.A.

Next, a PCA comparison was carried out with the obtained
EIS results in order to guess if there was a clear separation
of the data depending on their electrochemical response. The
results showed a) a clear separation of the samples depending
on whether they were fresh or frozen and b) a slightly better
differentiation for assays conducted between two sections of
the tangerines (see table IV). Thus, the data set corresponding
to this type of assays was the one selected for further statistical
analyses and artificial neural network modeling.

Figure 8 shows the graphical representation of the con-
ducted PCA analysis with the results of the analyses carried
out between two sections. As observed, 73,50% of the variance
was explained with just one principal component and an
additional 19,63% done with the second one summing up
an overall 93.13% of the variance explained with just two
principal components.

Afterwards, a PLS-DA analysis was carried out. The goal
was to confirm that classifying the samples into two different
classes (fresh vs frozen samples) was possible by means of
an appropriate mathematical model. The results of the PLS
analysis, shown in figure 9, confirmed that it was possible
with a high sensitivity and specificity of the proposed model.
The graphical representation confirms these terms as there is a
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Fig. 8. PCA analysis of EIS tests conducted between two sections of the
analyzed fresh tangerine samples (in green) and frozen samples (in red).

Fig. 9. PLS-DA analysis of EIS tests conducted between two sections
of the analyzed fresh tangerine samples (in green) and frozen samples
(in red).

clear separation among samples: those corresponding to frozen
samples (in red) were placed in the upper side of the graphic
as those from fresh ones (in green) were located in the lower
side with no intersection area between these two groups.

D. ANN Results
Additionally, an ANN study was carried out to analyze if

freeze-damage prediction by EIS improved when using a more
flexible adaptive and non-linear model method. In a prelimi-
nary approach, it was observed that freeze-damage detection in
tangerines was possible with relatively simple ANN structures.
To do so, different ANN architectures were tested by using the
search architecture function of the Alyuda Neurointelligence
2.2 ©software and the best ones were selected according
to their fitness. Different combinations of algorithm training
functions (quick propagation, conjugate gradient descent and
on-line back propagation) and node activation functions (lin-
ear, logistic and hyperbolic tangent) were considered.

Then, in a more in-depth analysis EIS data were analyzed
and randomly divided in datasets for training (70%), validation
(15%) and test stages (15%), and appropriately pretreated
(normalized). An 20-3-1 architecture was selected as the best
of the possible studied architectures attending to its number
of weights, fitness, and train, validation and test errors.

TABLE V
CCRS AND CONFUSION MATRICES FOR THE OBTAINED ANN MODEL

FOR TANGERINE FREEZE-DAMAGE DETECTION

The selected 20-3-1 network was a three-layer pyramidal
structure with 20 nodes in the input layer, three hidden-nodes
in the intermediate layer and just one output node. The selected
algorithm to train the network was on-line back propagation
with hyperbolic tangent type functions as activation functions
in both the hidden-layer nodes and the output node as this
combination showed the best accuracy. Then, the network was
trained, validated, and tested by iterations. Correct classifica-
tion rates (CCRs), confusion matrices and error dependence
plots were easily obtained with the software and were used
to assess the suitability of the studied ANN. The obtained
network demonstrated to be very effective in discriminating
tangerine samples depending on they had experienced a freeze
phenomenon or not, showing excellent correct classification
rates (CCRs) and no network errors for training, validation
and test phases and in the overall classification of the studied
samples (table V).

Results reveal that freeze-damage in tangerines can be early
detected by means of the presented EIS-based method with a
double-needle stainless steel electrode and the use of ANN
analyses for data treatment.

IV. CONCLUSION

Freeze-damage control is fundamental for early detection
of quality loss in agri-food products and improve the decision
making in order to minimize wastes and decide alternative
uses for those products not fitting with the standards to be
commercialized. It becomes of essential importance for fruits
like tangerines being freeze-sensitive and the second most
commercialized citrus fruit in the world.

The performed EIS analyses have proved to be effective
in freeze-damage detection in tangerines . EIS results allow
for clear distinction between both the modules and the phase
of the impedance of the fresh and frozen samples over a
wide frequency range. When EIS results were combined with
PLS-based data treatment, the obtained model showed high
specificities (≥0.95) and sensitivities (1.00) for calibration,
validation and test phases, but it was particularly remark-
able when combined with ANN-based prediction models.
The ANN-based method demonstrated very high accuracy,
reliability and robustness being able to correctly classify 100%
of the analyzed samples (CCR = 100%), discriminating those
fresh and those having experienced a freeze-phenomenon.
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The obtained results allow to introduce the EIS-based
techniques as promissory methods for specific quality control
processes in fruits and particularly for early freeze-damage
detection in tangerines. Additionally, these types of techniques
are easy-to-use, rapid, inexpensive and reliable, overcoming
other laboratory techniques.
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