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Machine Learning for Anomaly Assessment in
Sensor Networks for NDT in Aerospace

Ivan Kraljevski , Frank Duckhorn, Constanze Tschöpe, and Matthias Wolff

Abstract—We investigated and compared various algo-
rithms in machine learning for anomaly assessment with
different feature analyses on ultrasonic signals recorded by
sensor networks. The following methods were used and com-
pared in anomaly detection modeling: hidden Markov models
(HMM), support vector machines (SVM), isolation forest (IF),
and reconstruction autoencoders (AEC). They were trained
exclusively on sensor signals of the intact state of structures
commonly used in various industries, like aerospace and
automotive. The signals obtained on artificially introduced
damage states were used for performance evaluation. Anom-
aly assessment was evaluated and compared using various
classifiers and feature analysis methods. We introduced novel
methodologies for two processes. The first was the dataset
preparation with anomalies. The second was the detection
and damage severity assessment utilizing the intact object
state exclusively. The experiments proved that robust anom-
aly detection is practically feasible. We were able to train accurate classifiers which had a considerable safety margin.
Precise quantitative analysis of damage severity will also be possible when calibration data become available during
exploitation or by using expert knowledge.

Index Terms— Machine learning, non-destructive testing, ultrasonic transducers.

I. INTRODUCTION

THE expansion of the aerospace industry has led to an
increase in the number of aging aircraft which are still in

service [1]. Novel composite materials have been developed,
which possess high strength-to-weight ratio and are used in
aircraft, space vehicles and in other industrial applications.
These materials are usually exposed to high loads and cli-
matic factors progressively causing dangerous defects. Even
the smallest flaws in the structure can lead to catastrophic
failures. To ensure safety and airworthiness, it is necessary to
employ new and innovative structural health assessment (SHA)
techniques for fast and reliable inspection of aircraft parts [2].

Non-destructive testing (NDT) methods—e.g., based on
acoustics, X-Rays, eddy current, or images—are capable of
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detecting defects during production as well as during usage.
A recent and extensive review of NDT methods for defect
detection and characterization in composites in aircraft struc-
tures is given in [3]. One of the most common SHA methods
in the aerospace industry is the ultrasonic non-destructive
testing [4]–[7].

In contrast to passive acoustic emission, ultrasonic NDT
systems are actively employing transducers to send and receive
ultrasonic waves to and from a specimen [8]. Typical excitation
signals being sent to the specimen are wavelets or chirp signals
with various center frequencies, allowing for the discovery of
size and shape of extremely small damages and discontinuities
(in the order of a signal wavelength) [9].

Earlier ultrasonic NDT systems mainly relied on the inter-
pretation of readings by trained and experienced human oper-
ators. Later, the advances in signal processing and machine
learning opened the possibility of building more sophisticated
automated ultrasonic NDT systems with near-human detection
performance [10].

The use of machine learning for sensor signal interpretation
in NDT reaches more than 25 years back [11]. The application
of support vector machines and neural networks has a long
history in the automatic evaluation of ultrasonic data and
showed promising results [12]–[20]. However, finding the
optimal setup for a particular purpose is difficult due to
the wealth of available methods and the large number of
hyper-parameters to be tuned.
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Another issue is the amount of representative data required
for reliable machine learning. Typically, there is an abundance
of available data provided by intact specimens and little or
none provided by the damaged ones.

This paper is based on preliminary work [21]–[23], in which
we investigated traditional machine learning approaches, hid-
den Markov models (HMM) and support vector machines
(SVM), for ultrasonic SHA of airplane materials.

Here, the severity of damage was predicted by different
multi-/one-class classification and regression approaches.

All investigated methods performed reasonably well where
the multi-class classification was particularly successful. How-
ever, the regression and one-class tasks were more difficult, but
still practically feasible.

In this study, we applied state-of-the-art machine learning
algorithms, namely, autoencoders and isolation forest, to the
same data used in the aforementioned studies and we com-
pared the results where applicable. The machine learning algo-
rithms were employed in anomaly detection using exclusively
sensor signals of an intact state.

Sensor signals obtained on artificial damage states were
used in the detection of and damage severity assessment.
The performance was evaluated and compared across different
classifiers and feature analysis methods. We investigated the
following anomaly detection methods: hidden Markov models
(HMM), support vector machines (SVM), isolation forest (IF)
and reconstruction autoencoders (AEC).

The paper is organized as follows: In Section II we describe
the data collection, the datasets, and the feature analysis
algorithms. Section III presents the anomaly detection method-
ology used for damage recognition as well as for sever-
ity assessment. Section IV outlines the datasets preparation,
hyper-parameter optimization, a brief description of the ML
algorithms, and decision fusion. Section V presents detailed
analysis of the classification experiments.

II. MATERIALS AND METHODS

A. Data Collection
We used two objects in our experiments, an aluminum plate

that measured 1000 mm × 1000 mm × 2.5 mm (Fig. 1) and
a carbon fiber reinforced plastic plate with dimensions of
860 mm (Fig. 2) [21], [22].

The data were collected in a controlled manner, starting
with intact test objects and gradually adding damage. This
procedure yielded plenty of data representing damaged states.
This provides us with a much better possibility to study outlier
detection than using data from a real use case where damaged
states are rare.

1) Aluminum Plate (ALU): The aluminum (ALU) plate was
equipped with N = 8 ultrasound transducers attached at the
plate in a circular arrangement with a diameter of 570 mm
(Fig. 1). During one measurement, the plate was excited
by each of the eight transducers subsequently, while the
remaining seven transducers were recording the arriving sound
waves. Hence, a measurement comprises of N × (N − 1) or
8 × 7 = 56 signals from as many signal paths. A signal path is
defined by the sending and receiving transducer and we simply
designate it as a sensor (e.g. A2B1, D2B1, D2A2, etc.). As an

Fig. 1. Ultrasonic transducer configuration on the aluminum plate.

TABLE I
ALUMINUM PLATE (ALU) DATABASE

excitation signal, we used a Ricker wavelet [24] with a center
frequency of 250 kHz (R250). All measured signals have the
same duration of 400 µs and were recorded with a sample rate
of 6.25MS/s and 16-bit resolution. Table I shows the number
of measurements per state and the total count of the signal
recordings.

The initial intact state of the aluminum plate is labeled
as “Z00”. During the experiment, we introduced a fissure of
increasing length in the center of the sensor arrangement. The
resulting damage states are labeled as “Z01”…“Z37”, where
the digits correspond to the fissure length in centimeters (see
also [22, Fig. 10]).

2) Carbon Fiber Reinforced Plastic (CFRP): The CFRP plate
was equipped with 12 ultrasound transducers in a 600×400mm
grid arrangement (Fig. 2).

The employed measurement procedure was the same as for
the aluminum plate, where for the CFRP plate a measurement
is comprised of 12×11 = 132 signals (see also [22, Fig. 11]).

Similarly, the measured signals have an equal duration of
1046 µs. We used a sampling rate of 4.16MS/s and 16-bit
resolution for the measurements and we tested three different
excitation signals: Ricker wavelet [24] with center frequencies
of 100 kHz (R100) and 350 kHz (R350), as well as a sinc
function with a cutoff frequency of 600 kHz (S600).
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Fig. 2. Ultrasonic transducer configuration on CFRP plate.

TABLE II
ARTIFICIALLY INTRODUCED IMPACT DAMAGE

TABLE III
CARBON FIBER REINFORCED PLASTIC PLATE (CFRP) DATABASE

In the beginning, we performed three series of measure-
ments on the intact state labeled as “Z00” …“Z02”. Then we
introduced increasing damage by subsequently hitting the plate
with a steel ball applying varying energy (15 J to 45 J) where
the plate fixed on a flat surface for I1 …I3 (supported) and for
I4 and I5 freely laid on a frame (free). After each hit a new
damage state was introduced and the measurements performed
(Table II).

This procedure resulted in five states of increasing damage
severity for all excitation signals labeled as “Z03”…“Z07”.
The intact states “Z01” and “Z02” were recorded only with the
R350 excitation signal. Table III summarizes the data collected
from the CFRP plate.

B. Feature Analysis
We compared the classification of raw signals (SIG) and two

feature extraction methods, “primary” (PFA) and “secondary”
(SFA) features.

1) SIG: We used the raw recordings for classification with-
out any pre-processing as features. Because all signals per test
object have the same duration we obtain features with the same
dimensions: 2500 (ALU) and 4352 (CFRP) signal samples.

2) PFA: Primary features (PFA) were obtained from the
signals using short-time Fourier transform with a window
length of 1024 signal samples and a continuation rate of 32
signal samples, followed by spectral sub-sampling by a factor

4 and subsequent low-pass filtering. The resulting feature
dimensions are 47 × 24 for the ALU and 105 × 32 for CFRP
plate.

3) SFA: Secondary features (SFA) were computed from
the primary features by using vector standardization to zero
mean and unit variance. Additionally, principal component
analysis (PCA) was employed for reduction to 16 spectral
dimensions. Therefore, the dimension of the SFA features was
47 × 16 for ALU and 105 × 16 for CFRP.

III. DEFECT DETECTION AND ASSESSMENT

A. Anomaly Detection
In a typical application, we have plenty of sensor mea-

surements indicating intact state and much less of those of
structural defects. Therefore the classifiers are trained to detect
anomalies by using only the signals of the intact (normal) state
in a one-class classification scenario.

We can define a data set as:
D = {

(x (1), y(1)), . . . , (x (N), y(N))
}

(1)

consisting of N = |D| feature-label pairs (x, y) ∈ D called
samples. The ground truth labels are y ∈ {c0, c1}, where c0
denotes an anomalous and c1 a normal state. The data set is
partitioned according to the ground truth labels:

D0 = {
(x, y) ∈ D : y = c0

}
– labeled as c0,

D1 = {
(x, y) ∈ D : y = c1

}
– labeled as c1. (2)

where D = D0 ∪ D1 and D0 ∩ D1 = ∅.
The classifiers compute scores for each sample (likelihoods,

decision functions, etc.) which were transformed into a pseudo
posterior probability P(c1|x) ∈ [0, 1] of the sample x belong-
ing to the “normal” state’s class c1.

A sample is considered anomalous—class c0—if this
pseudo-probability falls below an estimated threshold.
Details on threshold computation and the calculation of
pseudo-probabilities, which differs between the classifiers, are
given below.

Since our dataset is highly imbalanced, evaluation with the
basic accuracy rate would yield biased results [25]. A more
appropriate performance indicator is the posterior balanced
accuracy rate [26], [27].

The accuracy rate for each class i (the recall) is defined as:

Ai = Ci

Ni
, i ∈ {0, 1}, (3)

where Ni = |Di | is the total number of samples and Ci is the
number of correctly classified samples for class ci . According
to [26], the posterior distribution of the class accuracy rate
Ai can be expressed as a Beta distribution with parameters αi

and βi :

(Ai |Ci ) ∼ Beta(αi , βi ), i ∈ {0, 1}, (4)

where αi = 1 + Ci and βi = 1 + Ni − Ci , and the probability
density x of correctly classifying unseen samples is:

PAi (x; αi , βi ) = �(αi + βi )

�(αi )�(βi )
xαi−1(1−x)βi−1, i ∈{0, 1}. (5)
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The balanced accuracy rate is estimated as the average of
the individual recalls 1

2 (A0 + A1), whose probability density
can be estimated by convolution:

PB(x; α0, β0, α1, β1) =
∫ 1

0
PA0

(
2(x − y); α0, β0

)
· PA1

(
2y; α1, β1

)
dy. (6)

B AR = E |X | =
∫ 1

0
x · PB(x) dx (7)

From here, the balanced accuracy is the expected value
(7) of the probability density (5). We compute the 95%
Clopper-Pearson confidence interval (CI) according to [28].
In this case, after balancing, the random guess baseline for
the accuracy rate is 50% which represents the inverse number
of classes.

We also calculate the equal error rate (EER) with the 95%
CI and the corresponding threshold. Such threshold obtained
on a development set can be used for the classifier calibration
providing more reliable anomaly detection.

Additionally, when an ideal detection is achieved
(E E R = 0), the classification (safety) margin (C M) is
used as a metric of the robustness of the classifiers:

C M = minx∈D1 P(c1|x) − maxx∈D0 P(c1|x)

meanx∈D1 P(c1|x) − meanx∈D0 P(c1|x)
, (8)

where meanx∈D1 P(c1|x) > meanx∈D0 P(c1|x). The safety
margin represents the smallest relative distance of any two
classes and it is always between zero and one.

B. Severity Assessment
The damage severity assessment is performed using the

knowledge about the true labels (y) of the anomalous states
as described in Tables I and III. The objective is to investigate
how good the models trained only on signals of intact state
can estimate the damage severity for a specific state (like
the length of the fissure in the ALU or the damage level in
the CFRP database). The damage severity assessment makes
sense only if we have ideal anomaly detection and an existing
development set which is needed for modeling and calibration.

One possible approach is to perform linear regression mod-
eling on the fused pseudo-probability scores across the ground
truth labels (see details below), comparing the mean square
error (MSE) and the coefficient of determination (R-square
or R2) across different classifiers. These metrics will give an
insight about the linearity of the scores of one state label, but it
will not give the information about the score dispersion inside
and outside the label states.

Another approach which will complement the severity
assessment is to consider the scores with their true labels as the
outcome of a cluster modeling, and hence to use appropriate
performance metrics like silhouette coefficient (SC). SC is the
function of the mean distance between a score and all other
scores of the same label (tightness) and the mean distance
between a score and all other scores in the next nearest cluster
(separation) [29]. Such kind of metrics provide qualitative
comparison of classifiers regarding their ability for damage
severity assessment.

Fig. 3. Partition into training and test set for fold 4.

IV. EXPERIMENTAL SETUP

We investigate the performance of the classifiers on both
test objects (ALU and CFRP) and with all excitation signals,
giving in total four different datasets (see Table I and III).

As already mentioned, in a typical application little or no
data of damage states are available. It is impossible to cover a
large variety of possible defect states. Therefore, the training
set was composed exclusively of signals representing the intact
state of the objects.

A. Dataset Preparation
We train one model for every signal path (or sensor) with

stratified 5-fold cross-validation. Reproducible training runs
were ensured by fixing the random generator seed. The fold
divisions for the training were kept the same across a signal
path (sensor) for all classifiers and feature sets. We define a
data set partition for each fold into training Dtrain and test set
Dtest , where D = Dtrain ∪Dtest and Dtrain ∩Dtest = ∅. The
train dataset test fold (Fig. 3) was combined with the dataset
portion of the “anomalous” signals, “Z01”…“Z37” for the
ALU and “Z03”…“Z07” for the CFRP datasets. This allows
us to assess the performance in terms of false positives and
false negatives for both classes.

B. Hyper-Parameters Selection
In all datasets (one for ALU and three for CFRP), and for all

classifier-feature combinations, selection of hyper-parameters
was performed by random search over a range of feasible
parameter values on a small development set.

For classifiers with few parameters (one-class SVM, iso-
lation forest and HMMs) the procedure can be expected to
find close to optimal values. For the autoencoders with many
parameters, the random search discovered values which might
not be optimal, but the performance metrics were not much
different. However, due to the relatively small dimensionality
of the primary and secondary features, as well as high sep-
arability of the classes, the optimization is quite robust and
the discovered parameters and the network architectures were
relatively simple.

C. Machine Learning Approaches
We employed classification methods which are suitable for

anomaly detection. For all of them, a single observation is
classified by the corresponding model into two classes labeled
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c0 = “0” for anomaly and c1 = “1” for normal states. The
prediction was made according to the estimated threshold or
to a given decision function of the classifier.

1) Autoencoder: Autoencoders (AEC) are deep neural net-
works whose architecture consists of two parts, an encoder
which transforms the input to a compressed representation
and the decoder which approximately reconstructs the input
data, as well as possible according the learned representation
(under-complete autoencoder) [30]. The autoencoder contains
a bottleneck hidden layer, which forces the network to learn
the salient features of the data and prevents the inputs from
simply being passed to the output. To train and evaluate the
autoencoder, we used Keras [31] with Tensorflow [32] as its
back-end. The autoencoder was trained with the objective to
reconstruct the input samples as well as possible, by minimiz-
ing the mean-squared error (MSE) as the loss function.

If an anomalous sample is tested, the trained autoencoder
will fail to reconstruct it properly, consequently producing a
higher than usual MSE. The MSE is considered to be a devi-
ation score from the “normal state” and M SE(x) ∈ [0,∞).
Pseudo-probabilities are estimated by applying a sigmoid
function of the anomaly scores:

P(c1|x) = 1

1 + e−score(x)
, x ∈ Dtest . (9)

where the anomaly score is defined:
score(x) = MSE(x). (10)

We performed a random search over the initial network
architecture—consisting of 3 hidden fully connected layers—
varying the units in the layers while always setting the number
of units in the bottleneck layer smaller than the preceding and
the following layers. The batch size, the dropout rate and the
optimization function were also investigated and optimized.
To avoid over-fitting on such a small network on the training
fold, we used early stopping with the criteria of 25 epochs
without an improvement in the MSE score on the validation
set. In this case, the validation set was randomly selected for
each epoch as 20 percent of the training set.

2) Hidden Markov Models: Hidden Markov models (HMM)
are statistical models for time-varying sequences. Apart from
other areas of applications like speech and handwriting recog-
nition, they were also successfully applied in non-destructive
testing and technical signals evaluation [22].

The HMMs were generated with the dLabPro software
[33], [34] using 3 emitting states and full covariance matri-
ces. We used negative log-likelihood transformed into a
pseudo-probability describing how well a model fits an
observation. The pseudo-probability scores were calculated
as antilogarithm of the neg-log. likelihoods NL L(x) of test
samples x :

P(c1|x) = 10
− NL L(x)

γ , x ∈ Dtest . (11)

To avoid having a case where resulting pseudo-probabilities
are near zero or near one, we use γ parameter estimated as

the mean of neg-log. values of the N samples in the test set:

γ = 1

|Dtest |
∑

y∈Dtest

NL L(y). (12)

3) One-Class SVM: Support vector machines [35], although
developed for binary classification, are also used for anomaly
detection as their natural extension for unlabeled data [36],
[37]. We used the LIBSVM library [38] and the python
scikit-learn [39] interface. Important hyper-parameters of the
classifier are the kernel type and the ν which represents the
upper bound of the fraction of training errors and the lower
bound of the fraction of support vectors. The optimal values
related to prediction accuracy were discovered with random
search optimization. We used the radial basis function (RBF)
kernel because of its good general performance in estimation
of the support of a high-dimensional distribution.

The anomaly scores are obtained by the decision function
which represents the signed distance to the separating hyper-
plane. When the score has a value greater than or equal to zero,
the input sample is considered to be normal, otherwise, it is
considered to be an anomaly. From here the pseudo-probability
scores were estimated by the signed distances and the sigmoid
function (9).

4) Isolation Forest: Isolation forest (IF) or iForest [40] is a
method that, instead of profiling the normal samples, isolates
the anomalies.

The measure of normality (decision function) is averaged
over a forest of random trees and expressed as the number
of recursive splits necessary to isolate a sample. The anomaly
score for the samples is estimated as described in [41] where
the lower values represent more abnormal points. The scores
are transformed into pseudo-probabilities using (9).

The method performs well for large datasets, high dimen-
sional features which are usually highly redundant, and for
training sets which do not contain any anomalies. As in
the case of one-class SVMs we used the python scikit-learn
implementation of iForest.

D. State Label Predictions
Different classification models have their characteristic way

of providing pseudo posterior probabilities of a sample being
“normal”, as described in Section IV-C.

For each signal path (56 for ALU and 132 for CFRP) a sep-
arate model was trained which provides a pseudo-probability
score for an input observation that originates from an intact
object state. To predict the state labels, it is necessary to com-
pare the pseudo-probability score against the model-specific
threshold.

The threshold θ was determined by the interquartile range
rule (IQR) applied to the pseudo-probability scores obtained
from observations of the intact state (i.e., the training set).
We prefer this approach because it is a non-parametric method
that does not assume the normal distribution and because it is
more robust than the Z-score method.

Thus, we set the threshold θ to:
θ = Q1 − 1.5 · I Q R, where I Q R = Q3 − Q1. (13)
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Fig. 4. Schematic view of model training and label prediction.

Fig. 5. Label prediction of an ensemble of estimators (CFRP-S600).

Q1 is the median value of the first and Q3 is the median values
of the second half of the rank-ordered pseudo-probabilities.

The predicted label ŷ for sample x is decided by the
threshold θ :

ŷ =
{

c0 iff P(c1|x) < θ and

c1 otherwise.
(14)

E. Sensor Fusion
The fusion of the sensors was performed on the decision

level (late fusion), since fusion on the signal or feature
level (early fusion) would create datasets with a huge feature
dimensionality, which for the given sample count would render
model training difficult or infeasible.

We combine the separate sensor models into an ensemble
of classifiers for label prediction (Fig. 5). The resulting fused
pseudo-probability is calculated as a weighted average of the
individual pseudo-probabilities provided by all sensor models
(soft voting). Here we assume that all the sensors are of equal
importance.

For a set of sensors S = {A1A2, A1B2, A1C1, . . .} the
fused pseudo-probability for sample x is given by:

P(c1|x) = 1

|S|
∑
s∈S

Ps(c1|x), (15)

where Ps(c1|x) denotes the pseudo-probability computed for
sensor s.

Since we have a one-class classification scenario, the fused
pseudo-probability is compared to a threshold θ f for label
prediction (14).

The threshold is calculated on fused pseudo-probabilities,
as with individual sensor models (13).

From here, we can compute other metrics (defined in
Section III) like EER, the CM, the MSE, the R2 and, SC for
damage severity assessment.

TABLE IV
BALANCED ACCURACY RATE (95% CI) (NO RECALIBRATION)

F. Recalibration
When signal samples of either naturally or artificially dam-

aged objects become available, it will be possible to recalibrate
the classifiers and maximize the detection performance.

Labeled signals of both states (intact and damaged) were
evaluated the same way as described in Section IV-D. Then
the resulting scores were used to estimate the EER with its
95% CI according to the procedure described in Section III-A.
This metric provides the optimal pseudo-probability threshold
θ f for label predictions and is an indicator for the anomaly
detection power of the trained models.

V. RESULTS AND DISCUSSION

A. Anomaly Detection Results
Table IV presents the results of damage detection in terms

of BAR with the 95% confidence intervals without recalibra-
tion for all the datasets across features and classifiers. The
labels, i.e. normal (c1) and anomalous (c0), were predicted as
described in Section IV-E.

Most of the classifier-feature combinations performed very
well. The combination with the highest expected BAR is
marked for each dataset.

McNemar’s test [42] showed that the top feature-classifier
combinations significantly outperform the others (p < 0.05),
except for the CFRP-R100 experiment where we found four
top combinations significantly outperforming all others, but
not significantly different from each other.

Fig. 6 presents the results for the equal error rate (EER)
after recalibration as described in Section IV-F. Hence, the per-
formances cannot be directly compared with those presented
in Table IV since the prediction thresholds are differently
calculated.
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Fig. 6. Equal error rates (lower) and the safety margins (upper plot) (with
recalibration).

The error rates are plotted in the lower part of the figure (the
higher the bar the lower the error rate). The upper part of the
figures presents the safety margins (CM) according to the (8).
They are calculated only when the error rate is zero and they
indicate the robustness of the classifier-feature combinations,
the higher the bar the better the result.

In the case of the aluminum plate with 250 kHz Ricker
excitation signal for the PFA features all classifiers achieved
EER of zero and more than 20% safety margin. For the SFA
features, the autoencoder approach failed to provide error-free
anomaly detection, the other achieved margins in the range
of 2−29%. For the raw signals, all of the tested methods
have an EER not less than 3% which is still a solid anomaly
detection performance (note: HMM classifiers with raw signals
are infeasible).

In the case of the CFRP plate, all of the methods trained
with PFA features of the S600 dataset achieved zero EER with
comfortable margins of more than 30%.

For the same features, only HMMs with Ricker excitation
signals R100 and R350 failed to reach the zero EER, however,
the margins for the other were much lower than those achieved
with S600.

Classifiers combined with SFA and SIG did not reach the
zero EER except the AEC-SIG with R100 (C M = 0.6%)
and with S600 the SVM-SFA (C M = 9.7%) and AEC-SIG
(C M = 4.4%).

It is notable that only the autoencoder approach was able to
reliably detect anomalies using only the raw signals without
additional feature analysis.

B. Severity Assessment Results
In regard to damage assessment, we have two different types

of introduced defects, as described in Section II-A. In the
ALU-R250 dataset the damage is a fissure of increasing length
from 1−37 centimeters. The damage severity scores could be
modeled by linear regression on the pseudo-probabilities and
the quality of the model evaluated by the mean-squared error
(MSE), coefficient of determination R2, and the silhouette
coefficient (SC).

Fig. 7 shows that the AEC-SFE classifier-feature combina-
tion yielded the best linear regression fit with low dispersion
and the lowest MSE of 0.886 (Fig. 8).

Fig. 7. Coefficient of determination and the silhouette coefficient on the
ALU dataset.

Fig. 8. Pseudo-probabilities of AEC-SFA combination (ALU-R250).

Fig. 9. Silhouette coefficients on the CFRP datasets.

For the CFRP dataset the damage was introduced by impacts
with different energies on the plate (see Section II-A.2), which
cumulative add to de damage in a non-linear fashion. Hence,
linear regression would not properly model the damage sever-
ity. In this case, it is more informative to present the silhouette
coefficient that estimates the quality of the pseudo-probability
density clusters in terms of cluster tightness and their sep-
aration. In both cases, in practical applications, only a few
samples of defect signals are necessary to reliably recalibrate
the mapping of the pseudo-probability densities and to provide
precise quantitative estimation of the damage severity scores.

Fig. 9 presents the silhouette coefficients of the anomaly
score distributions on the CFRP database. The results corre-
spond to those for EER and CM, the PFA features provided
the best damage severity scores clustering across all classifiers
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Fig. 10. Pseudo-probabilities of AEC-PFA combination (CFRP-S600).

and excitation signals (Fig. 10). It has to be emphasized that
autoencoder models provided much better clustering scores
than the other for the SFA and SIG features and all types of
excitation signals.

VI. CONCLUSION

This study builds upon previous work and presents an
extended robust methodology for anomaly detection and
assessment. We presented a novel approach for anomalous
dataset preparation and damage severity assessment utilizing
exclusively information of an intact object state.

The experiment results show that we were able to train not
only accurate classifiers but we also achieved a considerable
safety margin. We employed various machine learning algo-
rithms for anomaly detection with different feature analyses on
ultrasonic sensor measurements. We recorded the responses of
various excitation signals in a sensor network on two structures
of different materials commonly used in various industries,
such as aerospace and automotive.

Finally, we demonstrated that reliable anomaly detection
is practically feasible, even if only data of the intact object
state are available. When recalibration data becomes available
either during operation or by expert knowledge, then accurate
quantitative analysis of damage severity is possible as well.
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