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Abstract—This paper presents the results from the
experimental application of smartwatch sensors to predict
occupants’ thermal comfort under varyingenvironmentalcon-
ditions. The goal is to investigate the measurement accuracy
of smartwatches when used as thermal comfort sensors to
be integrated into Heating, Ventilation and Air Conditioning
(HVAC) control loops. Ten participants were exposed to var-
ious environmental conditions as well as warm - induced
and cold-induced discomfort tests and 13 participants were
exposed to a transient-condition while a network of sensors
and a smartwatch collected both environmental parameters
and heart rate variability (HRV). HRV features were used as
input to Machine Learning (ML) classification algorithms to
establish whether a user was in discomfort, providing an average accuracy of 92.2 %. ML and Deep Learning regression
algorithms were trained to predict the thermal sensation vote (TSV) in a transient environment and the results show that
the aggregation of environmental and physiological quantities provide a better TSV prediction in terms of Mean Absolute
Error (MAE) and Mean Absolute Percentage Error (MAPE), 1.2 and 20% respectively, than just the HRV features used for
the prediction. In conclusion, this experiment supports the assumption that physiological quantities related to thermal
comfort can improve TSV prediction when combined with environmental quantities.

Index Terms— Thermal comfort, environmental control, human perception, thermal sensation vote, wearable sensors,
heart rate variability.

I. INTRODUCTION

THE preservation of a comfortable thermal environment in
buildings is necessary to guarantee a pleasant experience

from occupants’ point of view. Indoor environmental quality
(IEQ) has a massive impact on occupants’ daily life in terms
of health, comfort and well-being, since it is reported that
an average up to 90% of the total time of an individual
is spent in indoor environments [1]. An inadequate thermal
environment produces several negative effects on occupants,
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including, for example, lower work productivity, and con-
sequently thermal satisfaction helps to improve occupants’
performance [2], [3].

Thermal comfort is a topic of interest in many types of
facilities like educational, office and residential buildings.
These places require a great amount of energy to guaran-
tee occupants a satisfactory thermal environment. Moreover,
indoor thermal discomfort also affects human health and can
be particularly critical in case of susceptible subjects [4]–[6].
Depending on their age, people are subjected to diverse
adaptive mechanisms: for example, elderly people’s health can
be compromised if their living environment is too cold or too
warm. A prolonged exposure to warm conditions can trigger
heart-related illnesses or heart failures, while a long exposure
to cold conditions gives rise to the lowering of body core tem-
perature, which may conduct to drowsiness, lethargy and even
death. The index currently used for the evaluation of thermal
comfort conditions in mechanically controlled environments is
the Predicted Mean Vote (PMV). In addition, PMV is deployed
for evaluating the energetic performances related to indoor
environmental quantities, as reported in European Standards
EN 16798-1, EN 16798-2 [7], [8]. PMV is an index whose
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aim is to forecast the mean value of thermal sensation votes of
a group of occupants. The PMV model involves two human-
related quantities, i.e. users’ clothing insulation and metabolic
rate, combined with environmental quantities, i.e. temperature,
air velocity, mean radiant temperature and relative humidity.
Recent studies are highlighting several limitations of the PMV
model when deployed in real conditions. Firstly, the model was
designed to predict the average comfort of a large group of
users, therefore it exhibits low predictive accuracy if applied to
a small group of users; secondly, even if there are Standards in
the field of the Ergonomics of the Thermal Environment that
specify how the quantities for the assessment of PMV can be
measured, it can happen that in real-world settings it is very
difficult to assess the exact value of the input variables [9]–
[13]. Literature provides studies that indicate how to perform
the measurement of such parameters to reduce measurement
uncertainty of PMV [14]. However, the complexity in the
measurement of PMV derives from the fact that when environ-
mental monitoring is done in environments experienced daily
by the occupants, these quantities may vary and can be difficult
to have a real-time and punctual control.

Metabolic rate can change during the day, and one pos-
sible solution could be overcome by the usage of smart-
watches or smart bands that can measure the level of activity
of the occupant; moreover, in real-life context, the clothing
insulation may not be constant in time, leading to inaccuracies
in the measurement of PMV.

In addition, it can occur that, things being equal, different
occupants may have different subjective responses [15]–[17].

So far, the scientific community has investigated thermal
comfort starting from the single individual and its perception
of the environment, since thermal comfort is deeply related to
behavioral, physiological and psychological factors and, as a
result, it differs from one individual to another [13]. Human
thermal comfort is controlled by thermoregulation, which is
the process that allows the body to maintain its core internal
temperature and is designed to restore the body’s homeostasis
[14], [15]. Since this process is managed by involuntary
mechanisms that take place in the hypothalamus, recent studies
are focusing on estimating thermal comfort of individuals
through the analysis of specific human physiological signals.

A. Sensors for the Measurement of Physiological Signal
Related to Thermal Comfort

There are currently several types of sensors and devices on
the market which are used to measure physiological signals
that can be related to thermal comfort. In fact, thermal comfort
can be evaluated from multiple physiological signals, i.e.
electrodermal activity (EDA), electroencephalography (EEG)
and electrocardiogram (ECG) signals. EDA, EEG and ECG
signals can be measured using biomedical devices but also
by low-cost wearables already available on the market. The
difference between the two categories of sensors lies in the
parameters measured, accuracy, cost, and the sensors being
comfortable to wear for a prolonged time. EDA provides
the measurement of changes in skin conductivity, which is
associated to the activity of sweat glands that, in turn, reflects
the activity of the central nervous system [20]. It is used in

various thermal comfort-related studies in combination with
other physiological parameters (e.g. skin temperature, heart
rate) to develop customized models to discover how humans
react to different external environments [21]–[24].

Human thermal comfort is also analyzed using EEG signals.
These signals are collected by placing a helmet equipped
with electrodes on the user’s head. The spectral power of
EEG can be used to build models that discriminate different
feelings associated with thermal comfort [25]. The user’s
thermal sensation can be correlated to indices obtained from
EEG. Given this assumption, there are researches that are
developing systems based on the brain-computer interface
(BCI) for the control of conditioning system to obtain optimal
thermal comfort conditions [26]. However, EEG sensors are
expensive and are not suitable for daily monitoring, since the
user manages to wear them for up to three hours [27].

ECG sensors, too, are often used to study human thermal
comfort. ECG records the electrical activity of the heart
using electrodes placed on specific locations of the body. The
parameters that can be extracted from ECG for the evaluation
of thermal comfort are the heart rate (HR) and heart rate
variability (HRV). However, ECG equipment can be a source
of discomfort if worn for a long period. ECG traces can
be also extracted from 24-hour Holter monitors, which are
portable ECG devices that record the heart’s rate and rhythm
for a period of time of at least 24 hours. The advantage of
measuring HRV and HR is that they can be also extracted
from alternative wearable sensors that are less invasive. Wear-
able sensors, e.g. multiparametric chest belts, smartwatches,
smart bands, represent a good trade-off between accuracy,
intrusiveness and user acceptance because they have become
part of an individual’s daily routine [28]–[31]. They are also
less expensive than EDA, EEG and ECG technologies. For this
reason, in this paper a smartwatch was used to evaluate and
measure human thermal comfort, since this particular device
better reflects the necessity of having a non-intrusive and cost-
effective sensor to measure both HR and HRV with suitable
accuracy [32]. This paper aims to present a methodology
that employs smartwatches for evaluating the possibility of
measuring human thermal comfort, expressed by the TSV,
in response to a variation of the environmental conditions.

B. Measurement of Heart Rate Variability for Thermal
Comfort

HRV is obtained by measuring the difference in time
between two consecutive heartbeats of the electrocardiogram
(ECG) signal. However, wearable technologies today have
made it possible to retrieve HRV from less invasive equipment.
In fact, wearable technologies can measure the photoplethys-
mography signal (PPG) in which a heartbeat is individuated
when a systolic peak occurs. The difference in time between
two consecutive systolic peaks provides HRV traces [33].

This paragraph contains a description of the most recent
works related to the measurement of HRV in relation to dif-
ferent environmental conditions. Generally, HRV is analyzed
in terms of time-domain and frequency-domain parameters
after using specific processing of data [34], [35]. Time-domain
parameters are statistical indices that evaluate the variability
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of the HRV signal collected and are useful to interpret the
fluctuations during cardiac cycles. Whereas frequency domain
indices are obtained starting from the power spectral density
(PSD) of the HRV to decompose the variation of each HRV
signal into its fundamental oscillatory components [36]. Most
relevant components are obtained by computing the PSD in
specific frequency bands: low frequency (0.04 - 0.15 Hz),
high frequency (0.15 - 0.4 Hz). These frequency bands are
considered to be linked to the thermoregulation mechanism.
Thermoregulation is result of complex mechanisms that are
modulated by mutual interactions between the sympathetic
nervous system (SNS) and the parasympathetic nervous system
(PNS). SNS is responsible for sweating and vascular constric-
tion for heat generation, while PNS acts through the vagus
nerve for vascular constriction. Frequency domain indices are
linked to the activity of SNS and PNS. In fact, HF components
are supposed to be due to the vagal activity; whereas LF
components are originated from the SNS. The ratio between
these components (LF/HF) expresses the balance between
these two subsystems and is, therefore, subjected to variations
in case of an external stimulus.

Recent works have developed different approaches to
explore the relationship between HRV, its indices and thermal
comfort perception. Literature works related to thermal com-
fort measurement involved in their research a variable number
of participants. For example, [37] recruited 6 participants to
explore the relationship between HRV features and different
environmental conditions; also [38] in their work, predicts
the user’s thermal comfort states using HRV signal collected
from a smartband, using a sample size of 6 participant.
However, the sample size in thermal comfort studies can
be also be reduced, as it is reported in [39] and [40],
which tested their solution on a sample size of 4 and 1,
respectively.

There are thermal comfort studies that consider age-
related differences: higher temperatures are preferred by
elderly people, while lower temperatures are more suitable
for the younger population [16]. Gender-related differences
are another important aspect that is taken into consideration
in the thermal comfort field: in fact, women are reported to be
more susceptible to temperature fluctuations and are generally
more dissatisfied than men in relation to thermal environment.
Considering the work conducted in [41], it has also been found
that race-related differences do not play a significant role in
the perception of thermal comfort.

Literature has pointed out that there is a quadratic rela-
tionship between LF/HF and thermal discomfort. It has been
demonstrated that LF/HF increases in an uncomfortable ther-
mal environment (cold, warm) and decreases in a thermally
comfortable environment [30]. It has also been demonstrated
that LF/HF is influenced by the psychological state of the user:
in [42] it is reported that LF/HF rises when the user is in a
bored state, while it decreases when the user is in a joyful
state.

Moreover, LF/HF is also subjected to a rise when humidity
reaches high values (> 80%) and when the air speed increases
in case of low temperature [37], [38], [43]. To collect HRV
data, different sensors are used in current literature: ECG

is still the predominant methodology in many researches
[30], [32]. However, works in literature are also exploring
less invasive sensors like smartwatches or wristbands, which,
being wireless, do not prevent users from moving freely.
Empatica E4 wristbands are often adopted, however they are
very expensive and therefore cannot be provided to a large
population of users [35], [40], [44]. In this perspective, HRV-
related works are developed through the use of commercially
available smartwatches, which are less expensive and provide
reliable accuracy [45].

In addition, most of these works have highlighted that
Machine Learning (ML) approaches produce relevant results
when physiological and environmental parameters are merged
to forecast occupants’ thermal sensation. In this work [46],
it is demonstrated that, depending on the thermal environment,
it is possible to predict the thermal state of each subject by
using HRV indices with an accuracy up to 93.7 %, thanks
to the implementation of Random Forest (RF) and Support
Vector Machine (SVM) algorithms. Another study [47] uses
Extra Trees Classifier (ET) ML algorithm to predict partici-
pants’ combined thermal sensation vote in response to cold
environmental conditions: HRV features produce an accuracy
of 73.04 % with an absolute error of 0.299; the accuracy
increases up to 79.01 % when additional parameters (e.g. mean
air temperature, mean radiant temperature, relative humidity)
are added to the model. In addition to classification algorithms,
to estimate each subject’s thermal comfort level [48] uses
ML regression models that produce an RMSE value up to
0.04±0.01. HRV indices and ML algorithms are also at the
basis of the work presented in [49], which demonstrated the
possibility of estimating the thermal sensation vote of each
individual starting from HRV features extracted from an ECG
signal with an accuracy up to 82%.

To the best of the authors’ knowledge, in literature there
is a lack of studies that employ Deep Learning algorithms
for thermal comfort prediction starting from HRV signals.
However, there are works that show various fields of appli-
cation of HRV used to forecast some user-related physiolog-
ical or psychological states. References [50], [51] trained a
LSTM neural network to predict participants’ health using
HRV data alone. They investigated time domain, frequency
domain and typical HRV measures and were able to predict
mental health with a classification accuracy of up to 83% and
73%, with five- and two-minute HRV. uses a novel unified
deep learning framework for sleep-wake classification with
two heterogeneous sensors which includes acceleration and
HRV.

In [52] Convolutional Neural Networks (CNN) are
employed to detect whether a person is awake or asleep
starting from HRV features. These networks can identify HRV
fluctuations and relate them to human physiological states.
Also in [53] the authors claim that Deep Learning can help to
reveal underlying patterns in the ECG trace which otherwise
could not be observed and, for this reason, they used a
1-D CNN that employed HRV feature maps for stress state
identification, obtaining an accuracy of up to 89.8% [54] also
uses HRV as input to train a CNN for the prediction of sleep
scoring.
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This work was developed as part of a research that wants to
address the possibility of including physiological parameters
in the prediction of human thermal comfort. The results of [49]
have laid the foundations for the development of the research
activity here presented and the tuning of the methodology
according to its purpose. The experiment conducted in [49]
pointed out that it is possible to use physiological parameters
such as LF/HF to estimate the TSV of the user. It is important
to point out that the experiment was conducted in a highly
controlled environment, showing that physiological quantities
can lead to the prediction of TSV with an accuracy of up to
82%, and that the personal characteristics of each subject (such
as age, gender, birthplace, BMI) do not lead to statistically
significant results.

This work shows that in less controlled condition closer to
reality, while the participant performs light office activities,
physiological parameters provide lower performance in the
estimation of the TSV, in contrast to the previous work, but
adding environmental parameters can lead to an improvement
in the prediction of the TSV. The personal characteristics of
the user (e.g., gender, BMI) are not included in this research
since, [49] has shown that the analysis of environmental
variables and personal characteristics in the prediction of
user thermal comfort, does not lead to statistically significant
results.

In contrast with the previous work, the activity here pre-
sented shows that in a less controlled environment, closer
to reality, while participants carry out light office activities,
physiological parameters provide lower performance in the
estimation of TSV, but the addition of environmental para-
meters can lead to an improvement in its prediction.

The experimental setup for the acquisition of physiological
quantities was reduced to a minimally-invasive smartwatch
that collects HRV data and participants are free to perform
light office activities. By reducing the level of discomfort
caused by external stimuli different from thermal change,
the HRV signals produced are influenced only by environmen-
tal discomfort. In the previous work, the sample frequency
of the environmental parameters was limited to one sample
per minute, which made it necessary to compute the HRV
features at the same frequency with a smaller number of
samples. In this case, the methodology used to extract the
HRV features was revised by computing a greater number of
samples, which in turn positively affects the ML computations.
In addition, the dataset used to train the ML algorithms
was modified, since it includes non-linear features of HRV
and a different combination of time and frequency-domain
parameters that has proof to provide better performance. In a
transient environment, it is preferable to use ML regression
algorithms rather than classification algorithms, since TSV is
manipulated differently.

Given the above, this work aims at demonstrating how the
inclusion of some physiological parameters related to human
thermal comfort measured through a minimally invasive smart-
watch can help to improve the prediction of occupants’ TSV
vote. In particular, the methodology adopted in this work
aims at exposing each occupant to different environmental
conditions generated by a variation in air temperature, relative

Fig. 1. (a) External appearance of the Kubik facility. (b) Planimetry of
the floor in the facility where the tests were performed.

humidity and air velocity while collecting physiological and
environmental parameters.

II. MATERIALS AND METHODS

This section describes the experimental procedure devel-
oped to analyze human thermal perception in response to
different external temperatures. The test took place in KUBIK
(Bilbao, Spain), Fig 1 (a), which is a full scale experimental
infrastructure where research and development activities for
energy efficiency purposes are carried out. The facility is
mainly used to develop and test new solutions that could
reduce energy consumption in buildings and, at the same time,
improve the thermal comfort experience of occupants in indoor
environments. The building’s main functionality is its capabil-
ity of creating realistic conditions for the purpose of analyzing
energy efficiency, thanks to the intelligent management of
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Fig. 2. Picture of room B used to create a discomfort condition for the
participants.

its HVAC and lighting systems. A complete description of
the structure is provided in [55]. The experimental procedure
developed for the purpose of this study was performed on the
first floor of the building; the planimetry of the floor is reported
in Fig 1 (b).

The tests consisted of three trials: the first trial aimed at
creating cold-induced discomfort (Experiment 1), the second
created warm-induced discomfort (Experiment 2), while the
third test was performed by generating a transient temperature
variation over time (Experiment 3). The three tests, which are
described in detail in the following sections, were built in a
similar way: they all included a first stage of acclimatization
performed in Room A and a second stage conducted in Room
B in which room temperature, relative humidity and air veloc-
ity varied. Room A was equipped with a dedicated workstation
consisting of a table and chair to simulate light office activities.
Room A was always kept at a neutral temperature according
to users’ sensation.

The average indoor temperature recorded in room A was
between 19◦C and 21◦C and the set-point of the HVAC system
was 20◦C; the test performed in room A was necessary to
collect the baseline analysis before the user is exposed to a
discomfort condition in room B. To this purpose, since the
ground truth is the TSV, the test in room A started only if
the user was in comfort or not. Room B was also equipped
with a desk and chair to simulate light office activities. The
temperature in Room B was set by an HVAC system controlled
remotely from outside the room. Test Room B, Fig 2, has three
outdoor exposed elements, i.e. rooftop, west and south façades.

A. Participants
Ten volunteer participants (5 female and 5 male sub-

jects) were recruited for Experiment 1 and Experiment 2,
while 13 participants (7 female and 6 male subjects) were
recruited for Experiment 3. The anthropometric information

TABLE I
ANTHROPOMETRIC INFORMATION OF THE PARTICIPANTS INVOLVED IN

THE TESTS AND THE EXPERIMENTS ATTENDED

TABLE II
TECHNICAL INFORMATION OF THE SENSORS EMPLOYED TO COLLECT

ENVIRONMENTAL QUANTITIES INSIDE TEST ROOM B

of the participants is summarized in Table I. The partic-
ipants were required to wear their everyday clothes. The
reason behind this requirement is that people have a differ-
ent thermal sensation when wearing different clothes, there-
fore, this condition helps to preserve the subjectivity of
the test, because participants’ perception is not subjected
to a bias.

The clothing thermal insulation Icl (Table I), was computed
indirectly, by summation of the partial insulation values for
each item worn by participants. The set of garments worn by
participants was collected and the procedure suggested by ISO
9920 was adopted to evaluate the Icl.

All the participants gave written informed consent to use
their personal data and were duly informed about the goal of
the research.
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Fig. 3. Measurement set-up in Room B including furniture and sensor
location.

B. Experimental Set-Up
Table II illustrates the environmental parameters recorded

and the characteristics of the sensors installed in Room B for
monitoring purposes. The measurement set-up of the sensors
in Room B is displayed in Fig 3.

ISO 7726 Standard was adopted to assess the thermal
environment of Room B. Air temperature was measured by
four thermocouples placed in different positions of Room
B. The thermocouples (T2, T3, T4) were mounted on the
perimetral walls of the room, at 1.4 m from the ground (Fig 3).
Thermocouple T1 was instead positioned close to the work-
station the participants were sitting at during the experiment
to record air temperature. Actually, three thermocouples were
positioned close to the workstation at different heights (0.1 m,
0.6 m and 1.1m). However, for the purpose of this study, only
the air temperature (ta) measured at height 1.1m (T1) was
considered [56].

The anemometer was placed at 1.25 m from the window
and 1.10 m from the ground; the relative humidity (RH)
sensor was placed at 0.7 m from the floor and 1.25 m from
the window. The globe thermometer was placed close to the
workstation, 1.10 m from the floor. Each sensor collected
data every 5 seconds. All the data collected were sent to an
acquisition board that saves data locally.

During the test, the participants were provided with a
smartwatch that continuously recorded their HRV signal. The
smartwatch model was a Samsung Galaxy Watch and the
participants were asked to wear it on their non-dominant wrist.
The physiological parameters collected were saved locally on
the internal storage of the smartwatch and simultaneously sent
to a smartphone via Bluetooth communication.

For the purpose of this study, a dedicated Javascript applica-
tion was implemented. The App collected each HRV sample
in real-time and displayed it on a chart that was uploaded
in real-time. This application was useful for verifying the
correct functioning of the smartwatch during the acquisition
and saving an additional copy of the HRV signals on the
internal memory of the smartphone.

C. Thermal Sensation Vote
During the three experiments the participants were asked

to express their thermal sensation vote (TSV) whenever they

Fig. 4. (a) TSV trend during Experiment 1 for one participant. (b) TSV
trend during Experiment 2 for one participant. (c) TSV trend during
Experiment 3 for one participant.

experienced a different TSV from the previous instant. The
TSV expresses an occupant’s thermal sensation; in this specific
context, the ASHRAE 7-point scale was used, which is based
on the measurement of how warm or cool an occupant feels.

For this reason, during the different experiments, the par-
ticipants were required to express a vote from -3 to +3,
according to their thermal sensation. Each vote represented
a particular sensation: cold (-3), cool (-2), slightly cool (−1),
neutral (0), slightly warm (+1), warm (+2), hot (+3). TSV
was not collected with a specific frequency during the test,
but it was expressed by the participants whenever there was
a change in their TSV. Fig 4 shows an example of the TSV
collected in each experiment for a single participant.

D. Experiment Description
The three experiments were performed on three consecutive

days both in January 2020 and January 2021. During the three
experiments the participants were sitting at a workstation and
could perform light office activities (e.g. reading, working on
the laptop). The tests were built as follows (Table III):
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TABLE III
DESCRIPTION OF THE THREE EXPERIMENTS CONDUCTED AND THE

AVERAGE VALUE OF THE OUTDOOR PARAMETERS

•Cold-induced discomfort (Experiment 1). Each participant
started the trial outside the test-room, in a thermally comfort-
able environment (Room A). When the participant claimed
to be thermally comfortable (which means that the TSV was
equal to 0), the test started and lasted for 10 minutes. This
initial part was necessary to collect the participant’s baseline
signal. The participant then moved inside the test-room (Room
B), whose set-point temperature was set at 15◦C and the
window was kept open to vary air speed and relative humidity.
The test in Room B lasted for 15 minutes.

•Warm-induced discomfort (Experiment 2). Similarly to
Experiment 1, each participant started the trial outside the test-
room, in a thermally comfortable environment and the baseline
signal of HRV was collected. When the participant claimed
to be thermally comfortable (which means that the TSV was
equal to 0), the test started and lasted for 10 minutes. This
initial part was necessary to collect the participant’s baseline
signal. The participant then moved inside the test-room (Room
B), whose set-point temperature was set at 26 ◦C. The test in
room B lasted for 15 minutes. In this case the window was
kept closed, but a fan system was used to air the environment
and facilitate the diffusion of heat around the room.

•Transient air temperature (Experiment 3). This experiment
was different from the previous ones, because air temperature
in Room B was not kept constant but varied over time. The
profile temperature was created as follows: Room B was
previously set at 15◦C for 5 minutes, then temperature set-
point was set to heat the room up to 26◦C for 5 minutes,
then temperature was set back to 15◦C. The temperature
profiles created for each of the three experiments are showed
in Fig. 5. This range of temperature variation, from +15◦C
to 26◦C, was identified in line with a previous work that
considered a variation from +20◦C to 30◦C [49]. The lower
temperature was further decreased to induce a colder sensation

Fig. 5. (a) Trend of ta during Experiment 1. (b) Trend of ta during
Experiment 2. (c) Trend of ta during Experiment 3.

environment compared to a comfort condition during winter
season. In addition, the tests performed in the previous work
were executed with a total duration of 40 minutes, in this work
the total duration was lengthened up to 100 minutes.

The three experiments were conducted in a silent and quiet
room, isolated from external stimuli that could act as an inter-
ference in the measurement of HRV. This procedure should
guarantee that the greatest perturbation to the participants’
condition is due to the variation in indoor temperature. In order
to avoid possible motion artifacts, participants were instructed
to limit wrist movements as much as possible and were
advised to keep the hand of the arm with the smartwatch in
a specified position indicated by a visual sign placed on the
desk. Before starting each experiment, it was verified whether
the participants were bothered by the sensor equipment and
whether they felt comfortable in maintaining the required
position at the desk.

To assess the thermal environment, the authors followed the
specifications and methods of ISO 7726 Standard. To evaluate
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Fig. 6. Air temperature profiles during Experiment 3 and instant of
time considered for the evaluation of the homogeneity of the thermal
environment.

TABLE IV
DEVIATIONS OF AIR TEMPERATURE AT THE DIFFERENT LOCATIONS IN

TEST ROOM B AT DIFFERENT TIME INSTANTS

the horizontal homogeneity of the air temperature, according
to ISO 7726, the deviation between each air temperature value
measured in one point and the mean value was compared with
the multiplication of the required measure accuracy by the
appropriate X factor equal to 4. The procedure was replicated
throughout Experiment 3 in three different instants of time
(t1, t2, t3). The deviations are reported in Table IV. Fig 6
Reports the trends of the air temperatures measured using the
configuration of Fig 3.

Each participant in Experiment 3 was exposed to the same
environmental conditions, as shown in Fig 7 and Fig 8, which
display the average trend of each parameter during Experiment
3 and the maximum standard deviations in three different
instants of time. Fig 7 also reports the average trend of the
mean radiant temperature (tr ) and the operative temperature
(top), computed from the formulas listed in ISO 7726.

III. DATA PROCESSING

This paragraph contains a detailed explanation of how each
signal collected during the three experiments, was analyzed.
For each participant, the environmental data, physiological
data and the TSV collected during the tests were processed.
Data processing was an essential step for the extraction of the
proper set of features necessary to predict TSV.

A. Physiological Signal Analysis
The HRV trace was extracted from the smartwatch and the

very first step of the procedure was the removal of outliers

Fig. 7. Average profile for each environmental parameter, with the
maximum deviation computed among all participants. (a) Air temperature
in point T1. (b) Operative temperature. (c) Mean radiant temperature.

from the signal. In this work. HRV was derived from the
photopletysmographic signal (PPG) sensor installed on the
smartwatch. This type of technology can be deeply influenced
by artifacts due to small movements of the arm or loose
adherence of the smartwatch to the skin surface, which might
generate unwanted sources of external light that negatively
affect the PPG signal. In [45] the authors measured the
accuracy in the monitoring of HRV through a Samsung Galaxy
smartwatch compared with a multi-parametric belt, Bioharness
3.0, and the results showed an accuracy in measuring HRV
of 0.95%. Outliers were detected using a straightforward
thresholding methodology consisting in the comparison of the
actual HRV sample with the previous one and considering it
an outlier if it differed from the previous value by more than
50% of the mean value of a time-window of one minute. The
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Fig. 8. Average profile for each environmental parameter, with the max-
imum deviation computed among all participants. (a) Relative humidity.
(b) Air velocity.

outliers detected were replaced with the previous uncorrupted
interval [21], [35].

B. HRV Windowing and Indices Computation
Once the outliers were detected, the resulting HRV signal

was divided into time frames built as follows: the first time
frame corresponded to 5 minutes of the HRV signal, since this
duration is the minimum time recommended for short-term
HRV series to compute the spectral analysis [36]. After the
extraction of the first window, a new window was computed
by appending a new HRV sample interval of the signal,
while the oldest sample was removed from the beginning
of the window. The process was repeated until the end of
the signal [57]. According to literature [58], several HRV
features to be extracted from the HRV signal were identified.
Time-domain HRV features (f(HRVt)) are a collection of
statistical and geometrical indices for the measurement of the
variability in the HRV sequence that act as indices to interpret
the oscillations of cardiac cycles. The (f(HRVt)) statistical
indices computed in this study are SDANN, RMSSD, MEAN,
MEDIAN, PNN50, PNN25. In addition, HRV studies imply
the use of frequency-domain features (f(HRV f )), which are
useful for the understanding of the stationarity or stability
of the HRV signal. To obtain the frequency-domain analysis,
the first power spectral density (PSD) was computed through
the autoregression modeling-based method that has proven

TABLE V
DESCRIPTION OF THE HRV FEATURES EXTRACTED

to provide better resolution. Each frequency band was then
computed: LF (0.04-0.15 Hz) and HF (0.15 - 0.4 Hz), LF/HF,
HF/LF and the total power spectrum (TP). Non-linear features
(f(HRVnl)) were also computed through the Poincarè plot. The
Poincarè plot is a graphical representation of an HRV time
series along the cartesian plane: the X-axis contains one HRV
sample, while the Y-axis contains the following HRV sample.
The Poincarè plot provides two additional features obtained by
adjusting the point cloud of the figure formed into an ellipse,
obtaining SD1 and SD2. The list of all the HRV features
computed are shown in Table V.

C. Thermal Sensation Vote Processing
As previously written, during the experiment TSV was not

collected with a predetermined frequency. The participants,
in fact, communicated their vote as soon as they perceived a
different sensation with respect to the previous one. Therefore,
the TSV vector was built with one sample per minute. Each
TSV sample used to perform the analysis was obtained by
building TSV windows in the same time interval of the
corresponding HRV window, and the final value was obtained
by averaging the TSV window.

D. Binary Classification Between Comfort and Discomfort
Three ML classification algorithms, selected from litera-

ture, were used to predict human thermal comfort expressed
through TSV. The algorithms are Support Vector Machine
(SVM), Random Forest (RF) and the Extra Tree Classifier
(ETC). Experiment 1 and Experiment 2 were built in order to
investigate whether it was possible to distinguish “Comfort”,
which results in TSV equal to 0, and “Discomfort”, expressed
in terms of TSV with the remaining values of the ranking dif-
ferent from 0. In Experiment 1 the participants were exposed



MORRESI et al.: SENSING PHYSIOLOGICAL AND ENVIRONMENTAL QUANTITIES 12331

to a neutral environment inside Room A and immediately
after to a cold environment inside Room B. In Experiment
2, the same procedure was applied, but in this case Room B
generated hot-induced discomfort. The level of activity of the
participants during the experiment, the clothing insulation and
the experimental set-up used were the same in both rooms,
therefore, the only variable that changed over time was the
air temperature, which in turn generated a different thermal
sensation vote. This part of the study was therefore focused on
the ability of an ML classifier to distinguish between comfort
and discomfort of the participants starting from the LF/HF,
HF and LF extracted from HRV, which are connected to the
thermoregulation mechanism. The HRV values were normal-
ized to include robustness to very small standard deviations of
the features and preserve zero entries in sparse data. In this
context, the TSV that has to be predicted was manipulated
in order to have a binary classification as follows: in both
Experiment 1 and Experiment 2 every TSV different from
0 collected was categorized as “Discomfort” while every TSV
equal to 0 was categorized as “Comfort”. One participant
in Experiment 1 was excluded from the analysis because in
both Room A and Room B the vote expressed was 0, so the
participant did not experience any discomfort. 6 participants
were considered for the analysis of Experiment 2, because the
resulting TSV in Room B for 4 participants was always 0. To
avoid overfitting of the three classifiers, the validation of the
model was conducted by performing a k-fold cross-validation
using 10 folds. The metrics for evaluating the performance
of the classifiers is the accuracy (A) computed according to
Equation 1:

A = T P + T N

T P + T N + F P + F N
(1)

where TP is the True Positives, TN is the True Negatives, FP
is the False Positives and FN the False Negatives.

E. Prediction of Thermal Discomfort in Transient
Environment in Experiment 3

Experiment 3 was conducted to investigate the human body
response under transient environmental conditions obtained
with small step changes in air temperature profiles. The
temperature profile created in this experiment differs from the
ones in Experiment 1 and 2, since it is generated by creating
small variations of air temperature over time, which is what
typically happens in office buildings.

The complex mechanism of thermoregulation results in a
strong non-linearity of the features extracted from HRV and
this is the reason why ML techniques can provide support
to find relationships between non-linear variables. The data
obtained from Experiment 3 were processed in order to create
2 different datasets: the first dataset (FH) was built with
HRV variability features (f(HRVt), f(HRVf) and f(HRVnl);
the second dataset (FH+E) was built by joining physiological
and environmental quantities.

Before using ML, the ta , RH and v recorded in Room B
needed to be processed. This procedure was essential because
Experiment 3 implied a transient air temperature that varied
continuously during the test and, to proceed with the analysis,

it was necessary to associate one sample of each parameter
to each time window of HRV. For this reason, windowing
was applied to each environmental quantity by delimiting each
window with the corresponding time interval that delimits an
HRV window. From each environmental window, the mean
value was computed. This procedure can be explained by
the fact that 5 minutes of HRV, and in particular of LF/HF,
are strictly connected to the variation of the environmental
quantities in the same time interval [49].

Five different regression ML and DL algorithms were
used to predict the TSV of each participant in the transient
environment: Support Vector Machine (SVM), Random Forest
(RF), Multi-Layer Perceptron (MLP), 1-dimensional CNN and
LSTM. All the algorithms were trained and tested using
Python libraries keras and sklearn.

An MLP artificial neural network is made of an input
layer, one or more hidden layers of artificial neurons and
an output classification layer. The network is particularly
indicated for nonlinear problems, because of its ability to learn
new relationships between parameters by updating the weights
of the connections between the neurons of consecutive layers
[59]. For the purpose of this research, MLP was trained with a
number of hidden neurons set to 8, which is strictly connected
with the size of the training data dimension. The regularization
parameter alpha (α) was determined using the grid search
algorithm, whose function is to take a set of possible values
of the chosen parameters and find the best combination [60].
The grid search algorithm provided α = 0.01.

The LSTM model was created as follows: the network
weights were optimized by minimizing the loss function using
the “ADAM” optimizer [61]. The LSTM hidden layer was
made by 100 dimensions, a dropout layer to reduce overfit-
ting, followed by a fully connected dense ReLu layer with
100 outputs and a final output layer to obtain one output for
the regression [62]. The model was trained for 15 epochs with
a batch size of 50.

The architecture of the 1D-CNN proposed included 3 Con-
volutional layers, one pooling layer and an output layer that
returns a single value to predict TSV. Each convolutional layer
had 64, 32 and 16 layers, with the ReLu activation function
and was followed by a dropout layer for regularization [63],
[64]. After the convolutional layers and the pooling, there was
a flatten layer that transformed the features learned into a one-
dimensional vector that was then sent to a fully connected
layer to make regression predictions.

The validation of each algorithms on the two datasets
was performed by using the Leave-One-Subject-Out (LOSO)
procedure, which consists in training the algorithm on all the
subjects except one, which is used for the validation [37].
The metrics for the validation of regression algorithms were
expressed in terms of Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE), computed as follows in
Equation 2 and Equation 3.

M AP E = 1

n

(∑n

i=1
| yi − xi

yi
|
)

(2)

M AE =
(∑n

i=1 |yi − xi |
)

n
(3)
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where n is the number of observations, yi is the actual TSV
and xi is the predicted TSV obtained from the ML model.

IV. RESULTS

A. Binary Classification Between Comfort and
Discomfort

The binary classification between comfort and discomfort
was considered the baseline analysis of the whole test. The
aim of this part was to estimate whether it is possible to
distinguish between comfort and discomfort condition caused
by an external disturbance generated by a sudden change
in temperature, air velocity and relative humidity. In the
following paragraph, the binary classification was tested for
the cold-induced discomfort and then for the hot-induced
discomfort. The three ML algorithms extracted from literature,
i.e. SVM, RF and ET, were trained and tested on the single
participants to see whether HRV frequency-domain indices can
be effectively used to distinguish if a person is experiencing
cold-induced discomfort or warm-induced discomfort. This
assumption is necessary in a future hypothesis of including
the HRV measurement as a support tool for controlling indoor
environment.

Nine out of the 10 subjects were considered for the
cold-induced discomfort experiment, while one subject was
excluded for having expressed no variation in the TSV when
entering Room B. The variation in the TSV between Room
A and Room B is essential to build the dataset for the ML
classification, since this is the only way to develop a binary
classification in which authors try to relate physiological
quantities and TSV. If the TSV of the participants remains
0 when exposed to discomfort in Room B, it is not possible
to develop a model that classifies between two classes, because
no variation of the output is recorded. From Table VI, it can
be seen that the three algorithms performed at a high level
of accuracy in distinguishing the two classes, with values
up to 100% in the case of marked distinction and a mean
accuracy of 92.2%. This result suggests that, with the support
of ML classification algorithms, HRV features can be used
to distinguish whether a participant is comfortable or in a
discomfort condition. The same considerations can be made
for the warm-induced discomfort classifier. 6 out of the 10
participants were included, since they provided a different TSV
between Room A and Room B. As shown in Table VII, also
in this case the accuracy reached a mean value of 92.9%,
suggesting that the two indices (LF/HF, HF and LF) can be
an indicator of warm or cold induced discomfort.

B. Prediction of Thermal Discomfort in Transient
Environment in Experiment 3

The activity here presented pointed out the necessity to
think about the relationship between physiological, environ-
mental parameters and the TSV as a black box that can be
implemented thanks to ML techniques. This is the approach
used in Experiment 3, which merged different types of datasets
that included various environmental and physiological features
to predict the TSV of each participant. Among different
algorithms tested, the best results were obtained with the RF

TABLE VI
ACCURACY OF THE ML CLASSIFIERS IN THE ESTIMATION OF THE

COLD-INDUCED DISCOMFORT CONDITION

TABLE VII
ACCURACY OF THE ML CLASSIFIERS IN THE ESTIMATION OF THE

WARM-INDUCED DISCOMFORT CONDITION ACCURACY (%)

algorithm, against, for example, the SVM algorithm, which
provided lower performances.

The algorithms were trained using a leave-one-subject-out
validation and their performance was evaluated in terms of
MAE and MAPE.

C. Features and Dataset Description
The algorithms were first trained and tested by using as

input only the physiological features previously described
in Table V. Given the higher number of computed features,
the model was trained multiple times, combining iteratively
different subsets of physiological features to individuate the
best combinations of parameters that could provide higher
performance of the algorithm in terms of accuracy. With this
procedure it was possible to identify that the combination of
physiological features that led to higher accuracy was made
of RMSSD, MEAN, MEDIAN, LF, HF, LF/HF, HF/LF, SD1,
SD2, SD1∗SD2, that led to the creation of FH.

FH was subsequently combined with the three environmen-
tal parameters (ta , va , RH), thus creating FH+E, which is
showed in Table VIII.

The performance obtained by testing each algorithm on the
participant that was not previously included in the training is
shown in Fig 9 and Fig 10. The average MAE and the average
MAPE were obtained by averaging all the MAE values and
the MAPE values obtained from testing the algorithms on
the single test participant. In particular, when the algorithms
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TABLE VIII
DESCRIPTION OF THE DATASETS BUILT FOR THE ANALYSIS

Fig. 9. Average MAE computed by averaging the MAE obtained from
the prediction of each algorithm on the single user, left out of the training.

were trained using the dataset FH+E, both MAE and MAPE
decreased compared to the training made only with physiolog-
ical HRV features (FH), except for the average MAE computed
from the LSTM algorithm. To compare the five algorithms,
accurate results were obtained by applying RF algorithms, with
a MAE and MAPE of 1.4 and 24% respectively, when the FH
dataset was used. On the other hand, CNN and RF provided
comparable performances when using the FH+E dataset, with
MAE and MAPE of 1.2 and 21, respectively. These results
highlight how the inclusion of some user-related features, such
as HRV features, can somehow provide a prediction of the
TSV of the participant, but, at the same time, demonstrate how
the inclusion of some environmental quantities can lead to a
better prediction of the TSV of the user in transient conditions,
as it occurs in Experiment 3.

Fig 11 shows the results obtained for one participant as an
example; in addition, it also shows the trend of the PMV,
which, although it is not used as a reference metric in this
study and is not included for building the ML models, partly
follows the trend of the real TSV. Furthermore, the fig-
ure shows that the trend of the predicted and the real TSV

Fig. 10. Average MAPE computed by averaging the MAPE obtained
from the prediction of each algorithm on the single user, left out of the
training.

Fig. 11. Real TSV and PMV against the predicted TSV obtained from
the testing on one user, adopting the LOSO approach.

follows the shape of the PMV, although the predicted TSV
deviates more from the PMV.

D. Uncertainty Analysis
An uncertainty analysis on the results of the LOSO approach

obtained with Experiment 3 was performed to evaluate the
impact of the uncertainty in the measurement of the HRV
collected with the smartwatch on the prediction of the TSV.
The model was trained to predict TSV, and it was therefore
interesting to evaluate the impact of any source of uncertainty
added to the raw HRV data on the model trained. The accuracy
of the RF model in predicting TSV depends on the accuracy of
HRV, which is the only physiological variable collected. The
uncertainty analysis was therefore performed to quantitatively
evaluate that output uncertainty (i.e. TSV) was distributed
between different sources of variation in the model inputs (i.e.
HRV).
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TABLE IX
INPUT AND OUTPUT OF THE UNCERTAINTY ANALYSIS

Fig. 12. Schematic representation of the methodology adopted for
computing the uncertainty of the TSV due to the uncertainty of the input
HRV.

The methodology applied is the Monte Carlo method: the
basic principle of this methodology is to perturb the calcu-
lation model by adding a distribution to the input variable,
which, in this precise context, is the HRV collected from
the smartwatch, and evaluate the model sensitivity due to the
perturbation on the resulting output variation [41]. The output
variation obtained in response to the perturbed input variable
was assessed in relation to a reference condition. Therefore,
the final aim was to investigate, through an uncertainty analy-
sis, the impact of a perturbed HRV signal on the prediction of
the TSV using a trained ML model. The perturbation assigned
to the input HRV was ± 4 ms, as reported in Table IX [45].
More in detail, the reference value was obtained by an initial
processing of the input HRV belonging to all the subjects
that performed Experiment 3. The model trained provided
the reference values of the output. The test dataset and the
corresponding TSV predicted using the trained ML model are
used as reference values. The procedure is repeated by gen-
erating 106 perturbated HRV signals and applying the trained
model to predict the perturbed TSV. Perturbation is assigned
by summing each reference HRV value with a random value
extracted from a uniform distribution. The simulation used the
input uncertainty specified in Table IX and generated a random
sample of possible combinations of the input variable. Fig 12
describes the approach adopted for computing the uncertainty
associated to the prediction of TSV in response to a perturbed
HRV. The result of the Monte Carlo analysis shows that the
uncertainty of the smartwatch in the measurement of HRV,
which is ± 4 ms, results in an output uncertainty which turned
out to be ± 0.14, expressed in TSV units.

V. DISCUSSION AND LIMITATION

The experiments conducted in [49] are considered the
starting point used to develop the procedure conducted in this
work. In particular, [49] demonstrated that when the user does
not perform any activity and environmental parameters (ta,
RH and v) are more controlled, HRV features can provide
accurate performance in the estimation of TSV. However,
in this work, in which participants were allowed to carry out
some light office activities, it was possible to demonstrate how
HRV features are only able to discern between a comfort and
a discomfort condition of the participant and provide lower

Fig. 13. Average trend of TSV and PMV against air temperature during
Experiment 3, for all the users.

performance in predicting the TSV in transient conditions
compared to [49]. For this reason, the effect of the combination
of HRV features with environmental quantities was examined
to test whether a combination of the two could help in the
prediction of TSV. On the other hand, [49] highlighted that
human perception cannot be interpreted in a univocal manner
on the basis of environmental parameters, but should be
analyzed through a subjective point of view, which, in this
case, is expressed by TSV.

For this reason, to predict TSV, the authors of this work
decided to aggregate the physiological response of the partic-
ipants (expressed by HRV features) that proved to be related
to human thermal comfort with environmental quantities.

The evaluation of the performance of the algorithms sug-
gests that features extracted from environmental parameters
led to improved results compared to the use of HRV features
alone. This result is compliant with literature, which suggests
that environmental parameters can be helpful in the prediction
of thermal comfort and that physiological measurements can
be used as support features to develop personalized models
[65].

Experiment 3 aims to simulate a real-life application in
which users are able to perform light office activities while
a smartwatch collects their HRV. By using FH to predict
TSV, the MAE and MAPE values cannot provide satisfactory
values of accuracy, which suggests that in real life conditions,
different from the controlled environment created in [49], more
complex mechanisms are present in the management of HRV.
However, a step-forward in the prediction of TSV was made
by adding environmental quantities to the HRV features, since
the value of MAE and MAPE improved. Another point of
discussion that arises from the results obtained from this study
is that Experiment 3 gives the possibility to examine any
hysteretic behavior of TSV and HRV: in particular, Experiment
3 was built so that when the test started the temperature was
set at 15◦C, then risen up to 26 ◦C and then set back to
15◦C, therefore, it was also possible to observe if the TSV
returned back to the initial condition. Fig 13 represents the
mean behavior of the TSV and the temperature among all
participants in Experiment 3. It is possible to see that the
average TSV among all participants does go back to the initial
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condition, since the TSV in the first part of the test starts at
-2, goes up to almost 3 and then, in the cooling phase, returns
back to the initial condition. On the other hand, the HRV does
not directly show the same behavior as the TSV. To examine
this aspect in depth, further ad-hoc experimental campaigns
should be carried out to study the presence of hysteresis in
physiological data, such as HRV, under diverse environmental
conditions. Figure 13 also shows the trend of the average
PMV which follows that of the TSV, although there are some
numerical discrepancies.

The research proposed was performed in order to explore
whether it is possible to build ML models by collecting phys-
iological data from a smartwatch, providing a methodology
that could predict the TSV of the participants. The LOSO
approach used for testing the accuracy of the ML algorithms
aims at creating a generalized model that does not take into
account gender-related differences, but considers only TSV as
the ground truth of the model.

Although the results of the LOSO approach highlight that a
punctual, real-time prediction of TSV was not always accurate
for the current test, it is important to underline that the results
obtained from ML algorithms can be used to predict the
overall comfort of a user. This information can point out
that the overall thermal comfort is evaluated over a long-
term period and it is not necessary to estimate a point-by-
point trend. Given this assumption, the authors have tried
to demonstrate how the methodology applied for the test,
which involves a smartwatch and environmental sensors, can
be further explored to investigate its effectiveness in helping
to predict the TSV of users in real-life contexts. The results
obtained help to clarify that the aim of the entire work is to
add physiological parameters in the measurement of thermal
comfort to realize environments that are more tailored to
the users that live in them. Thus, the analysis provided is
helpful to investigate the capability of physiological quantities
to predict the TSV of occupants, without taking the place of
environmental quantities.

VI. CONCLUSION

The aim of this paper is to address the possibility of measur-
ing the TSV of participants exposed to different environmental
conditions starting from physiological parameters related to
HRV. A baseline analysis conducted through Experiment 1
(Cold-induced discomfort) and Experiment 2 (Warm-induced
discomfort) showed that when participants are exposed to a
comfort condition and then suddenly to a discomfort condition,
the physiological response, represented by LF/HF, can be
different from participant to participant. ML classification
algorithms can distinguish between comfort and discomfort
with an average accuracy of 92.2%, which suggests that
frequency-domain quantities of HRV can be used as indicators
to distinguish whether a user is thermally comfortable or in
discomfort.

When it comes to a transient environment, as in Experiment
3, the problem becomes a regression issue in the prediction of
TSV. Results show how physiological quantities in transient
conditions can be used to estimate TSV with mean MAE and
MAPE values that reach up to 1.4 and 24%, respectively.

However, the aggregation of environmental and physiological
features improves the performances of the ML regression
algorithm, thus improving the mean MAE and MAPE by
1.2 and 24%. These results demonstrate that the addition of
physiological features can help to improve the measurement of
users’ TSV. In addition, an uncertainty analysis regarding the
impact of the uncertainty of the smartwatch in the prediction
of TSV has pointed out that the uncertainty associated to the
output is ± 0.14, expressed as TSV units.

The work presented has opened the possibility to include
physiological parameters in the prediction of thermal comfort,
to develop more tailored solutions for users in non-controlled
environments, which are often similar to real-life conditions.
However, this methodology could also be applied under con-
trolled thermal conditions (e.g., climatic chamber) on a higher
number of participants, to create generalized models. Wearable
devices can become a powerful tool to acquire more complex
and subjective features related to thermal comfort that can be
included in thermal comfort modeling, and consequently help
in the management of the HVAC set-point that regulates air
temperature in buildings.
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