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Flexible Robust Adaptive Beamforming Method
With Null Widening

Ziwei Liu , Shanshan Zhao , Chen Zhang, and Gengxin Zhang

Abstract—The nonstationarity of interferences and array
errors may bring fatal degradation to the interference can-
cellation performance of an adaptive beamformer. Covariance
matrix tapering (CMT) can produce wide troughs in receiving
pattern and becomes a promising solution. However, not
only the full adaption methods but also the robust sidelobe
canceller widen all nulls symmetrically to the original direc-
tions of arrival (DOAs) with the same width. In fact, in most
cases, the adaptive pattern does not need symmetrical and
equivalent-width nulls since it is of little possibility that dif-
ferent interference poses the same nonstationarity. To cover
the worst nonstationarity, traditional CMT methods need to
produce a widest null and will suffer a waste of degrees of
freedom (DOFs). In this paper, a flexible method for null widening is proposed which can produce wide null with different
desired width and asymmetry. The asymmetry is developed from the spatial asymmetrical interference cluster, and
the unequal null width is produced by disturbing different interference space with different tapering matrix. Computer
simulation result corroborate the feasibility and merits of the proposed method.

Index Terms— Subspace extraction, null widening, covariance matrix taper (CMT), adaptive beamforming.

I. INTRODUCTION

ADAPTIVE beamforming, or named smart antenna tech-
niques, has been widely used in contemporary radar

and communication systems [1]–[3]. It can achieve spatial
accumulation and filtering simultaneously to gain signals from
the interested direction and attenuate undesired signals.

Basic steps of an adaptive beamforming algorithm consist
of training weights and applying beamformer. Most algo-
rithms hold under a potential assumption that the training
samples, usually named snapshots, contain the same signals’
and interferences’ characteristics with that in the applied
data. However, in real system, interferences may present
nonstationary spatial structures which makes a characteristic
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mismatching between snapshots and the applied data. Tak-
ing radar as a typical example, the nonstationarity may be
caused by time-varying propagation path, such as the dynamic
reflection path from the ionosphere for the skywave over-
the-horizon radar [4], [5], or the relative motion between the
receiving antenna and interference resources, e.g. mechanical
rotation of the receiving array [6]. The mismatching makes
beamforming algorithms be invalid since interferences in the
applied data may not fall into the sharp null trained by
snapshots.

Limited by the system computational burden, it is preferred
to widen the sharp null in the receiving pattern instead of
updating adaptive weights frequently. A method called binary-
point constraint based null widening method was proposed
in [7]. But it can just afford relative narrow null width since
it indeed puts two fictitious interferences around the receiv-
ing interference. Semidefinite optimization was also used for
null widening [8]. It optimizes the power response around
desired directions in the adaptive pattern to generate a flat
null. However, it needs heavy computation costs and cannot
control the phase response. A new method based on spatial
spectrum reconstruction was proposed [9]. This null widening
method indeed reconstructs the whole receiving covariance
matrix. However, the complicated direction of arrival (DOA)
estimation and reconstruction processing limits its application
in real systems.

Except for the above-mentioned methods, covariance matrix
taper (CMT) methods draw large amounts of attentions and
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are famous for its robustness and convenience. In 1995,
this methodology was first proposed by Mailloux [10] and
Zatman [11], individually. Guerci unified these two methods
and named it as the famous CMT method in [12]. Following
the CMT structure, researchers proposed much further works.
The method proposed in [13] used a normal distribution to
describe the random disturbing variable. Liang et. al. applied
the CMT method to the near-field beamforming problem
and obtain a robust adaptive beamformer [14]. Instead of
linear or plain array, a CMT method for circular array was
proposed in [15].

Regular CMT-class methods do provide excellent perfor-
mance. But it must pay the price of costing more Degrees
of freedom (DOFs), which is the essential “resources” for
adaptive beamforming methods [16], [17]. Researchers have
proven that the DOF cost is proportional to the null width
and aperture of the array [18]. Based on this fact, some
work was published on the sidelobe canceller [19], [20] and
partial adaptive beamformer [21]–[23] to reduce the necessary
computational burden by applying CMT methods under an
low-complexity beamformer. However, for a fixed null width
and array aperture, it is of little possibility to reduce the
necessary DOF. The most effective way to save the DOF
is to design the most suitable wide null flexibly for each
interference source. In fact, the flexibility of CMT methods
has been ignored for a long time. The flexibility consists of
two part of contents: null width and location. Existing CMT
methods widen all nulls to wider nulls with the same width
(measured in cosine) and symmetric to the original nulls. This
operation may not waste DOFs only under the assumption that
all interference sources contain the same symmetric nonsta-
tionarity. In real scenarios, it is hard to meet such an ideal and
strict condition. To cover the arbitrary nonstationarity, all nulls
must be widened with the largest width, resulting in a waste
of DOFs. Recently, a CMT-based method was proposed to
produce asymmetrical nulls [6]. However, only discrete-form
solution was derived. A continuous form will consolidate its
application.

In this paper, a flexible CMT based method is proposed.
The main merit is that both the width and the null location
can be controlled for each interference source. The proposed
method comes from the Mailloux’s methodology. Fictitious
interference sources are introduced into snapshots. Different
from regular CMT methods, the fictitious sources are placed
individually and asymmetrically around each source as desired
to derive the most suitable null. The individually widening
operation is achieved by disturbing the principle component
of each interference source, while asymmetrically widening
operation depends on the asymmetrical fictitious interfer-
ence clusters. The whole procedure is concluded and the
closed-form formulations of the proposed method are derived.
Simulation results show the effectiveness of the proposed
method.

The rest of paper is organised as follows. The signal model
and regular CMT method is given in Section II. The proposed
method is described in Section III, including derivations
and the procedure. Some simulation results are shown in
Section IV and the conclusion is drawn in Section V.

Fig. 1. Diagram of ULA.

II. SIGNAL MODEL AND REGULAR CMT
Without loss of generality, the whole receiving array consist-

ing of a uniform linear array (ULA) with L linear equispaced
omnidirectional sensors is shown in Fig.1. All sensors are
assumed to be placed on axis y. The impacting cone angle
is written as θ .

In our work, only narrow band signals are considered.
Suppose the mainlobe of the array is steering to the desired
direction θ0 and Q narrow band interferences impacting the
array from directions θq, q = 1, 2, · · · , Q, respectively. In a
certain moment, the sampled receiving data X(k) can be
modeled as

X(k) = AS(k) + N(k) (1)

where X(k) = [x1(k), x2(k), · · · , xL(k)]T is the receiving
data. Matrix A = [

a(θ0), a(θ1), a(θ2), · · · , a(θQ)
]

is the
manifold matrix with the steering vectors in it. Steering vector
a(θ) is

a(θ) =
[
1, e j2πd cos θ/λ, · · · , e j2π(L−1)d cos θ/λ

]T
(2)

where λ is the operation wavelength. d is the sensor dis-
tance and usually set as λ/2 in theoretical analyses. S(k) =[
s0(k), s1(k), · · · , sQ(k)

]T are the complex envelopes of
impacting signals, including potential targets and interferences.
It can be assumed that each complex envelope is uncorre-
lated with each other. N(k) is the noise vector. In most
cases, the noise is uncorrelated with any incoming signals,
and follows the independent and identical distribution (I.I.D.)
condition between different sensors. [·]T means the transpose
operation.

For a regular full-array adaptive beamformer, a minimal
variance distortionless response (MVDR) beamformer is usu-
ally adopted where the weights come from

W = μR−1a(θ0) (3)

scalar μ is the normalized factor. μ = 1
aH (θ0)R−1a(θ0

). [·]H

is the conjugate transpose operator. It makes the beamformer
provide unity gain at the desired direction. Then beamforming
is achieved by

y(k) = W H X(k) (4)

In the real system, the covariance matrix R is always
estimated by snapshots with

R̂ = 1

K

K∑
k=1

X s(k)X H
s (k) (5)
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Here X s(k) is the chosen K snapshots following the sam-
ple matrix inversion (SMI) criterion [24]. The famous CMT
method disturbs the estimated covariance matrix to produce
wide troughs

R̂T = R̂ � T (6)

Here the operator � stands for Hadamard production. The
tapering matrix T comes from the famous Mailloux’s or
Zatman’s methods. Using Mailloux’s as an example, a cluster
of fictitious interferences are assumed around the narrowband
interference. Then the tapered covariance matrix becomes

[
R̃

]
m,n

=
Q∑

q=1

(I−1)/2∑
p=−(I−1)/2

σ 2
q e j2πd(in−im )(uq+p�u)

/
λ+σ 2

N δ(m, n)

=
Q∑

q=1

σ 2
q e j2πd(in−im )uq

/
λ

·
(I−1)/2∑

p=−(I−1)/2

e j2πd(in−im )p�u/λ + σ 2
N δ(m, n)

= sinc
[
(in −im)dW

/
λ
]·

Q∑
q=1

σ 2
q ej2πd(in−im )uq

/
λ

+σ 2
N δ(m, n)

= [R]m,n · sinc
[
(in −im)dW

/
λ
]

(7)

where [·]m,n means the matrix item in the m-th row and n-th
column. σ 2

q is the signal power of the q-th interference. σ 2
N is

the noise power and δ(m, n) is the 2-D Kronecker function.
W is the null width measured in cosine.

Rewriting the sinc function as a matrix, the taper matrix T
has the following form

[T]m,n = sin(m − n)�

(m − n)�
(8)

Here [T ]m,n is the m-th row and n-th column element in
matrix T . � is the widening parameter defined in [18]. The
taper matrix T describes the correlationship between different
sensors from spatial-domain sense [10] or wideband signal
sense [11]. Replace R̂ in equation (3) with R̂T and an
receiving pattern with wide nulls can be obtained.

III. FLEXIBLE BEAMFORMING METHOD

From the analyses of regular CMT methods, it can be
find that all interferences are disturbed identically since the
covariance matrix usually contains all interferences. Conse-
quently, the receiving pattern produces all nulls with the same
width. Besides, to introduce the wide null into the covari-
ance matrix, Mallioux uses the symmetrical spatial distributed
interference cluster [10], while Zatman uses a rectangular
spectrum symmetrical to the carrier frequency [11]. Both of
these two methods produces symmetrical nulls, so as the
following developed methods.

However, in the real system, it is actually not a good idea to
produce symmetrical and equal-width mulls. No matter what
causes the nonstationarity, the DOA of the source usually

varies monotonically and different from each other during
the adaption interval. Regular CMT methods must produce
wide enough nulls to cover the largest DOA mismatch degree
among all nonstationary source and pay two times of DOFs
since all wide nulls are symmetrical. It is obviously a great
waste of DOFs. Literature [6] proposed a biased CMT-based
widening method to overcome the symmetrical null problem.
However, its discrete-form solution indeed is not an applicable
form.

In this section, we want to handle the two above-mentioned
problems under CMT structure. First of all, a continuous form
asymmetrical taper matrix will be derived from the Mailloux’s
methodology which can produce asymmetrical wide nulls.
Secondly, based on the prolate spheroidal wave function,
an interference matching and eigen-based widening method
will be described to widen each null separately. Combining
these two steps, the receiving pattern can produce arbitrary
width and asymmetrical null for each interference source
individually, which achieves totally flexible null widening and
saves as many DOFs as possible.

A. Asymmetrically Widening
With Mailloux’s methodology, a cluster of fictitious inter-

ference sources are put around the original source. However,
to produce asymmetrical nulls, at the beginning of the deriva-
tion, the fictitious sources are divided into to parts. Under
the one-dimentional array model, the two parts of sources
are written from −I1 to I2 instead of regular −I to I where
I1 �= I2. Then the tapered covariance matrix becomes

[RT ]m,n =
Q∑

q=1

I2∑
p=−I1

σ 2
q e j2πd(m−n)(uq+p�u)/λ + σ 2

n δ(m, n)

=
Q∑

q=1

e j2πd(m−n)uq/λ
I2∑

p=−I1

σ 2
q e j2πd(m−n)p�u/λ

+σ 2
n δ(m, n) (9)

where σ 2
q is the power of q-th interference. uq = cos θ . �u

is the angular spacing between different fictitious interference
sources measured in cosine. σn is the noise power and δ(m, n)
is the 2-D Kronecker delta function. It can be seen that the
first summation presents the regular covariance and the sec-
ond summation comes from the tapering operation. Now the
special tapering matrix T will be derived.

Let the tapering matrix still be T , we can obtain

[T ]m,n =
I2∑

p=−I1

e j2πd(m−n)p�u/λ

= e− j2πd I1(m−n)�u/λ(1 − e j2πd(I1+I2+1)(m−n)�u/2λ)

1 − e j2πd(m−n)�u/λ

= e j2πd(m−n)(I2+1)�u/λ − e− j2πd(m−n)I1�u/λ

e j2πd(m−n)�u/λ − 1
(10)

With the sum formula of geometric series, we get equation
(10). It is a familiar form but different from the regular CMT.
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It can also be simplified by Euler’s formula

[T]m,n

= e j2πd(m−n)(I2+I1+1)�u/2λ − e− j2πd(m−n)(I2+I1+1)�u/2λ

e j2πd(m−n)�u/2λ − e− j2πd(m−n)�u/2λ

·e j2π(m−n)(I2−I1+1)�u/2λ

e j2πd(m−n)�u/2λ
(11)

The first part in equation (11) will become a sinc(·) func-
tion [12]. The second part is a phase comes from the asymmet-
rical widening operation. Following the typical derivations in
CMT, I1�u = W1 and (I2+1)�u = W2. Then the continuous-
form tapering matrix is derived

[T]m,n = sinc((m − n)(W2 + W1)d/λ)

·e j2πd(m−n)(W2−W1)/2λ (12)

From equation (12), it is obviously that the phase
e j2πd(m−n)(W2−W1)/2λ achieves asymmetrical nulls. It means
that the asymmetrical tapering matrix contains not only the
spatial spreading modulation but also the offset phase. This
solution can also be understood from Zatman’s view. For
a biased frequency spectrum with frequency offset � f and
bandwidth bω, it is easy to find that (W2 − W1)/2 indeed
refers to the frequency offset since the null width W is just a
normalized frequency [18].

B. Interference Matching and Selective Widening
With the above-mentioned tapering matrix, asymmetrical

nulls can be derived. This achieves a part of our goals. In this
subsection, the method to widen different null with different
width and offset will be discussed. This will achieve our goal
of flexibility completely.

CMT-based methods indeed introduce spatial or time-
frequency correlationship between different sensors. From
equation (9), it points out that the tapering operation is applied
to every individual sources

RT =
Q∑

q=1

σ 2
q a(θq)aH (θq) � T + σ 2

n I (13)

However, it is difficult to obtain the accurate steering vectors
in the real system for the imperfect array manifold. To widen
different nulls individually, it is key to find the way to recog-
nize different interference sources in snapshots and separate
them. In fact, the eigenvectors, or principle components, are
good candidates. With existing theories, for a space-time
stationary stochastic process, all its first-order and second-
order characteristics are contained in the covariance and,
at the same time, the eigen-decomposition (discrete Karhunen-
Loeve expansion) is the optimal second-order decomposition
to transform the stochastic process to a linear combination
of a series of normalized and orthogonal bases. Here the
constraint of stationarity does not contradict our work since
the interference sources in snapshots usually vary little and can
be viewed as stationary. This is also the potential assumption
of CMT-based methods. The eigen-decomposition operation is

R =
L∑

l=1

λl ul uH
l (14)

where λl and ul are the l-th eigenvalue and eigenvector,
respectively. Based on the prolate spherical wave function,
these eigenvalues and eigenvectors have deterministic linear
relationship [17].

ul = c1l a(θ1) + c2l a(θ2) + · · · + cQl a(θQ) (15)

Here l = 1, 2, · · · , Q and the parameter cql is the coefficient
depends on the time-domain and spatial mutual correlationship
between different sources. These eigenvectors consist of the
so-called “signal subspace”. Other L − Q eigenvectors span
the noise subspace. These two subspaces can be recognized
by the varying trend of corresponding eigenvalues [25]. More
importantly, for separated uncorrelated sources, each eigenvec-
tor in the signal subspace mainly stands for a certain steering
vector. Taking the case with two equal-power and uncorrelated
sources as an specific example, the two eigenvectors in the
subspace are

u1(2) = a(θ1) ± e− jφ(ρ12
c )a(θ2)√

2L(1 ± ∣∣ρ12
c

∣∣)
(16)

In equation (16), ρ12
c represents the spatial correlationship

between these two sources. For an uniform linear array, the ρ12
c

comes from the sinc function

ρ12
c = aH (θ1)a(θ2)

L
≈ sin(L(θ1 − θ2)π/2)

L(θ1 − θ2)π/2
(17)

Operation φ(·) calculate the phase of the object. From equation
(16), it is obviously that the eigenvector in the signal subspace
consists of two steering vectors. The farther apart two sources
are, the more similar each eigenvector is to the corresponding
steering vector since ρ12

c becomes smaller. For a general case
that more than two interference sources impacting on the
array, this correspondence still exists. It still can find a certain
eigenvector for a corresponding sources but is hard to be
expressed as such a simple form as equation (16).

With this important solution, a flexible way that can widen
each null individually is derived. For a eigen-decomposed
covariance, the widening is applied to each eigenvector.

RT =
Q∑

l=1

λl ul uH
l � T l +

L∑
l=Q+1

λl ul uH
l + γ IL (18)

where T l is the corresponding tapering matrix. γ IL is a
diagonal loading item to make the sidelobe stable. In most
cases, this diagonal loading operation is necessary to insure
nonsingularity since the selective widening will disturb the
noise-subspace slightly [26]. Here we try to give some analy-
ses from our point of view. From equation (6) and (13),
it can be seen that regular tapering matrix is applied to the
whole covariance matrix. Since the main diagonal elements of
the tapering matrix T equals to 1, equation (6) is equivalent
to equation (13). However, the selective widening operation
will change the distribution of the signal and noise subspace,
resulting in singularity. The influence that the proposed method
takes on the noise subspace can be illustrated with a widening
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procedure with identical tapering matrix.

RT =
Q∑

l=1

λl ul uH
l � T +

L∑
l=Q+1

λl ul uH
l

=
⎛
⎝

Q∑
l=1

λl ul uH
l +

L∑
l=Q+1

λl ul uH
l � T̃

⎞
⎠ � T (19)

The first part comes from interferences and noise. The second
part comes from the noise. T̃ � T = 1. 1 is a matrix
with all ones in it. Compared with the regular CMT that
tapering all the covariance matrix, the proposed method only
tapers the selective principle components. The second row
of equation (19) shows that the proposed method can be
viewed as a regular tapering applied to a modified covari-
ance with disturbed noise subspace. The disturbed noise
subspace will indeed lead to fluctuating sidelobes. When
tapered with different matrix, this explanation also holds.
This is the reason why we must use diagonal loading to
get a stable array pattern. With loading, the disturbed noise
subspace returns to stable and tapering information is still
perserved.

However, too much loading will make the null depth dis-
torted. Fortunately, only a small loading factor γ is enough.
This makes the proposed method still suitable for application
since diagonal loading is a regular operation in the real system.
A corresponding experiment is given in the next section to
show this performance.

C. Complete Procedure and Some Discussions
Based on the above-mentioned two flexible widening steps,

the main body of our work has been established. However,
some necessary steps cannot be ignored, including nonsta-
tionarity estimating and eigenvector matching. In this sub-
section, we will complete the whole scheme and make some
discussions.

The nonstationarity is one of the most important parameters
in null widening methods. In real systems, DOA estima-
tion methods are a straightforward way. Systems can adopt
APES or MUSIC methods periodly to track the nonstationary
variation of the interference DOA. Taking radar as an example,
system can estimate the DOA at the end of each pulse
repetition interval (PRI) in the sector that existing interfer-
ences. Estimating results can show the nonstationarity within
each adaption interval. Besides, some specific method for
nonstationary DOA estimation was proposed [27] which can
obtain the time-varying DOA directly. It must be pointed out
that the movement of the platform can be predicted. If systems
cannot achieve DOA estimation, this information will become
a good indication for nonstationarity. The mechanical rotation
of the radar receiving array is a typical example.

The eigenvector matching is another important step in
the whole scheme. As the above-mentioned analyses, each
eigenvector indeed comes from a certain steering vector in the
separated source scene. Based on the orthogonality between
different steering vector, a matching procedure is adopted.
With DOA estimation results, the relatively precious steering
vector can be reconstructed a(θ̂1), a(θ̂2), · · · , a(θ̂Q). After

eigen-decomposition, each eigenvector in the “signal” sub-
space will be projected to the reconstructed steering vectors.

argmax
θ̂q

|aH (θ̂q)ul | (20)

With the searching procedure, each interference can find
its corresponding eigenvector. This matching result can be
substituted into equation (13). Then the widening operation
can be achieved on eigenvectors instead of ideal steering vector
that cannot derived in real systems.

Until now, all necessary steps have been established. The
complete flexible null widening method is concluded as
follows.

Algorithm 1 Algorithm Procedure of the Proposed Null
Widening Method.
Require: The snapshots of received data, x(k); The widening

random variable, W opt ;
Ensure: Adaptive weights, Wopt ;
1: Estimate the DOA of interference sources in snapshots and

their nonstationarities, respectively.
2: Set necessary null width for each interferences, recording

as [−Wq,1, Wq,2].
3: Construct tapering matrix with each null width using

equation (12).
4: Decompose the covariance matrix to obtain principle com-

ponents of all eigenvalues.
5: Match each eigenvalue of principle components with recon-

structed steering vector with equation (20).
6: Widen each matched eigenvalue with corresponding taper

matrix to obtain tapered covariance matrix in equation (18).
7: Produce beamformer ω using MVDR algorithm where

covariance matrix is replaced by RT .
8: return Wopt ;

With these steps, a flexible widening beamformer is
achieved. Here some discussions will be given.

Firstly, in the above-mentioned contents, it is assumed
that all the interference sources are spatially separated. This
assumption will lead to a good performance of the proposed
method. However, if several uncorrelated sources are crowded
and impact on the array with similar DOA occasionally,
the proposed method also holds. In this case, corresponding
subspaces will spread. The matching relationship will suffer
a little loss. To cover this situation, the matching step can be
modified as

argmax
θ̂q

|aH (θ̂q)ul | (21)

s.t .|aH (θ̂q)ul | > η (22)

Here η is the normalized relationship threshold. It can be set
as 0.5. With this modification, this step can find out separated
sources. For the left eigenvectors, they can be viewed as
crowded sources and be widened together to procedure a wider
null covering all the crowded sources.

Secondly, it should be pointed out that why the eigen-
vectors are used to achieve separated widening operation
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Fig. 2. Pattern comparison for single null widening.

instead of reconstructed steering vectors. In the real sys-
tem, the array always contains unavoidable errors. However,
the reconstructed steering vectors use the idea array manifold.
But the eigenvectors come from snapshots, which contain
information of the real array. As a result, eigenvectors are
chosen to achieve the key step and reconstructed steering
vectors are just used to estimate the correlation, which is not
sensitive to the manifold errors.

IV. SIMULATION RESULTS

In this section, some simulation results are provided to show
the effectiveness of the proposed method. The adaptive array
is set as follows. A linear array with 20 omni-directional
sensors are considered. The target of interests comes from
0◦. Two interferences come from −26◦ and 44◦, respectively.
The interference-to-noise ratios (INR) are 30d B and 20d B ,
respectively. For comparison, the regular MVDR and CMT
are also simulated. For regular CMT, the widening factor �
is set as 0.2. For the proposed method, the width is divided
into 0.05 and 0.15.

A. Single Null Widening
In this section, the ability of single null widening is evalu-

ated, compared with MVDR and regular CMT, i.e. Mailloux’s
method. Here the left width is chosen as 0.05 and right width
is chosen as 0.15. Adaptive pattern is shown in fig. 2.

From this figure, the classical MVDR method produces two
sharp nulls in the corresponding direction. It is clear that sharp
nulls cannot afford nonstationary interference cancellation.
For the regular CMT method, two wide nulls are produced
with symmetric width around the central direction. However,
this widening operation wastes some DOFs in real systems
since most of nonstationary interferences have specific motion
direction and do not need symmetric widened nulls, even just
needing sharp nulls. To show the effectiveness of the selective
widening of the proposed method, the interference impacting
from −26◦ is chosen to widen an asymmetric null. From the
pattern, it can be seen that the null at the chosen direction
becomes a widen null and is skewed to the right side, resulting
from the asymmetric widening parameters. On the other side,

Fig. 3. Adaptive pattern for flexible null widening.

Fig. 4. Adaptive pattern for flexible null widening with different width.

the interference at 44◦ maintains a sharp null. This adaptive
pattern verifies that the proposed method can achieve single
null asymmetric widening.

B. Flexible Null Widening
In this experiment, the flexibility of the proposed method

will be further verified. Two interference sources are set as
different asymmetric nulls. The interference impacting from
−26◦ is set as 0.05 at left and 0.15 at right, and the other
interference is just the reverse. The adaptive pattern is shown
in Fig. 3.

It is obviously that the proposed method successfully
achieves different deviation for different null. The interference
at −26◦ produces an asymmetric null that is skewed to the
positive axis, just as in Fig. 2. On the contrary, the null at
44◦ becomes a wide null which is skewed to the negative
axis. This result corroborates the flexibility of the proposed
method, which is the deep motivation of our work.

For more complicated case, the pattern can also achieve
pattern with different widths and different deviations. In Fig. 4,
we set the null at 44◦ as a symmetric wide null with width 0.1.
The proposed method also achieves the goal. An asymmetric
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Fig. 5. Diagonal loading test with different factor values.

Fig. 6. Close-up widen null of different loading factor values.

null at −26◦ and symmetric null at 44◦ with different width
are produced.

C. Diagonal Loading Test
In this experiment, the stability of the sidelobe and diagonal

loading are tested. The diagonal loading factor is measured
as the simulated noise power σ 2

n . To analyze the effects of
the loading quantity, loading factor of 0, 0.01σ 2

n , 0.1σ 2
n , σ 2

n are
simulated. Results are shown in Fig. 5. To make the results
more clearer, a close-up shot is also given in Fig. 6.

From the result, it is obvious that the proposed method
will fluctuate the sidelobe and make the pattern unavailable.
With diagonal loading increasing, the pattern returns to normal
rapidly. At the same time, the larger the loading factor uses,
the more stable the sidelobe is. On the other side, the null
depth become shallower with loading factor increasing, even
the factor is as small as 0.01σ 2

n . Therefore, the conclusion can
be drawn that the diagonal loading is necessary, but a small
loading factor is enough for the procedure since the widening
effect has become effective from the very beginning.

D. DOF Costs Test
A simulation of DOF comparison is shown in Fig.7. In this

simulation, the necessary null width is biased which needs left

Fig. 7. DOF comparison between proposed method and regular CMT.

Fig. 8. Output SINR comparison between MVDR, proposed method and
regular CMT.

width factor 0.10 and right width factor 0.05. The proposed
method is widened as necessary. However, to cover the varying
DOA, regular CMT method needs to widen a null with width
factor 0.2.

It can be seen that the proposed method saves about 6 DOFs
compared with regular CMT method, i.e. each wide null
3 DOFs. This result corroborates that our work indeed achieves
the major goal successfully. The reason is that the proposed
method can adjust each wide null with desired nonstationarity,
while the regular CMT method must widen each null with
equal and maximum null width.

E. Output SINR
In this experiment, the beamforming output signal-to-noise

ratio (SINR) is evaluated to show the effectiveness of the
proposed method using Monte Carlo method. The Monte
Carlo number is set as 1000. To make the results clearer,
only one interference with 40 d B interference-to-noise ratio
is simulated. During the processing interval, the DOA of the
interference varies from −29◦ to −25◦. Ideal signal-to-noise
ratio is assumed as 15 d B . The MVDR, regular CMT and
the proposed method are all evaluated. It is suppose that
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the MVDR method chooses a small group of snapshots to
training beamformer where the DOA of the interference within
snapshots is close to −26◦. It can be inferred that the MVDR
will suffer performance loss since it cannot generate a wide
null.

As Fig. 8 shown, the regular CMT and the proposed
method achieve interference cancellation successfully, while
the MVDR fails. Since the nonstationarity is not asymmetric,
the output SINR in angle −29◦ is much lower than that in
angle −25◦. The reason is obvious that the regular CMT and
proposed method widen the null. However, the regular CMT
must widen the null to the maximum width, which will waste
DOFs. Considering the last experiment, the performance and
advantages of the proposed method are self-evident.

V. CONCLUSION
Covariance matrix tapering is an effective way to cancel

nonstationary interference at beamforming stage. However,
the nonstationarity of different interferences can hardly be
identical to each other. This will result in a wasting of DOFs
since existing CMT methods produce the same null width
to all nulls. In this paper, based on the match relationship
between principle components and steering vectors, a flexible
CMT-based null widening method is proposed. It can achieve
asymmetrical wide null with different width for different
null by tapering different principle component with different
asymmetrical taper matrix. Simulation results show that the
proposed method can achieve the flexible widening goal.
Compared with regular methods, it provides a flexible option
for the real system.
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