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Abstract—The increasing bandwidth requirement of new
wireless applications has lead to standardization of the mil-
limeter wave spectrum for high-speed wireless communica-
tion. The millimeter wave spectrum is part of 5G and covers
frequencies between 30 and 300 GHz that correspond to
wavelengths ranging from 10 to 1 mm. Although millimeter
wave is often considered as a communication medium, it has
also proved to be an excellent ‘sensor’, thanks to its narrow
beams, operation across a wide bandwidth, and interaction
with atmospheric constituents. In this paper, which is to the
best of our knowledge the first review that completely covers
millimeter wave sensing application pipelines, we provide
a comprehensive overview and analysis of different basic
application pipeline building blocks, including hardware, algorithms, analytical models, and model evaluation techniques.
The review also provides a taxonomy that highlights different millimeter wave sensing applicationdomains. By performing
a thorough analysis, complying with the systematic literature review methodology and reviewing 165 papers, we not only
extend previous investigations focused only on communication aspects of the millimeter wave technology and using
millimeter wave technology for active imaging, but also highlight scientific and technological challenges and trends, and
provide a future perspective for applications of millimeter wave as a sensing technology.

Index Terms— 5G, analytical modeling, millimeter wave, millimeter wave sensing application pipeline, radar, systematic
literature review.

I. INTRODUCTION

INTRODUCTION of new wireless applications, their higher
service quality requirements, and a significant increase

of application users have put continuous demand on digital
wireless communication bandwidth. To address this, Netflix
and YouTube, for instance, have reduced video streaming
quality in Europe to mitigate data traffic peaks in the 2.4 and
5 GHz WiFi bands. These peaks are caused by an increased
amount of video and movie streams due to home confinement
measures taken during the COVID-19 pandemic [1]. In the
future, 8K video streaming will require a minimum data rate
of 50 Mbps per TV. In case multiple simultaneous streams
are launched on the same network, gigabit connections will
approach their limit [2]. Maintaining the required network
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bandwidth and processing speed remains challenging for cloud
gaming as a service [3].

The increasing bandwidth requirement has lead to stan-
dardization of the millimeter wave spectrum for high-speed
wireless communication in the IEEE 802.11ad, 802.11aj, and
802.11ay amendments [4]–[6]. The millimeter wave spectrum
is also part of the fifth-generation mobile communication
technology standard (5G) [7], [8]. Although use of the mil-
limeter wave spectrum for communication is often directly
associated with 5G, there are key differences. The millimeter
wave spectrum is just one part of what 5G networks use to
provide higher data rates. It covers frequencies between 30 and
300 GHz that correspond to wavelengths ranging from 10 to
1 mm [9], [10] and is located between the centimeter wave
and terahertz wave spectra.

Thanks to covering a wide bandwidth and utilizing a
short wavelength, the millimeter wave spectrum is able
to provide higher data rates compared to other widely
used wireless technologies such as WiFi. Compared to the
spectrum in which 5 GHz WiFi operates, the bandwidth of
the millimeter wave spectrum is 10x higher, i.e., 270 GHz
versus 27 GHz. Under the assumption that environmental
and legislative limitations do not exist, this means that the
number of channels that can be created in the millimeter
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wave spectrum is also 10x greater. Because millimeter waves
operate at much higher frequencies compared to the WiFi
bands, the wavelengths are much shorter. Consequently,
the size of electronic components can be reduced. This,
in turn, causes the beam emitted by electronic components to
be much narrower. The narrow beams, in combination with
greater signal attenuation compared to the WiFi bands, allow
increased communication density [10], i.e., allow an increased
number of messages communicated in parallel over separate
links with the same carrier frequency in a limited area.

Although millimeter wave is often considered as a commu-
nication medium, it has also proved to be an excellent ‘sensor’
for humans, objects, and environmental sensing [9], [10]
thanks to its narrow beams, operation across a wide bandwidth,
and interaction with atmospheric constituents. Narrow beams
result in greater sensing resolution and directivity. A wide
bandwidth and specific penetration, reflection, and attenuation
reactions to different materials allow distinguishing different
objects and humans [11], [12].

However, using millimeter waves in sensing applications
also has disadvantages. Signals at extremely high frequen-
cies suffer from significant attenuation. Millimeter waves can
therefore hardly be used for long-distance applications [13].
The financial cost of deploying a millimeter wave sensing
system, e.g., on a vehicle, is still high even though this
cost is projected to decrease in the future [14]. Millimeter
waves also suffer significant penetration loss through solid
materials like concrete. As rain-drops are comparable in size
to the wavelength of millimeter waves, heavy rain can cause
considerable attenuation due to scattering [9], [10].

The applications that use millimeter waves utilize a wide
variety of hardware and algorithms for data collection, data
pre-processing, feature extraction, feature analysis, analytical
modeling, and modeling evaluation. This paper provides a
comprehensive overview and analysis of millimeter wave sens-
ing application pipelines and basic building blocks, including
hardware, algorithms, analytical models, and model evalua-
tion techniques. It also offers an insight into challenges and
trends, and provides a future perspective for applications of
millimeter wave as a sensing technology. Therefore, the review
has struck a balance between the amount of details that
are provided for each millimeter wave sensing application
pipeline building block and does not elaborate on details of
each application domain and algorithm independently. Due
to the multidisciplinary nature of millimeter wave sensing
application pipelines, the review offers technical details for
each reader depending on familiarity with a certain field. For
example, data collection and a part of data pre-processing
are topics of electrical engineering, while analytical mod-
eling and modeling evaluation are topics of data science
and artificial intelligence. The main contributions of this
paper are:

• Extending previous investigations focused only on com-
munication aspects of the millimeter wave technology
and using millimeter wave technology for active imaging.
To the best of our knowledge, this is the first review that
completely covers millimeter wave sensing application
pipelines and pipeline building blocks.

Fig. 1. Review process block diagram.

• Providing a taxonomy that highlights different millimeter
wave sensing application domains.

• Making a comprehensive review and analysis of hard-
ware, algorithms, analytical models, and model evaluation
techniques for each of the identified millimeter wave
sensing application pipeline building blocks.

• Identifying commonalities, gaps, and shortcomings of
current studies and solutions focusing on the use of
millimeter wave as a sensing technology.

• Highlighting scientific and technological challenges and
trends, and providing a future perspective for applications
of millimeter wave as a sensing technology.

The review is organized as follows: Section II explains
the review methodology. Section III establishes an application
taxonomy based on the research papers that report on millime-
ter wave sensing. Section IV identifies the common building
blocks that make up the application pipelines presented in the
millimeter wave sensing papers. It also presents a thorough
analysis of the wide variety of hardware, algorithms, analytical
models, and model evaluation techniques across these papers
in the respective building blocks. Section V identifies and
explains the challenges and trends, and provides a future
perspective for applications of millimeter wave as a sensing
technology. Finally, Section VI concludes the paper.

II. REVIEW METHODOLOGY

We have conducted this review with a specific process
involving four sequential phases. These phases are depicted in
Figure 1. The process is based on the iterative Bioinformatic
and Systematic Literature Review (BiSLR) spiral model devel-
oped by Mariano et al. [15]. The differences compared to the
iterative BiSLR spiral model are explained below. Afterwards,
the four sequential process phases are explained.

The iterative BiSLR spiral model starts with a protocol
definition phase. In this phase, main and specific research
questions, research objectives, and inclusion and exclusion
criteria are defined [15]. We omit the definition of main and
specific research questions. The defined research objectives
can be found in Section I. Inclusion and exclusion criteria
are defined in a later paper filter phase. During the reference
collection phase, the iterative BiSLR spiral model suggests to
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Fig. 2. Taxonomy of millimeter wave sensing applications.

select scientific databases, develop and evaluate search key-
words, and iteratively repeat the phase with different scientific
databases and search keywords in case the research objectives
cannot be reached [15]. We initially performed rigorous refer-
ence collection during a search phase. Later during the pipeline
building block definition phase, several small search phases
were performed iteratively as well. In the data evaluation
phase, the iterative BiSLR spiral model performs title, abstract,
diagonal, and full-text reading to determine if papers should
be included in the list of papers used for data collection.
The iterative BiSLR spiral model finishes with data collection
and narrative synthesis [15]. We used title, abstract, and
diagonal reading for, and collected data during, the explorative
paper classification phase and used full-text reading, collected
data, and performed narrative synthesis during the application
pipeline building block definition phase.

In the first phase, we searched for relevant papers pub-
lished and indexed in digital libraries such as IEEE Xplore,
ACM, Elsevier, and SPIE. Because millimeter wave tech-
nology is used across different sensing applications that use
different terminologies, we used diverse search terminologies.
Therefore, finding relevant papers required using synonyms
of terms, which we categorized as exact, similar, narrower,
and broader terms. Similar terms for ‘millimeter wave’
include ‘mmwave’, ‘mm-wave’, and ‘mmw’. Narrower terms
include ‘v-band’, ‘w-band’, ‘Ka-band’, ‘Ka band’, ‘v band’,
and ‘w band’. Broader terms include ‘microwave’, ‘micro-
Doppler’, ‘Doppler’, and ‘radar’. Several gesture recognition
papers only refer to the specific technology used for tracking
in the title. The narrower term for gesture recognition used in
various papers is ‘Soli’. Term combinations used for searching
were made with exact, similar, and narrower terms and con-
sisted of a millimeter wave term and application type term.
Based on the application domains addressed in the papers,
we made an application taxonomy that is shown in Figure 2.
Application type terms were derived from this taxonomy. Term
combination examples include ‘millimeter wave tracking’,
‘mm-wave gesture’, and ‘w-band detection’. Broader millime-
ter wave terms such as ‘microwave’ and ‘radar’ resulted in

too many hits that mostly included papers outside the scope
of this review. Several millimeter wave sensing papers used
in the review identify their content with broader millimeter
wave terms. These papers were cited in the reference lists of
millimeter wave papers found during the paper search.

In the second phase we classified over 140 papers found
during the first phase to identify relevant information. The
classification was based on the most commonly identified
elements, such as application domain addressed, objectives,
target group, dataset size, modeling technique, methodology,
deployment environment, evaluation parameters, and opportu-
nities and challenges. The research papers featured varying
publication dates from the year 1994 up until 2020. Based
on the results obtained in the explorative phase, we made an
application taxonomy (see Section III) as well as an appli-
cation pipeline consisting of several generic pipeline building
blocks used in these papers.

The third phase was used to determine inclusion criteria for
this review. After studying over 140 papers, we discovered that
some papers claim to cover millimeter wave systems while
they do not. In some of these papers, the carrier frequency
utilized falls outside the 30 - 300 GHz band [16], [17].
We also excluded papers written in languages other than
English [18]. Papers focusing on radiometry (passive sensing
and imaging) [19]–[34], spectroscopy [35], [36], interferom-
etry [37], and utilization of waveguide technology [38]–[40]
were also excluded. Radiometry and spectroscopy do not focus
on actively emitting and measuring effects on millimeter waves
for sensing. The waveguide technology has been used to
design electric probes for interacting with membrane systems,
corrosion, sintering processes, etc., [38]–[40]. The technology
has not been used explicitly for guiding millimeter waves to
and from an antenna. Interferometry, rather than measuring
effects on millimeter waves, measures wave interference using
a multi-radar setup with special radar configurations [37] for
sensing.

Radiometry measures electromagnetic radiation originating
from humans or objects with receiver setups [41]. One group
of radiometers creates passive millimeter wave images. These
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images are bi-dimensional radiation maps of a scene. Several
studies focus on the creation of these systems [23], [34].
In addition, several studies perform multiple object detection
and tracking [20], hidden object detection [19], [21], [22],
[25], [28], [31], and military target detection [26] with analyt-
ical models that take passive millimeter wave images as input
data. Another group of radiometers generates one dimensional
radiation profiles. In [30], a passive radiometric temperature
profile is a one dimensional output voltage signal which can
be generated in either power detection mode or correlation
mode. In power detection mode, the output signal depends on
antenna temperature which is proportional to the radiometric
temperature of humans or objects within the radiometer’s Field
of View (FOV). In correlation mode, output signals from two
receivers in power detection mode are used in a correlator to
produce an output signal which does not contain objects that
mostly reflect and scatter radiation rather than radiate it. The
detection capability of detection algorithms that can be used
with radiometric temperature profiles has also been tested [30].
Millimeter wave hardware and a prediction algorithm that can
generate human body emitted energy output traces and detect
weapons and explosives [24], [33] have also been created.
Yujiri et al. [27] measure radiation temperature profiles of
buried mines. Other uses of radiometry include analysis of
sun brightness temperature and precipitating cloud extinction
by means of analytical modeling and a sun-tracking radiome-
ter [29], and creation of an analytical model for predicting
relative humidity profiles from clear-air radiances [32].

Spectroscopy is a kind of radiometry in which the
interaction between radiation and matter is measured [36].
Schmalz et al. [35] use gas spectroscopy to perform breath
analysis. Schmalz et al. explain that “a typical gas spectrome-
ter consists of a radiation source, an absorption cell, a detector,
and optical elements. The radiation is transmitted through
an absorption cell, which is filled with a gas at a particular
pressure and impinges on a detector, which generates an output
voltage or current” [35]. Spectroscopy has also been used
to analyze solar system objects by probing temperature and
molecular abundance in planetary atmospheres [36].

In the fourth phase, we defined the application pipeline
building blocks. For every building block, we identified,
reviewed, and analyzed the designed (or used) algorithms,
models, and hardware, and summarized findings in tables
that map to the individual papers. Using the summary
tables, comparative tables and figures were formulated (see
Section IV) that explain the application pipeline building
blocks. Occasionally, during comparative table and fig-
ure formulation, summary table deficiencies and errors in the
summary tables were discovered. These deficiencies and errors
were corrected by revising the summary tables and afterwards
updating the associated comparative tables and figures. This
was an iterative process, during which extra papers were
searched (phase 1) to cover the field as much as possible and
to include all relevant papers. As a result, 25 additional papers
were found (on top of the first 140 papers). These papers were
inspected with the inclusion criteria (phase 2) and used during
application pipeline building block definition. Therefore,
165 papers in total were analyzed during the literature review.

III. APPLICATION TAXONOMY

Millimeter wave sensing applications can be classified based
on the entity (i.e. human, object, or the environment) being
sensed, application goal, and application context. Figure 2
represents the application domains that we have identified
based on these criteria. Application types and goals in sensing
humans with millimeter waves include: identification, position
tracking, action recognition, health-related monitoring, sudden
and harmful event detection, and acquiring speech data. Appli-
cation types and goals in sensing objects include: object identi-
fication and classification, position tracking, object inspection,
and monitoring information derived from object characteris-
tics. The environment is sensed in applications whose types
and goals are mainly focused on detecting harmful events
related to space landing and airport runways.

IV. APPLICATION PIPELINE

This section presents the five common building blocks found
in application pipelines of the reviewed papers: data collection,
pre-processing, feature extraction, analytical modeling, and
modeling evaluation. For each building block, we review and
analyze relevant papers and provide a comparative table high-
lighting their focus. We use these tables to identify common-
alities and gaps of employed techniques and methodologies,
and to highlight challenges.

A. Collection Systems
The first building block in millimeter wave sensing

applications is data collection, in which millimeter wave
related measurements are collected using a variety of different
measurement systems. In this section, we first briefly explain
different data collection approaches and their fundamentals,
including suitable antenna types and designs, and then describe
the variables that are measured. Hardware calibration [65],
[90], [94], [96], [141], [142] and physical noise reduc-
tion [109] are considered to be outside the scope of this paper
and will therefore not be addressed.

1) Suitable Antenna Types and Designs: Among the papers
reporting on measurement systems, a variety of different
suitable antenna types and designs have been identified that
are used in these measurement systems. To prevent confusion
in later sections, we decouple the concept of transmitters and
receivers from transmit and receive antennas in the elaboration
on suitable antenna types and designs. This means that any
transmitter or receiver has a certain amount (at least one) of
transmit or receive antennas depending on the antenna type and
design. Suitable antenna types include, but are not limited to,
horn antenna [64], [65], [68], [74], [102], [109], [116]–[119],
[142]–[155], yagi antenna [149], lens antenna [59], [105],
reflectarray antenna [85], [86], cassegrain antenna [88], [113],
(on-chip integrated) patch antenna [49], [54], [82], [127],
[128], [139], [151], [156], [157], and parabolic antenna [110],
[112]. Suitable antenna designs include, but are not limited to,
phased array antenna design [144], [145], [147], [158]–[162],
frequency scanned antenna design [87], fan and pencil beam
antenna design [119], gaussian beam antenna design [100],
and omni-directional antenna design [146].
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By far most measurement systems identified in the papers
either use on-chip integrated patch, i.e. microstrip or printed,
antennas or series fed patch antenna arrays. Even though this
is not evident when looking at the suitable antenna types and
designs that are actually reported, many papers list commercial
measurement systems, without listing the used antenna type
and design, that use on-chip integrated patch antennas or series
fed patch antenna arrays. A patch antenna is advantageous
compared to other antenna types because it is low cost, can
easily be integrated in printed circuit boards of various sizes,
and is easy to mass produce [10]. A series fed patch antenna
array is an array of multiple patch antennas connected via a
single feed line in series and is used to create a beam pattern
with certain characteristics that cannot be created with a single
patch antenna [163], [164].

The phased array antenna design is an antenna array design
in which densely packed small gain antennas are phase shifted
by a separate analog or digital phase shift module to cre-
ate an overall high gain beam that can be steered without
mechanically rotating the antennas [163]. This antenna array
design is very important in millimeter wave communication
systems since, due to experiencing more penentration loss than
centimeter wave communication systems and solely relying
on Line of Sight (LOS) propagation, transmitter and receiver
beams constantly have to be re-aligned [10]. This antenna
array design can also be used in ubiquitous sensing systems
that rely on rotation for measuring certain variables to steer the
sensing system to a sensing position of interest without experi-
encing noise caused by mechanical rotation. More information
regarding the other antenna types and designs can be found
in [10], [163].

2) Radar: Radars emit electromagnetic radiation signals,
which are either reflected or scattered from targets with a
smooth or rough surface, respectively. The differences between
the emitted and received signals are of interest to the sensing
application [163]. To understand the basic principles of the
radar approaches, we consider in this section situations in
which (i) there is a single object or human in the radar’s
FOV and (ii) no noise artifacts exist. We will deal with
issues related to multiple targets, noise artifacts, increasing
sensing resolution, and isolating phase shift components in
Section IV-B. Table I presents an overview of papers that
used radar for data collection in millimeter wave sensing
applications. These papers are compared based on their carrier
frequency, modulation scheme, and measured variables, each
of which is explained below:

• The carrier frequency indicates what part of the mil-
limeter wave frequency band has been explored and to
what extent. It is also strongly correlated to the attainable
measurement distance in two ways. Firstly, the higher the
carrier frequency, the faster the attenuation of the trans-
mitted signal. Secondly, there are exceptions to the first
correlation in the form of several attenuation peaks. For
example, applications operating at 60-69 GHz do so under
signal absorption of the oxygen in the atmosphere. This
allows, for example, mobile phone hand gesture recogni-
tion in compact populated areas. Human position tracking

Fig. 3. FMCW radar frequency sawtooth modulation across time.
Recreated from [168]. Changes include addition, removal, and alteration
of variables, and removal of the figure part referred to by the authors as
the ‘lower half’.

applications typically operate at around 70-79 GHz. This
frequency interval, compared to 60-69 GHz, allows mea-
surements at greater distances [165].

• The modulation scheme dictates which variables the radar
can measure and how. Certain modulation schemes have
been used to test joint communication and sensing [140].

• Measured variables strongly depend on an application
type and its objective. Identification, position tracking,
action recognition, etc. rely on range, velocity and angle
information [46], [47]. Health monitoring and speech
acquisition rely on phase and Doppler shift information
in time [62], [109], [113]. Object identification and
classification employ Intermediate Frequency (IF) signal
variations across different IF channels [137], [139].

The most widely used radar type in millimeter wave sensing
applications is the Frequency Modulated Continuous Wave
(FMCW) radar, which was commercialized recently with uti-
lization of the Integrated Circuit (IC) technology [45], [166],
[167]. Almost all papers found that use this radar modulate
the signal frequency according to a sawtooth pattern, which
converts the signal into a continuous stream of chirps [168].
A minority of papers modulate the signal frequency according
to a triangular pattern [85], [100]. An explanation of this
frequency modulation pattern can be found in [163]. Sawtooth
frequency modulation is depicted in Figure 3.

A chirp is part of a trigonometric function across a limited
time window with length Tchirp . In this time window, the sig-
nal frequency is increased linearly across a bandwidth B with
slope m using a voltage-controlled oscillator. The transmitted
chirp at transmitter TX is then reflected or scattered from a
target and received at receiver RX after a round trip time
Trtt . This causes the received chirp to show a frequency
deviation fb compared to the transmitted chirp at a specific
time instant. An IF signal (a.k.a. beat or baseband signal)
operating at constant frequency deviation fb can be obtained
using a down-conversion mixer and low-pass filter in sequence
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TABLE I
SUMMARY OF DATA COLLECTION DEVICES USING RADAR TECHNOLOGY. THE MODULATION SCHEME AND MEASURED VARIABLE ABBREVIATIONS

ARE EXPLAINED THROUGHOUT SECTION IV-A.2
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Fig. 4. Block diagram of fundamental components of CW radar.
Recreated from [169].

as shown in Figure 4. This operation returns a correct output
in time window Tchirp − Trtt , where the transmitted and
received chirps overlap [166], [169]. Given a trigonometric
function x = A cos(2π f t + φ) for the transmitted chirp
xt x and the received chirp xrx , the IF signal xi f = [(Arx ·
At x)/2] cos[2π( ft x − frx )t + (φt x − φrx )] [170]. Using fre-
quency deviation fb = ft x − frx , the range R between the
radar and the target is computed using Equation 1 [169].
The symbol c denotes a constant representing the speed
of light. Due to its unmodulated constant signal frequency,
a Continuous Wave (CW) radar is unable to measure range.

R = fb · c

2 · B
Tchirp

(1)

Radial velocity vr of the target can be obtained by using
consecutive chirps separated by time window Tcon emitted
across a loop. In case the target is in motion, the IF signal
resulting from the chirps will experience a significant phase
difference �φt relative to the previous loop. The resulting
frequency difference is indiscernible for small motion changes.
The radial velocity with one chirp per loop is computed using
Equation 2 (left). The symbol λc refers to the radar carrier
wavelength. Another approach that can be used to obtain
radial velocity is to measure a frequency difference between
the transmitted and the received chirps, which is commonly
known as the Doppler frequency shift fd . The radial velocity
is then computed using Equation 2 (right). The symbol fc

refers to the radar carrier frequency. In case of FMCW
modulation, the carrier frequency and the wavelength refer
to the starting frequency and the wavelength of a transmitted
chirp [166], [169]. Other modulation techniques can measure
the phase difference, the Doppler shift, and the radial velocity
by using the same techniques and associated equations. For
example, Pulse (P) modulation can measure a Doppler shift
between a pair of transmitted and received pulses [171]. The
authors in [64] recognize that when using a bistatic radar
configuration, in which the transmitter and the receiver are
placed perpendicular to each other, Doppler shifts due to
yaw, pitch, and roll movements of the head are more clearly

Fig. 5. Uniform linear MIMO radar layout including two transmitters and
receivers. Recreated from [172].

distinguishable. For radars using an In/Quadrature (I/Q)-phase
mixer, the phase difference �φt,I/Q = tan−1(xq/xi ). Symbols
xq, xi denote the quadrature-phase and in-phase IF signals
coming from the I/Q mixer [59], [65], [113].

vr = λc�φt

4πTcon
vr = fd · c

2 · fc
(2)

The Angle of Arrival (AoA) of the reflected or scattered
signal in both the elevation dimension and azimuth dimension
(bearing angle) is calculated based on Multiple Input Multiple
Output (MIMO) radar principles [130], [172], [173]. Rather
than having one transmitter and one receiver, multiple trans-
mitters and receivers are used. Almost all radars explained
in the papers use a uniform linear layout. An example can
be found in Figure 5. A minimum redundancy layout [58]
and a uniform circular [118] layout have also been explored
in the literature. Real and virtual receivers, spaced according
to a matrix structure on a horizontal surface, observe signal
reflections coming from a target with a distance d apart from
one another along the front and or right direction. The signal
reflection observed at a given receiver has to travel a certain
distance further or shorter along a vertical and or horizontal
direction in relation to one specific receiver in the array to
arrive at the receiver. This distance in the vertical and or
horizontal direction is unique to every receiver. The difference
in distance between two neighboring receivers in the vertical or
horizontal direction directly corresponds to a phase shift com-
ponent denoted by �φ∈{x,z} = [2πd sin(θ)]/λc. A phase shift
component overview is presented in Figure 5. The azimuth or
elevation angle is calculated by using Equation 3 [166] with
the phase shift component in the horizontal or vertical direc-
tion. Some approaches use multiple radars. For example, [85],
[103] use azimuth angles from two different radars, in which
one was rotated 90 degrees counter-clockwise compared to
the other. The rotation makes the azimuth angle correspond to
the elevation angle. The data collection systems in [85], [86],
[132] rotate the radar to obtain angle measurements.

θ = sin−1
(

λc�φx

2πd

)
ϕ = sin−1

(
λc�φz

2πd

)
(3)

A Random Noise (RN) radar transmits noise signals. Binary
Phase-shift Keying (BPSK) radars are normally used for com-
municating a bit stream. The bit value determines the phase
offset φ (0 or π) of the transmitted signal xt x . Both radar types
use cross-correlation between the transmitted and received
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TABLE II
SUMMARY OF DATA COLLECTION DEVICES USING ACTIVE IMAGING APPROACH. THE MODULATION SCHEME, MEASURED VARIABLE AND

SCANNING METHOD ABBREVIATIONS ARE EXPLAINED THROUGHOUT SECTION IV-A.3

signals. This cross-correlation relates to a time delayed version
(delayed by 2R/c) of the transmitted signal to obtain an
auto-correlation function. When plotted, this function shows
a peak that corresponds to a target’s range [102], [140]. The
noise radar in [102] measures a Doppler frequency shift based
on a tone embedded into the noise signal.

Pulse radars emit a powerful high gain signal pulse for
a short time period. This period is called the pulse width.
Afterwards, the radar waits for a given rest time to receive
reflections before emitting another pulse. The range can be
determined based on the round trip time between the emitted
pulse and received reflection of this pulse in the rest time:
(c ·Trtt )/2. In addition to MIMO radar principles, the azimuth
and elevation angles can also be retrieved from the radar’s
own directivity compared to a baseline direction denoting
north or the ground respectively [163]. The authors in [87]
measure mean velocity based on the correlation between two
pulses under an unambiguous pulse interval for a sloped
terrain. Pulse radars normally work well in long distance
applications [163]. One exception to this observation was
found in [104], in which breast cancer detection was performed
successfully. The authors in [45] observe that pulse radar
does not provide enough resolution for tasks requiring high
resolution measurements such as gesture recognition.

3) Active Imaging: Active imaging is a specific type of
radar-based data collection approach that obtains measurement
results in the form of map-like images [163]. The radar scans
a given area. For every position, the radar emits a signal,
measures the reflections returned, and based on a measured
variable assigns, for example, a color or gray-scale value to
the pixel corresponding to that position. Most active imaging
research between 2002 and 2014 was focused on data col-
lection devices for monitoring cracks in civil infrastructures,
detecting concealed objects on the human body, and measuring
hazardous landing terrain [87], [161]. Review papers on active
imaging used for detecting explosives and monitoring civil
infrastructures include [41], [180]. Active imaging recently
received attention again in the context of map-like image
deep learning and applying existing techniques using a cost
effective method in commercial applications [156], [176],
[177], [181]. Commercial applications include parking space

monitoring and analyzing objects in enclosed packaging for
food quality control and non-invasive fault detection. Table II
is an extension of previous reviews [41], [180], providing an
overview of active imaging approaches used for data collection
in millimeter wave sensing applications. In addition to the
carrier frequency, the modulation scheme, and the measured
variables, we consider the scanning method here as well.

The scanning method defines how the measurement system
moves from one position to another to obtain, for example,
a color or gray-scale value for every pixel in the map-like
image. One such method is mechanical scanning where radar
devices are mechanically moved in fixed directions using a
rail system. The literature covers three types of mechanical
scanning. In line array scanning, a 1-dimensional array of
antenna’s on a straight line scan in a single direction back and
forth (i.e., up/down or right/left) [141], [149], [151], [152].
In plane scanning, antennas arranged into a 2-dimensional
plane scan the target from different distances by moving per-
pendicular to the plane [156]. Some papers employ scanning
a target by moving a small radar system in two directions
on a virtual plane [142], [154], [175], [178], [179]. In the so
called free space scanning method, the forward motion of a
radar connected to a moving device, such as a drone or plan-
etary lander, is used to construct images. Sensing application
pipelines using this type of scanning either use a large antenna
array to cover big areas [161] or a limited number of ingrained
low-cost radar device antennas [176], [177].

The free space scanning methods found in the literature
are commonly referred to as Synthetic Aperture Radar (SAR).
A few millimeter wave application papers present application
pipelines containing data collection devices that do not belong
to active imaging by means of free space scanning and mention
use of SAR [152] or SAR pre-processing methods [154],
[178], [179]. We consider these data collection devices not
part of SAR since SAR originates from Side Looking Airborne
Radar (SLAR) (a free space scanning method). SAR provides
a solution to the impractically long antenna or use of extremely
short wavelengths, resulting in severe atmospheric attenuation,
required for sufficient azimuth resolution in SLAR images.
SAR essentially synthesizes a very long antenna to obtain high
resolution images [182]. More information regarding SAR can
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TABLE III
SUMMARY OF DATA COLLECTION DEVICES USING SPATIAL SWEEPING APPROACH. THE MODULATION SCHEME, MEASURED VARIABLE AND

SWEEPING METHOD ABBREVIATIONS ARE EXPLAINED THROUGHOUT SECTION IV-A.4

be found in [182], [183]. Raw SAR images are severely out of
focus since they do not represent spatial information correctly
yet and therefore need additional pre-processing which is
elaborated on in Section IV-B.2.

The IF signal is introduced in Section IV-A.2. Radars
using P modulation obtain an IF signal through a con-
cept called pulse compression [177], [183], during which
the pulse frequency is modulated in a similar pattern as
FMCW modulation. Pulse compression allows transmission
powers comparable to a pulse with a long pulse width while
simultaneously retaining the range resolution which is only
attainable with a short pulse width in the context of SAR. Low
transmission power results in low receiver signal detectability
and measurement precision [187]. The IF signal is either used
directly in pre-processing [177] or its amplitude [176]–[178],
magnitude [175], [179], and or phase values [175]–[178] are
used to color the image or for further pre-processing. The
authors in [152] measure a lap-joint position with an IF signal
component. The component accounts for amplitude variation
based on radiation characteristics and the target’s shape and
a phase variation based on the target’s position at the center
frequency.

Other less frequently measured variables include a visibility
function and a scattering coefficient. Visibility is defined as a
correlation value between two non-directive receivers. Both
mechanical [156] and free space [174] approaches have been
used for measuring these variables. The scattering coefficient
can be considered as an energy ratio between transmitted
and received energy [142]. When a signal scatters due to a
rough surface, more energy will be observed by the receiver
compared to when most energy is reflected away from the
receiver due to a smooth reflection surface [183].

4) Spatial Sweeping: Spatial sweeping is an approach where
signal response metrics measured in the context of the millime-
ter wave radio communication between sender and receiver
systems are analyzed. Changes in the measured metrics are
caused by the interaction between the target of interest to
be sensed and the communication signals. Spatial sweeping
refers to the observation that almost all collection systems in
Table III have transmitter and or receiver components that spa-
tially move and rotate during communication. Movement and
rotation naturally increase the system’s sensing FOV. Table III

provides an overview of spatial sweeping approaches used
for data collection in millimeter wave sensing applications.
In addition to the carrier frequency and measured variables,
we consider the used sweeping method here as well.

The sweeping method defines how senders and receivers
move and rotate during communication with each other while
at the same time being used for measurement procedures.
Table III shows that several sweeping methods are quite
generic while others are more specific. This is because certain
systems are tested for specific real-life contexts while other
systems are tested for determining feasibility of, for example,
rotational and fixed communication for sensing. A variety of
sweeping methods exist, such as rotational sweeping, fixed
sweeping, and radio tomography. Most rotational sweeping
methods rely on a transmitter rotating itself to transmit a
signal at beam angles within a given area. During this time,
receivers make a variable measurement at one angle of arrival
if the angle is not in line with the current beam angle. This
process is repeated sequentially for a number of angles of
arrival to form a measurement matrix [143], [144], [147],
[148]. The authors in [160] use a robot that moves and
rotates. The authors in [155] use a fixed position where both
the transmitter and receiver are located. Measurements are
taken at a given location and associated angles [155], [160].
In fixed sweeping, position and direction of both transmitters
and receivers are fixed. The authors in [158] put a transmitter
and receiver in direct line-of-sight, while the authors in [159]
use a quasi-omni transmit antenna to cover a measurement
area. Certain rotational sweeping methods fall back to fixed
sweeping by rotating a transmitter and receivers towards
a fixed angle to perform additional measurements [143],
[144], [147] while the angle remains fixed. Radio tomography
uses a grid network of transceivers to cover a measurement
area [150]. Vehicle to Infrastructure (V2I) communication
relies on fast Dedicated Short Range Communication (DSRC)
between a stationary Roadside Unit (RSU) and On-Board
Unit (OBU) inside a moving vehicle [188]. Base station
exchange covers a measurement area via a set of moving
receivers [145], [153], [184], [186].

5) Gaps and Challenges: From Tables I, II, and III, a num-
ber of interesting observations can be made. Firstly, most
data collection systems operate in the 60-79 GHz frequency
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Fig. 6. Abstract pre-processing pipeline diagram. It does not show spatial sweeping across time (see Section IV-A.4). It also omits artifact parts
extracted with pre-processing and additional artifact features that are normally not extracted together with the artifact. Artifact part examples include
profile, spectrogram, cube bins and radar image parts [189]. Feature examples include velocity [124], [138] and intensity [124] with point cloud
frames and vehicle location [176], [177], empty parking site [176], [177], obstacles [177], length-width ratio [176], barycenter location [176], and
intensity [103] with radar images.

band. This leaves ample room for performing research and
data collection on the 30-59 GHz and 80-299 GHz bands.
Secondly, most radar systems stick to variables that are
delivered out of the box by commercialized systems. These
include range, radial velocity, and AoAs. It remains to be seen
and investigated whether additional variables such as IF signal
amplitude variation across time and Received Signal Strength
(RSS) provide increased sensing accuracy to a wide variety of
applications.

B. Pre-Processing
By using the collection systems mentioned in Section IV-A,

discrete signal vectors in the time domain are sampled via
an Analog-to-Digital Converter (ADC). For the majority of
sensing applications, these raw signal vectors cannot be used to
infer information of interest to the sensing application. There-
fore, raw signal vectors are passed through a pre-processing
pipeline to extract data types that can be used to infer

information. An abstract pipeline overview can be found in
Figure 6. This section reports on the pre-processing methods
that are mentioned in the papers. Simulation with a ray tracing
tool [145], [162], [184], [186], single-radar simulation [140],
multi-radar simulation [101], imaging simulation [156], and
radar data modeling [174], [201], [202] are considered to be
outside the scope of this review. The pipeline overview does
not accurately represent the exact flow that every methodol-
ogy follows and position in the pipeline where artifacts are
extracted since parts are skipped, not reported, etc. It covers
the predominant processes, flows, and places where artifacts
are extracted. The pre-processing space has been divided into
two domains: the signal domain and data domain. The sig-
nal domain encompasses all pre-processing methods that are
applied directly on the ADC sampled signal vectors. Once sig-
nal vectors are passed through a signal transformation method
for the first time, the artifacts resulting from these methods
are referred to as data and are subsequently processed in the
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TABLE IV
APPLICATION PIPELINES THAT DIRECTLY RETRIEVE ARTIFACTS FROM

THE COLLECTION SYSTEM HARDWARE OR USE A PRE-PROCESSING

PIPELINE BUILDING BLOCK RETRIEVED FROM A PAPER

data domain. Several pre-processing methods reported in this
section are based on analytical modeling. Because these mod-
els are used to execute pre-processing tasks, i.e., not used to
extract higher level information relevant to the millimeter wave
application, they are considered to be pre-processing meth-
ods. Several application pipelines directly retrieve artifacts
from the collection system hardware or use a pre-processing
pipeline retrieved from a paper. The papers associated to these
pipelines do not elaborate on the pre-processing methods that
are executed prior to retrieving the artifacts. These pipelines
and associated papers are summarized in Table IV. Several
papers elaborate on additional pre-processing methods that
are executed after retrieving the artifacts. These methods are
explained in the respective pre-processing subsections.

1) Signal Reconstruction and Denoising: Signal reconstruc-
tion and denoising resolve signal corruption and spectral
leakage. Signal corruption refers to observing a sampled signal
that is drastically different from its theoretical definition.
Changes are caused by superimposed noise from unwanted

stationary and systematic reflections from a target and nearby
objects [59], [70], [104], [110], [112], [113], [118], [144],
[148], [150], [157], [159], high frequency static noise (noise
that is concentrated around, and remains in, a high frequency
range) [116], [144], [148], phase wrapping around a certain
value that causes signal jumps [59], [65], [70], DC offset [116],
[144], [148], hardware noise [60], [110], [112], [113], har-
monic noise [110], [113], and channel noise [113]. Spectral
leakage refers to non-zero values that show up in a signal’s
frequency profile at frequencies other than the frequency
components actually present in the signal after signal trans-
formation. Signal reconstruction and denoising resolve signal
corruption and spectral leakage differently.

Signal reconstruction artificially creates or alters a signal
with help from a construction algorithm. Phase regeneration
exploits the fact that the received signal phase exhibits a
periodic pattern, even though it is not linear with respect
to the target’s moving distance. Phase regeneration creates
an artificial phase shift signal by counting phase shifts of
the measured signal, creating a predefined phase shift on
every count, and linking two neighboring counts with a linear
increasing or decreasing trend [159]. Phase unwrapping is not
explained in [59], [60], [65].

Signal denoising encompasses all methods that remove
signal components from the sampled signal. A signal com-
ponent, in the context of Fourier series, refers to a wave
with a less complex waveform in a set of waves with a
less complex waveform that reconstitute the sampled signal if
summed together. Mean centering [59] is done by subtracting
the geometric mean vector of a complex output trace from
each sampled signal point. A moving average filter averages
a number of the sampled signal points to produce a new
signal point [203]. The high, low, and bandpass filters attenuate
signal components from the sampled signal that have a certain
frequency. The highpass filter attenuates everything below a
certain cutoff frequency, the lowpass filter attenuates every-
thing above a certain cutoff frequency, and the bandpass filter
attentuates everything outside of a predefined frequency band.
In the signal domain, signal component attenuation based on
a certain cutoff frequency or frequency band is performed
by convolution of the sampled signal with a filter’s impulse
response. The impulse responses of both ideal highpass and
lowpass filters can be found in Equation 4 [204]. The symbol
ω0 is the angular cutoff frequency and δ(n) the delta function.
In the context of convolution, the delta function can be
regarded as the identity of convolution (convolution of a
sampled signal with the delta function does not change the
sampled signal) [203]. Line fitting estimates a demodulated
IF signal phase by fitting a straight line to the phase of a
lowpass filtered demodulated IF signal version and obtaining
the y-intercept of the demodulated IF signal with the straight
line [70]. Dual-differential Background Removal. (DDBR)
takes two differentials. The first differential is computed with
signal points at time t − 1 and t and the second differential
with signal points at time t and t + 1. DDBR then adds the
differentials to obtain a background canceled signal point.
A standard signal window function used in combination with
a signal transformation operation such as Short-time Fourier
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TABLE V
SUMMARY OF SIGNAL RECONSTRUCTION & DENOISING PRE-PROCESSING METHODS DEPLOYED IN MILLIMETER WAVE SENSING PIPELINES.

THE DENOISING ABBREVIATIONS ARE EXPLAINED THROUGHOUT SECTION IV-B.1

Transformation (STFT) can be understood as a brick-wall
filter, i.e., an ideal filter [64]. Cosine-sum and adjustable
windows such as Hann [85], Hamming [127], [142], Dolph-
Chebyshev [86], and Kaiser-Bessel [127] windows reduce
spectral leakage in a signal transformation output [205].
Wavelet packet noise reduction [110] removes signal noise
by utilizing a signal enhancement scheme on a fast wavelet
transformed signal representation and afterwards transforming
the signal back to the time domain. The main idea behind
manual background subtraction is to first obtain a sampled
signal from an environment without any target and afterwards
subtracting the sampled signal from a sampled signal obtained
when a target is present in the environment [104], [148].
Manual background subtraction in [112], [150] averages mul-
tiple signals obtained from an environment without a target.
Exponential averaging can also be used to obtain a sampled
signal from an environment without a target [118].

hlp f (n) = sin(ω0n)

πn
hhp f (n) = δ(n) − hlp f (n) (4)

2) Signal Transformation: Signal transformation is the most
important pre-processing operation of almost every millimeter
wave sensing application pipeline. Without signal transforma-
tion, many of the artifacts depicted in Figure 6 would not exist.
Signal transformation refers to transforming a time domain
signal, through use of mathematical operations, into a data
structure that represents certain aspects of the signal in either
the time or frequency domain.

The most widely used signal transformation operation is the
Fast Fourier Transformation (FFT). The FFT is an algorithm
that computes the discrete Fourier transformation with a com-
putation complexity of O(n log n) instead of O(n2), where n
is the input data size, and was popularized by Cooley and
Tukey in 1965 [206]. In Section IV-A.2, it was explained

that an IF signal operating at a certain beat frequency can
be obtained when a single object or person is standing in a
FMCW radar’s FOV. When multiple objects or persons are
standing in the radar’s FOV, the sampled IF signal will exhibit
a more complex waveform. The IF signal is a constitution
of multiple IF components because multiple reflections are
obtained by the receiver channels. These components will have
different beat frequencies if objects or persons are standing
at different distances. When running the sampled IF signal
through a FFT operation across the fast time dimension,
the resulting data structure will be a one dimensional set of
complex numbers, i.e., a profile Xi f . The explanation ignores
the complex conjugates in the set of complex numbers [166].
In-phase and quadrature-phase IF signals can be combined
into a single complex signal [82] and used in the FFT
operation. The magnitude of several complex numbers will
show a peak compared to the other complex numbers. The
associated frequency index of these complex numbers directly
corresponds to a range value as indicated in Equation 1. Range
resolution, i.e., minimum required distance separation between
persons or objects, has a direct relation with the bandwidth size
across which the chirp frequency is modulated [166].

A mathematical definition of the discrete Fourier transfor-
mation can be found in Equation 5. The exponential term in
the definition is the exponential part of Euler’s formula which
describes rotation along a circle with a radius of 1 in the
complex plane. Multiplying IF signal xi f with the exponential
part of Euler’s formula results in a rotating set of complex
numbers of which the radius is scaled according to the IF
signal. The IF signal is essentially ‘wrapped’ around a circle.
The minus sign allows rotation in the clockwise direction and
2π indicates rotation along a circle’s full circumference. The
symbol n serves as an index symbol and k is the wrapping
frequency. To explain the wrapping frequency, an IF signal
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TABLE VI
SUMMARY OF SIGNAL TRANSFORMATION PRE-PROCESSING METHODS DEPLOYED IN MILLIMETER WAVE SENSING PIPELINES. THE

ABBREVIATIONS ARE EXPLAINED THROUGHOUT SECTION IV-B.2

with a finite length of 2 seconds is assumed. A wrapping
frequency of 2 Hz indicates that the IF signal is wrapped
around a circle with 0.5 seconds per rotation. Therefore, an IF
signal with a finite length of 2 seconds makes 4 full rotations
around a circle in total. The sum is used to compute the
center of mass of the wrapped IF signal. When the wrapping
frequency matches the frequency of an IF signal component,

the center of mass deviates far more from the origin compared
to a situation in which the wrapping frequency does not match
any IF signal component. More information can be found in
an explanation given by Sanderson [207].

Xi f (k) =
N−1∑
n=0

xi f (n)e− 2π j
N kn (5)
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Radial velocity, according to Section IV-A.2, can be deter-
mined with multiple chirps emitted across a loop. The profiles
originating from the chirps are stacked on top of each other
to form a two dimensional data structure made up of complex
numbers. The newly introduced dimension is called slow time
(a.k.a. Coherent Processing Interval (CPI)). Across slow time,
the complex number’s phase, due to the motion of persons or
objects, rotates at a constant rate. The phase of every complex
number is a sum of phases corresponding to different objects
or persons [166]. After FFT operations have been performed
across slow time at every frequency index, a spectrogram
(a.k.a. heatmap) indexed by frequency and phase difference
is obtained. The phase difference corresponds to a radial
velocity value according to Equation 2. Magnitude peaks in the
spectrogram correspond to objects or persons with a certain
range travelling at a given radial velocity. Radial velocity
resolution, i.e., minimum required radial velocity separation
between persons or objects, has a direct relation with the
number of chirps per loop [166].

AoA, as explained in Section IV-A.2, is determined through
MIMO radar principles. The explanation assumes that spectro-
grams originating from the real and virtual receiver channels in
Figure 5 are available. Transmit techniques required to obtain
spectrograms from real and virtual receivers channels are
elaborated on in Section IV-B.3. Azimuth and elevation angles
are computed in separate sets of FFT operations. To determine
the azimuth angle, the spectrograms originating from real
receiver channels RX1 and RX2 are stacked to form a three
dimensional data structure. The newly introduced dimension
is called IF channel. Across IF channel, like with determining
radial velocity, the complex number’s phase rotates. This is
due to extra distance which has to be traversed by a signal
reflection. After performing FFT operations for every element
in the spectrogram across IF channel, a data cube is obtained.
Magnitude peaks in the cube correspond to objects or persons
with a certain range, radial velocity, and phase shift in the hor-
izontal direction. The phase shift corresponds to azimuth angle
according to Equation 3 (left) [166]. When looking at Figure 5,
one may assume that the same FFT operations are valid for
elevation angle on spectrograms from real receiver channel
RX2 and virtual receiver channel RX1. In bigger uniform
linear layouts, more signal transformation steps are required to
retrieve the elevation angle. A phase shift isolation technique
for a bigger uniform linear layout is presented in [208].
The main idea is that after several FFT operation steps the
elevation phase difference can be isolated by phasor (another
way to represent a complex number) multiplication. AoA
resolution, i.e., minimum required angle separation between
persons or objects, has a direct relation with the number of
transmitter and receiver channels used in the MIMO radar
layout [166].

Other uses of the FFT operation include retrieving Chan-
nel State Information (CSI) frequency domain profile [158],
conversion of complex scattering coefficient signal to fre-
quency domain [141], aid in applying bandpass filters to
isolate signal components [107], [144], [147], conversion of
phase data to frequency domain [62], [108], conversion of
RSS variance to frequency domain [147], inverse FFT on

IF S21 or complex scattering coefficient signal to retrieve
range profile [74], [142], FFT on IF signal coming from
CW radar to determine breath/heartbeat data [82], [109],
dimension reduction [152], filtered frequency index dominant
frequency determination [116], FFT and inverse FFT for image
reconstruction [154], [179], and retrieving range profile from
uplink pilot signal [154]. The main difference between FFT
and STFT is that STFT separates FFT operations in chunks
across time. STFT has been used to retrieve phase information
across time [60], [65], for creation of time and frequency
spectrograms [64], [113], [116], and to create range and
micro-velocity or micro-Doppler spectrograms from a stack
of range profiles [75], [78], [92], [93], [129] or directly
from a signal containing Doppler information [102], [119].
Micro-velocity spectrograms are used to analyze fine-grained
velocity features. These features can be attributed to for
example arm swinging while a person is walking or presence
of something in the context of strong background noise. These
fine-grained features help to compute new types of information
such as drone blade rotation [116] or allow analytical mod-
els to better predict information of interest. Raja et al. [64]
denote that STFT is well suited for identification of move-
ment direction, time of occurrence, and duration from
a RSS signal.

The beamformer is an estimation technique that can be
used to calculate a one dimensional set of complex numbers
associated to a user-defined AoA. It is used as an alternative
to the AoA FFT. The sensing application pipelines either
use the Minimum Variance Distortionless Response (MVDR),
i.e., the Capon beamformer [50], [55], [96], [98], [131] or
do not specify the beamformer type [58], [62], [114]. The
Capon beamformer computes the set with a steering vector
and covariance matrix. The covariance matrix is a model
describing spatial and frequency domain IF signal charac-
teristics. The steering vector represents the phase rotation
due to extra distance, which has to be traversed by a signal
reflection at receiver channels in an array in phasor notation.
Reflection path extraction is used to iteratively extract RSS
signal components from the signal at the receiver associated
to a path between reflector and receiver [160]. Empirical
Mode Decomposition (EMD) decomposes a signal into several
Intrinsic Mode Functions (IMFs) [79]. The output from both
methods stays in the time domain. Matsuguma and Kaji-
wara [73] retrieve a range profile based on a convolution
in time between an IF pulse, i.e., single chirp, and impulse
echo response. Oka et al. [151] synchronize a Schottky diode
output signal with an encoder distance signal to obtain an
intensity image. Pawliczek et al. [178] perform surface normal
calculation with a phase data spectrogram to improve defect
visualization. Peak detection is used to count breath/heartrate
from a filtered time-series RSS signal [144], [147] or to
determine if a Schottky diode output signal indicates presence
of metallic or non-metallic objects. Reflection loss extraction
isolates reflection loss from the total RSS loss with a set of
equations [144], [147]. Häfner et al. [118] measure azimuth
angle and time of arrival by means of a maximum-likelihood
based parameter estimator. Landmark extraction [132], based
on a profile measured at a given azimuth angle, returns a
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set of landmarks, i.e., set of range and azimuth value tuples.
Landmark extraction performs a set of filtering operations,
after which magnitude values are scaled according to the
probability that the magnitude value indicates a landmark.
Continuous peaks at certain ranges indicate a landmark. Pulse
integration uses the integration operation with the purpose
of improving signal-to-noise ratio [128], [179], help discover
movement in a spectrogram [106], and to deduce a spectro-
gram representing micro-doppler signatures [129], [130]. Pulse
integration types include incoherent integration [106], coherent
integration [128], spectrogram integration across range [129],
[130], and a wideband signal filter operation [179]. POSP
is used in [141] to calculate an integral. Further details,
including the long version of POSP, are not present. Frequency
compression is not explained in [88].

After using pulse compression on a given set of positions,
while scanning an area by means of free space scanning with
a moving device, a two dimensional structure of complex
values, representing combined IF I/Q signals, also known as
a SAR image is obtained. When using the magnitude of these
complex values to create a grayscale image, the resulting
raw SAR grayscale image is severely out of focus because
it does not represent spatial information correctly yet. In most
SAR pre-processing pipelines, range and azimuth reference
functions are generated and convoluted with the SAR image
in sequence to increase the focus. As a result, the SAR image
correctly represents spatial information. These techniques are
known as range [161] and azimuth compression [182], [183].
More information can be found in [182], [183]. Maximally
Stable Extremal Region (MSER) exploits the fact that reflec-
tions originating from the metal structures of vehicles, in con-
trast to reflections from the road surface, show up as bright
stable area’s in a SAR grayscale image. Candidate regions are
selected that stay below a grayscale area variation rate [177].
Visual saliency detection, after a set of pre-processing steps
performed on a SAR image, returns a binary image in which
white area’s indicate presence of objects [177] or parked
vehicles [176].

3) Data Reconstruction and Denoising: Several sensing
application pipelines deploy reconstruction and denoising tech-
niques in the data domain. The techniques try to resolve
data corruption, which refers to observing values in a data
structure that are drastically different from the expected val-
ues in a certain context. In addition to filtering the types
of corruption already mentioned in Section IV-B.1, data
reconstruction and denoising also filter Doppler components
caused by transmitter time multiplexing, remove redundant
data parts, and filter data transients. Data transients are
caused by persons that become stationary after walking into
a room [81].

Under a sampling and signal change assumption, one dimen-
sional phase unwrapping is performed by [57]. The phases of
complex numbers in the slow time direction are analyzed from
a two dimensional data structure prior to radial velocity FFT
operations. A wrapped phase change greater than π in a pair
of consecutive complex numbers indicates that the phase of
the second complex number should be corrected by adding
or subtracting 2π through means of phasor multiplication.

One dimensional phase unwrapping can also be solved with a
null range measurement obtained at the first chirp of the first
frame. Subsequent chirp and frame processing is combined
with multiplying the IF signal with the null range measure-
ment [70]. Two dimensional phase unwrapping through a path
following algorithm is considered in the sensing application
pipeline explained in [178].

Constant False Alarm Rate (CFAR) is an adaptive
thresholding technique that is used to extract, i.e., reduce
a spectrogram containing magnitude values to, spectrogram
parts, based on a sliding window, that indicate presence of
targets against data corruption present in the spectrogram.
Several CFAR types have been considered. One dimensional
types include cell averaging [93], [114], [121], [123],
[124], cell averaging smallest of [55], [71], [96], [114], cell
averaging greatest of [71], clutter map [83], [84], and ordered
statistics [92]. A two dimensional custom CFAR type is
considered in [131]. The type indicates how the threshold is
determined. More information on CFAR types can be found
in [163], [209], [210].

Background subtraction is performed by removing point
cloud data in a frame with zero Doppler velocity [43], [115]
and Cartesian coordinates that fall outside certain bound-
aries [43], removing measured profile and spectrogram (part)
averages from profiles and spectrograms [50], [81], [102],
[138], deleting a profile belonging to an empty FOV from
target measurement profiles [86], and statically removing the
0 Hz component from maximum Doppler frequency data
across time [116].

Moving Target Indication (MTI) is not explained in [53],
[58]. The papers suggest that it is a more general term used
to indicate that denoising is performed. Static thresholding is
used to extract spectrogram parts from which phase variation
over time [62] or magnitude [127] exceeds a threshold or
create binary radar images [67], [142] (unknown purpose [67]
or to make material faults visible [142]). Linear Least Squares
Estimation (LLSE) is used to estimate a shift caused by DC
offset in complex numbers’ imaginary and real parts of a 2D
data structure, prior to radial velocity FFT (used to estimate
chest vibration). The shift is used afterwards to adjust the
complex number’s imaginary and real parts [57]. 2D quadratic
function fitting is used [178] to fit a function to phase data,
which is later subtracted from the phase data to eliminate phase
curvature. A per-pixel Gaussian model is used to subtract noise
coming from unwanted background reflections from spectro-
grams [125]. The Otsu algorithm is an automatic threshold
selection method supported by image segmentation. It is used
for noise reduction in radar images [189]. Noise reduction
with help from Singular Value Decomposition (SVD) can be
applied to extract desired spectrogram parts indicating pres-
ence of target reflection [142]. A feed-forward neural network
can be used to filter ghost targets (i.e., superimposed noise
from unwanted background and target reflections) in auto-
motive radar sensing [95]. The bandpass and highpass filters
reported in this section are applied in the frequency domain.
Profiles are multiplied with a transfer function that represents
the bandpass or highpass filter’s frequency response [211].
The transfer function can be custom made or determined
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TABLE VII
SUMMARY OF DATA RECONSTRUCTION & DENOISING PRE-PROCESSING METHODS DEPLOYED IN MILLIMETER WAVE SENSING PIPELINES. THE

DENOISING ABBREVIATIONS ARE EXPLAINED THROUGHOUT SECTION IV-B.3

by the Laplace or Z domain (discrete-time equivalent of the
Laplace domain). The explanation further assumes a linear,
time-invariant, and single-input single-output filter. In the Z
domain, the transfer function represents the ratio of the filter’s
Z transformed output to Z transformed input as a function
of a complex number z = Ae jφ. The symbol A is the
radius and the symbol φ the phase. The transfer function
is determined from filter behavior by Z transforming an nth

order linear difference equation (both the equation and order
are dependent on the filter type) and solving the equation for
the Z transformed output to Z transformed input ratio. The
Z domain is a more general form of the frequency domain
and therefore z can be substituted with e jω to convert a
transfer function to the frequency domain [212]. The transfer
function of an ideal highpass filter in the frequency domain
can be found in Equation 6 [211]. A 2D Gaussian filter is
convolved over a spectrogram for extra noise reduction in
addition to background subtraction [123]. Moving average
filtering is performed in time by first subtracting an empty
background spectrogram from a measurement spectrogram.
Afterwards, the background spectrogram is updated with the
measurement spectrogram [127]. In offset version recombi-

nation, a noisy set of complex numbers created with STFT
is offset with a simple addition of a frequency dependent
anti-symmetric function [113]. Spectrograms originating from
real and virtual receiver channels cannot be retrieved simul-
taneously at real receivers. Radar collection systems employ
multiplexing strategies to retrieve the spectrograms [172].
When time multiplexing is used, spectrograms from real and
virtual receivers will experience an unwanted Doppler induced
phase shift. This shift is compensated for by means of phasor
multiplication [208]. To mitigate analytical model performance
degradation caused by data transients, a debouncing logic
can be implemented [81]. Radar images acquired through
imaging do not properly represent the geometry of an envi-
ronment due to multipath propagation. Image correction can
be applied by means of mirroring techniques [154]. Distance
correction [102] scales correlation profiles while taking into
consideration that sample strength falls off according to a
certain pattern. To remove motion corrupted segments from
heartbeat data, the heartbeat data is segmented and segments
are removed based on the outcome of a thresholding proce-
dure [62]. Two dimensional windowing prior to performing a
FFT operation to determine velocity [114] can be considered
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a brick-wall filter [64].

Hhpf (ω) = 1 − Hlpf (ω)

Hlpf (ω) = rect(ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, if |ω| > ω0
1

2
, if |ω| = ω0

1, if |ω| < ω0

(6)

4) Data Transformation: Data transformation refers to using
mathematical operations on data structures that either cause
them to change into new, higher-level data types or cause
data structure aspects, e.g., value range or axis range con-
sidered, to change. There is a wide variety in goals that
sensing application pipelines try to achieve through use of
data transformation. For example, value range changes can be
used to unify the value range of different variables. This will
omit bias towards variables that have a bigger value range
compared to other variables during analytical model train-
ing [213]. Data type changes allow higher-level information
to be extracted from lower-level information. For example,
position information in Cartesian coordinates can be extracted
from lower-level range and AoA information [138], voxels
created from position information encapsulate higher-level
body shape information [46], etc.

Peak detection is used to retrieve velocity information
from a range, azimuth, and velocity cube [55], retrieve
breath/heartbeat data by means of average inter-peak distance
in a phase data sequence in time [62], and determine mag-
nitude peak position in a range profile [107]. Thresholding
is either applied on a range-compressed down-conversion IF
signal to determine vertical range between the collection
system and the ground [161] or used to determine if space
debris is detected or not [88]. Spectral analysis is a general
term used to describe the fact that IMFs are converted to
a frequency domain representation to determine if they can
be attributed to heartbeat or breathing data based on a given
frequency range [106]. Dimension reduction is performed by
transforming a two dimensional structure of complex values
into a structure containing magnitude values and determining
the position that corresponds to the dominant reflection of a lap
joint. Data evaluation is performed at the position that yields a
one dimensional structure [152]. Voxelization can be thought
of as creating a three dimensional grid. The grid consists of
voxels, i.e., custom values (or sets of custom values). Values
found in the sensing application pipelines include number of
points present [47] and accumulated velocity information of
every point [138] in bounded coordinate regions of a point
cloud frame. Voxelization is used to turn a variable number
of point information rows [138], associated to a point cloud
frame, into a data structure with fixed dimensions [47], [138].
Binarization refers to the creation of a binary image from a
radar image. Binary images contain black and white values
assigned through use of a threshold [191]. Mathematical mor-
phology is a term used to describe a set of matrix operations
that are used to transform binary images [176], [191]. These
matrix operations are called erosion, dilation, opening, and
closing, and involve an input image and a structuring element.
The structuring element is similar to a kernel in the context
of two dimensional convolution. Opening has been used to

transform a binary saliency map into connected regions [176].
Dilation has been used to improve image visualization [189].
Low Rank Matrix Factorization (LRMF) is used to factorize
a radar image into two: a foreground, i.e., concealed object,
and background to detect concealed objects. Factorization is
performed with a patch-based, i.e., segment-based, Gaussian
mixture model [189]. Laplacian of Gaussian and Canny edge
detection are used on a gray scale converted spectrogram
containing magnitude values to discover Doppler frequency
information [116]. Once range and AoA values retrieved
from spectrograms or cubes are known, the values can be
transformed from range and AoA information, through polar
or spherical to two or three dimensional Cartesian coordinate
conversion equations, to position information in Cartesian
coordinates [43], [44], [46], [53], [55], [71], [93], [96], [103],
[114], [121], [138]. The new data structure is referred to as
either a point cloud frame or point scan. The data structures
differ in context in which measurements were conducted.
Stationary radar collection systems are used to retrieve point
cloud frames while moving radar collection systems on a robot
or vehicle are used to retrieve point scans. The active imaging
application pipeline presented in [141] transforms coordinates
by means of integration. Point transformation is concerned
with converting a point cloud frame based on fixed coordinate
ranges into a radar image. To every pixel, a RGB value is
assigned. The R value corresponds to a x-coordinate, the G
value to a y/z-coordinate (separate xy/xz images), and B value
to a magnitude value. Coordinates that contain no points are
assigned a black RGB value [103]. The application pipeline
in [120] uses a similar approach in which points converted
to camera coordinates are used to compute RGB values. Fast
Wavelet Transformation (FWT) is used to transform a radar
image into the wavelet domain with the intent to denoise it
in the wavelet domain [191]. Greyscaling refers to converting
a spectrogram consisting of magnitude values to a grayscale
image [116]. Once uplink pilot signal AoA and time of arrival,
and a radar image consisting of reflective shapes are known,
casting a ray, i.e., millimeter wave, at the estimated AoA
from a base station will eventually lead to a mobile user’s
range with respect to the base station under the assumption of
reflection at a specular angle [154] with a computation on time
of arrival.

Normalization refers to mapping real value ranges of sev-
eral data structures. Spectrograms with magnitude values are
normalized to unit scale [45], between 0 and 1 and cen-
tered around the mean value [92], by dividing every mag-
nitude value with the sum of all magnitude values in the
spectrogram [123] or by scaling magnitudes logarithmically
and performing a max-min truncation [125]. RGB values
assigned to a radar image with help from a point cloud
frame with fixed coordinate ranges are based on normalized
range, AoA, and magnitude information [103]. Point cloud
frame coordinates are max-min normalized based on fixed
coordinate ranges [138]. Region Of Interest (ROI) selection
significantly reduces search dimensionality over a spectrogram
during feature extraction computations [45]. To isolate peri-
odic chest movement, among all spectrogram columns corre-
sponding to range in an acceptable FOV, the range column
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with the maximum average magnitude value is selected [57].
With background information on test person distance, a fre-
quency domain ROI can be selected [107]. After thresholding,
the closest detected range profile part in range is selected for
each radar in case of multiple detected target peaks [128].
Through use of a pixel condition argument, person edges are
discovered in image segments if a pixel value in the condition
argument is greater than a certain threshold. The edge values
are set to zero afterwards [191]. Windows containing a time
dependent sequence of voxel grids are created and used to
form a dataset [46], [47]. An image segmentation procedure
is presented in [191]. Dynamic sized temporal input data can
be formatted by using the Markov Frame method [77]. Win-
dowing can also be employed to track target position across
spectrograms [123]. Maximal Ration Combining (MRC) refers
to the creation of mean range and velocity and range and
azimuth spectrograms from a range, velocity, and azimuth
cube containing magnitude values by computing a weighted
mean [126]. Discontinuous range, azimuth sine, and velocity
sequence values are smoothed. At sequence window ends,
a discontinuous point is set to the value of its nearest neighbor.
When eligible values are at both sides of the discontinuous
point, the discontinuous point becomes the average of these
values [43]. Frequency index smoothing is used in the pipeline
explained in [116]. A convolution mask can be applied to an
active imaging spectrogram to make a concealed tile image

and the crack within it more visible [142]. Downsampling is
used to convert a CSI frequency profile into a smaller feature
vector [158].

5) Dataset Creation and Augmentation: After datasets, con-
sisting of data samples, have been generated by both the signal
and data transformation processes, several sensing application
pipelines augment these datasets with artificially created data
samples. In case of profiles, spectrograms, and cubes, it is
assumed that real value structures consisting of magnitude
values are generated. Reasons for data augmentation include
improving analytical modeling performance on unseen data
during inference [63], [127], [128], [138] and to increase the
dataset size to a size required during model training to achieve
good analytical model performance [138], [192] without the
need for extra sampling. For each original spectrogram in the
dataset or for an average spectrogram per class, artificial spec-
trograms can be generated by sampling pixel values according
to a normal distribution [63], [127]. Radar images can be
fused with image segments at a random location [192]. Radar
images and point cloud frames have also been rotated, scaled,
and content inside the images and point cloud frames has
been translated [128], [138]. To prepare datasets for analytical
model training in several sensing application pipelines, data
samples are labeled with class labels and part of the dataset is
designated for model training while other parts are designated
for model validation and testing.
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TABLE IX
SUMMARY OF DATASET AUGMENTATION & CREATION

PRE-PROCESSING METHODS DEPLOYED IN

MILLIMETER WAVE SENSING PIPELINES

6) Gaps and Challenges: During the analysis of
pre-processing methods, it was discovered that there is
a lot of variety in the definition of what is considered to
be pre-processing and way that pre-processing pipelines
are constructed. We consider signal processing methods
and typical data science pre-processing methods to be
pre-processing methods. Other papers consider signal
processing methods to be part of the signal collection system
and only consider typical data science pre-processing methods
to be pre-processing methods. Sensing application pipelines
perform the processes mentioned in Figure 6 in different
orders, skip processes, revert back to pre-processing after
feature extraction or analytical modeling, etc.

When looking at Tables V, VI, VII, VIII, and IX, there
are a few observations that raise interest. Many of the table
columns contain a few crosses while a large portion of the
crosses is located in just a few columns. There are two
explanations for this. Many sensing application pipelines rely
on pre-processing methods that are well known. In signal
transformation, many sensing application pipelines rely on
FFT and STFT for signal conversion. However, estimation
techniques such as Capon beamforming, Bartlett beamform-
ing, MUltiple SIgnal Classification (MUSIC), Sparse Asymp-
totic Minimum Variance (SAMV) beamforming, Maximum
Likelihood Estimation (MLE), etc. exist that can be used
in the pre-processing pipeline too. In [72], [93], test results
have been reported for the MUSIC algorithm. Many of the
pre-processing methods are sensing application pipeline spe-
cific. For example, landmark extraction [132] works with a
specific radar collection system that collects a signal at specific
azimuth angles, Doppler compensation [114] is only used
when transmit time multiplexing is used for measuring AoA
information, etc.

Another observation is that many table rows contain mul-
tiple crosses. This indicates use of multiple reconstruction,

denoising, and transformation pre-processing methods. In [81],
multiple pre-processing pipeline paths are used in parallel to
obtain different artifacts and artifact types that all use their
own denoising and transformation methods. In [62], there
are two consecutive pre-processing stages. In the first stage,
phase data is obtained in a pre-processing pipeline where
CFAR is used to denoise spectrogram data. In the second
stage, phase data is bandpass filtered before being used
to extract breath/heartbeat data. Pre-processing methods are
also used consecutively. In [159], it is explained that sig-
nal reconstruction is specifically used to omit limitations
encountered with denoising of the received signal phase
through DDBR.

C. Feature Extraction
The end result of the pre-processing phase in the application

pipeline is a set of raw data samples in the form of, for
example, sequence windows [137], [139], [158], (voxelized)
point cloud frames [46], [47], [138], spectrograms [48], [76],
[93], radar images [103], [120], [174], etc. This raw form of
data, however, is not always used directly by analytical models.
Degradation in modeling performance is sometimes caused
by noise and redundancy in raw data samples. Extraction of
relevant and informative data features from raw data samples
is performed to remove the noise and redundancy [214].
Reducing the raw dataset to a limited number of features
also makes it easier to visualize raw data samples for better
understanding and gaining knowledge about the process that
led to the generated raw data samples [215].

The feature extraction methods used by millimeter wave
sensing applications take in the raw dataset and map the entire
dataset to a new feature space [214]. The feature extraction
phase is, however, not a required step. Recent deep learning
techniques [47], [103], [104], [123], [124], [149], [192] and
several modeling algorithms [56], [159], [184] perform well
on raw data samples and, therefore, do not require the feature
extraction phase. The border between feature extraction and
analytical modeling has become blurry in recent papers on
millimeter wave sensing applications. Several deep learning
models contain layers designated for feature extraction [16],
[46], [47], [92], [125], [126], [130], [138], [158]. Certain
positioning and environment mapping algorithms resemble
feature extraction methodologies [160], [184]. Transfer learn-
ing [120], [181], [193] is not included in this section since
the methodologies transfer analytical model parameters to
another analytical model rather than extracted data features.
Feature analysis [43], [77], [91], [129] was only addressed by
a minority of papers and is therefore excluded from this paper
as well.

Table X presents our analysis of feature extraction
approaches used in millimeter wave sensing applica-
tions. In what follows, we explain the main feature
extraction methods used in millimeter wave sensing
applications.

1) Manual Feature Mapping: Manual feature mapping relies
heavily on experience and knowledge of domain experts to
extract features [215]. The main feature categories found in
the pipelines include statistics, calculus, geometry, vision,
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MILLIMETER WAVE SENSING PIPELINES. THE AUTOMATIC MAPPING

ABBREVIATIONS ARE EXPLAINED THROUGHOUT SECTION IV-C

and gesture recognition. Statistical features include (weighted)
mean [45], [49], [64], [72], [91], [98], [137], [139], [143],
[147], median [129], total value [42], [45], [49], [91], standard
deviation and variance [45], [143], [147], [159], root mean
square [45], [49], [137], [139], moving average [73], [98],
sequence window centroid [45], [91], [161], range [43], [129],
[147], [157], quartiles [147], higher order cumulants [83],
coefficients [98], [129], value normalization [43], [84], [129],
value distribution [42], [49], [79], [91], [189], probabil-
ity [161], and histogram features [189]. Calculus features
include maximum [43], [49], [57], [60], [64], [72], [84], [116],
[137], [139], [145], [147], minimum [49], [64], [128], [137],
[139], absolute value [49], [73], [137], [139], a signal pattern
across time [159], discrete differentiation [42], [45], [49], [73],
[91], discrete integration [45], derivative sum [45], integrated
sum [45], and integrated delta [45]. Geometrical features
include intensity areas [72], roundness [72], eccentricity [72],
perimeter [72], and shape slope [72]. A specific visual feature
used is the so called local binary pattern [189]. The authors
in [78] use a feature extraction algorithm comprised of steps
that involve some of the features mentioned above.

In 2016, Lien et al. [45] conducted extensive research
into the development of range-doppler spectrogram specific
features in the context of gesture recognition. The goal was
to reduce computational overhead on resource constrained

devices. After ROIs have been selected, matrix calculations are
applied to these regions to obtain multi-channel integration,
multi-channel derivative, and temporal derivative matrices.
In 2018, Flintoff et al. [91] introduced a new gesture recog-
nition feature in the form of a sonar value.

2) Automatic Feature Mapping: Automatic feature mapping
methods used in the millimeter wave sensing applications
mainly aim at dimensionality reduction. Several tracking appli-
cations that utilize point cloud frames either use cluster-
ing [46], [93] or the Kalman filter’s prediction process [55],
[94], [96], [114] to reduce point clouds into point cloud cluster
centroid values. Since the number of point clouds per frame
is unknown, a clustering algorithm that does not require a
number of clusters to be defined a priori is required [46].
More information about the prediction process can be found
in [216]. Clustering is also used to reduce people counts
corresponding to the same person [81] or to obtain a median
heart rate measurement from a noisy spectrum [62]. Principal
Component Analysis (PCA) is used for linearly reducing an
input data vector v into principle component vector p = W T v
containing decorrelated principal components suitable for use
with Support Vector Machines (SVMs) and decision trees. The
symbol W ∈ R

(N,L) denotes a projection matrix where N is
the input vector size and L the number of desired principal
features. The projection matrix elements are calculated such
that the variance included in input data vectors used for train-
ing is maximized [217]. To reduce a dataset to a low feature
dimension for visualization purposes, t-distributed Stochastic
Neighbor Embedding (t-SNE) can be used [127].

Other automatic feature mapping methods include repre-
sentation and meta learning [127], [217]. Even though these
methods also involve dimensionality reduction, it is considered
to be a positive side effect rather than a goal. The main
idea behind representation learning is to create a machine
learning model that has the ability to extract features from a
dataset. The features can be fed into a variety of downstream
models used for solving a task that is loosely related to the
task associated to the upstream model [217]. Meta learning
differs from representation learning because it has the goal of
providing features that can be used for a variety of different
task types rather than loosely related tasks [127].

3) Gaps and Challenges: Table X shows that the majority
of approaches that utilize feature extraction rely on manual
feature mapping. In contrast to reducing computational over-
head, manual feature mapping costs a lot of time and human
resources. Automatic feature mapping in millimeter wave sens-
ing applications is an unexplored field of research. Only one
methodology found [127] uses a feature extraction technique
for feature visualization to gain an understanding of extracted
features. Lastly, meta and representation learning are severely
underexploited in millimeter wave pipelines.

D. Analytical Modeling
Most millimeter wave sensing applications cannot reach

their goal by simply executing a set of pre-processing steps and
extracting information relevant to the application. They require
a model to translate information from pre-processed datasets
or extracted feature sets to the application goal. Examples of
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these models include classification models [46], [47], [79],
filter models [46], [89], [185], and measurement models [133],
[159], [184], [186]. Classification models assign class labels
to a set of input data. The class can indicate performed activ-
ities, gestures or events/failures, presence of a specific per-
son/object, etc. Filter models estimate trajectories of tracked
entities, filter out false positive class predictions, etc. in an
environment where noise causes trajectory measurements and
class predictions to be stochastic in nature. Measurement mod-
els calculate the value of information such as position, yaw
rate, or absolute velocity using mathematical models. In some
cases, measurement models use a cost minimization technique
for value calculation. The costs are computed with a function
that uses input data as a function parameter. We classified the
models used in millimeter wave sensing applications based on
the model class (data driven vs. model driven) and the model
type (black, grey, white models). Black, grey and white model
types do not refer to the degree of model explainability. The
model types refer to model determinism and use of physical
knowledge and or data for model construction. The model
types were adopted from a physiological model identification
study presented by Duun-Henriksen et al. [218]. Apart from
occasionally explaining that a certain model fuses millimeter
wave data with data originating from other sensing domains in
Section IV-D.3 to avoid hybrid model explanation ambiguity,
further discussion of models that fuse millimeter wave data
with data originating from other sensing domains is outside
the scope of this review. In what follows, we analyze the
analytical model classes and model types used in millimeter
wave sensing applications.

1) Model Driven Modeling: Model driven modeling relies on
physical and or mathematical knowledge about the technology
or the environment to construct a model. The knowledge
refers to information, a set of rules, and or a set of equations
obtained from physical phenomena or mathematical proofs.
The model driven approaches are classified either as white box
or grey box models. White box models vary in determinism
and solely rely on physical and or mathematical knowledge
for model construction. For example, phase tracking [159]
deploys position initialization, resulting in an extra depen-
dency on a random variable in addition to phase inputs for a
certain position output. In contrary, instantaneous ego-motion
estimation [133] relies on Monte-Carlo simulation to test a
model. This indicates that the computations performed by the
model are deterministic in principle. Grey box models are
non-deterministic and also rely on physical and or mathe-
matical knowledge for model construction. They differ from
white box models because parts of the model are continuously
altered across time or completed with information extracted
from input data and data features [218]. Examples include
hidden state updates and use of cost and similarity parameters.

Table XI presents our analysis of model driven approaches
used in millimeter wave sensing application pipelines. Next,
we explain different white and grey box model approaches.

a) White box models: The phase tracking model [159]
calculates a two dimensional position in Cartesian coordinates
based on successive phase shifts. The two dimensional position
is calculated with a combination of distance equation sets and

Fig. 7. Hidden markov model containing observed measurements s
and a hidden state x, describing information of interest to the application,
at time instant t. Symbols g and h denote a state transition and obser-
vation function. Symbols pn and mn denote process and measurement
noise. Recreated from [219].

triangulation. The initial position is measured with a special
acquisition module that is independent of the input data. The
velocity and the Ackerman model [133] first calculates a radar
velocity vector containing longitudinal and lateral velocities
based on the sinusoidal progress of measured radial velocities
over the azimuth angle using a least-square approach. After-
wards, an object’s absolute velocity and yaw rate are calculated
using a model based on the Ackerman condition involving a
velocity and yaw rate equation. The angle/time model [184]
calculates mobile object positions based on a configuration
involving multi-path component Time of Flight (ToF) and AoA
information or a configuration involving multi-path component
ToF and Angle of Departure (AoD) information. The infor-
mation is retrieved from a ray tracing tool. This information,
combined with meta-data such as a map layout, results in
object locations. The eventual location is determined based
on majority voting. Relative motion between two radar scans
can be measured in a least-square sense by using SVD on
a set of landmark matches [132]. Double Time Difference Of
Arrival (DTDOA) is a positioning model consisting of a set of
equations that use pseudo time of arrival to compute a position
estimate [162].

b) Grey box models: Bayesian filters originate from sto-
chastic filtering theory and Bayesian statistics. As indicated
in Section IV-B, millimeter wave sensing applications obtain
measurements as discrete samples. Therefore, the explanation
assumes a discrete Bayesian filter modeled as a Hidden
Markov Model (HMM). The model contains one hidden
state that varies with time. The state describes information
that is of interest to the millimeter wave sensing applica-
tion. The exact information is unobservable and thus hid-
den. Furthermore, action variables are omitted. An overview
can be found in Figure 7. The hidden state xt is depen-
dent on one previous state xt−1. Measurements st in the
form of raw data samples or data features are observed at,
i.e., sampled from, the pre-processing or feature extraction
phase. These measurements are dependent on the current
hidden state. The state transition function includes noise to
account for a distribution of different outputs the function can
yield at a given time instant. The measurement observation
function accounts for noise to take care of measurement
inaccuracies [219], [220].
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The state transition and the state observation functions
xt = g(xt−1, pnt ) and st = h(xt , mnt ) are modeled
as Probability Density Functions (PDFs) p(xt |xt−1) and
p(st |xt ) [220]. PDFs explicitly represent the uncertainty in
variables taking on a particular value in a range of values
at a specific time instant. The Bayesian filter continuously
executes two functions called the predict and update functions
with a recursive algorithm. The role of the predict func-
tion is to estimate a new hidden state PDF p(xt |s1:t−1) =∑

xt−1
p(xt |xt−1)p(xt−1|s1:t−1) based on the previous hidden

state PDF and state transition PDF. The new hidden state PDF
can be used to derive hidden state values [221]. The role of
the update function is to adjust the hidden state PDF when
measurements are observed. The update function is based on
Bayes’ theorem and can be noted in Equation 7. The update
function ensures that the hidden state PDF can always be used
to derive hidden state values that closely represent, and do not
drift away from, the exact hidden state values. Calculation and
or modeling of p(xt |s1:t−1), p(st |xt ), and p(xt |xt−1) is a core
task of Bayesian filtering. More information can be found in
a comprehensive review authored by Chen [219].

p(xt |s1:t ) = p(st |xt)p(xt |s1:t−1)

p(st |s1:t−1)

p(st |s1:t−1) =
∑

xt

p(st |xt )p(xt |s1:t−1) (7)

Several Bayesian filters exist, such as the custom
Bayesian [45], [185], particle [44], [136], α − β [128],
Kalman [46], [53], [58], extended Kalman [55], [94], [96],
[114], [115], [135], [186], fusion extended Kalman [95], [146],
unscented Kalman [89], fusion adaptive Kalman [51], and
adaptive Sage-Husa Kalman [52], [61] filter. The Kalman
filter [219], under linear, quadratic, and Gaussian assumptions,
can represent the state transition and observation functions

xt = g(xt−1, pnt ) and st = h(xt , mnt ) as a set of linear
equations. All other Kalman filters loosen these assumptions.
The extended Kalman filter, for example, allows the functions
to be approximated as a Jacobian matrix [219]. Particle fil-
ters [219], [220] approximate p(xt |s1:t−1) as a set of particles
{< x (i)

t , w
(i)
t >}l

i=1 where w
(i)
t = p(st |x (i)

t ). The α − β
filter [128] is a simplified Bayesian filter that limits the number
of hidden states to two. Predictions and updates are executed
with a simple set of equations. Symbols α and β refer to
manually set correction gains used during the update process.

Scan matching models are concerned with finding the best
rotation and translation operations that have the ability to
align two point scans or a point scan to an existing area
map. The Iterative Closest Point (ICP) model involves two
iterative steps until convergence. In the first step, points from
two are matched based on closeness to one another in a given
space. Closeness is measured by means of a distance metric.
In the second step, to find the optimal rotational angle and
translation, the sum of squared distances between the points
is used [135]. Normal Distribution Transformation (NDT) scan
matching [89], [134] requires a grid of probability functions
created from a map for matching.

Association/allocation models either use combinatorial opti-
mization [46], [185], a gating function [55], [94], [96], [114],
template model matching [201] or landmark association [89],
[132]. These models associate input data to an existing entity
or create new entities based on an optimization criterium.
This criterium is dependent on a cost metric involving the
input data. For example in tracking, the models determine if
incoming input data belong to a certain track that is already
known or indicate a new track.

Other grey box models include Shadow RTI [150], trian-
gulation, angle/time model [145], RSS Series Analysis (RSA)
model [153], velocity model [161], Rician model [90], and
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TABLE XII
SUMMARY OF DATA DRIVEN ANALYTICAL MODELS USED IN MILLIMETER WAVE SENSING PIPELINES. THE ABBREVIATIONS ARE EXPLAINED

THROUGHOUT SECTION IV-D

MLE [134], [152]. Shadow RTI [150] measures link RSS
attenuation changes across a network of millimeter wave trans-
ceivers. The knowledge utilized for model construction is that
when people walk by, the RSS attenuation changes. Every link
is made of a set of ‘pixels’. Link RSS attenuation contribution
is computed for every pixel by solving a least square problem
based on a measured RSS change vector. The triangulation
and angle/time models in [145] use AoA spectra coming from
multiple access points to determine a mobile client’s position
from a set of measured anchor positions based on an associated
cost metric. Additional input data include meta-data that are
not measured such as room boundaries and a permanent obsta-
cle set. The RSA model [153] measures object characteristics
based on separate models. The object characteristics include
surface curvature, surface boundary, and material. The surface
boundary is determined with a surface reflection model that
predicts RSS series of a reflection surface with fixed-size
surface boundaries. The surface boundary of a measured RSS
series is determined by matching the RSS series to a set
of predicted RSS series produced with the surface reflection
model based on a similarity metric. The Rician model in [90]
was derived from the Rician model in [222]. The model
compares a measured radar cross section with pre-simulated
radar cross sections to identify a class based on log-likelihood
computations. The measured cross section receives the class of
the pre-simulated radar cross section that results in the largest
computed log-likelihood value. MLE is used to estimate

data of interest from noisy measurement signals. The model
in [152] uses reference data and a likelihood function to
return a data estimate that maximizes the likelihood function
value. Joint spatial and Doppler-based ego-motion estimation
in [134] computes state PDFs for a vehicle’s yaw rate,
longitudinal velocity, and lateral velocity by using a joint
optimization problem. Mean velocity [87], [161] is measured
with a set of equations and pulse-pair phase estimation,
which relies on a correlation product that depends on the
input data.

2) Data Driven Modeling: This type of modeling solely
relies on information contained in the input data itself as
well as the feature sets to construct a model [218]. Model
construction typically involves choosing a model type and
associated hyperparameters, fitting the model parameters to
a dataset designated for training and testing the model per-
formance on a dataset designated for validation. Fitting and
validation are performed continuously in an iterative manner
based on a cost or reward function by changing the model
type or hyperparameters until the model exhibits the desired
performance on the validation dataset [223]–[225]. Data driven
models are classified either as a shallow black box or deep
black box model. Both types are non-deterministic and solely
rely on data for model construction. The difference between
the two is that in shallow black box models, the input only
passes through a single model structure before obtaining a
model output while in a deep black box model, the input
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goes through multiple submodels such as layers, decision trees,
or SVMs.

Table XII presents our analysis of data driven approaches
used in millimeter wave sensing applications. Next,
we explain different shallow and deep black box model
approaches.

a) Shallow black box models: Supervised shallow black box
models, such as SVMs and decision trees, used for classifica-
tion can perform well with limited datasets of small size [226].
However, this comes at the cost of requiring carefully crafted
features. The features are either crafted manually [43], [78],
[79], [147], [159] or automatically in a linear fashion [47],
[50], [64], [176]. This process is labor intensive and or can
limit the eventual model performance for more complicated
tasks during model validation.

The pipelines deploying SVMs use it to learn and execute
a C-Support Vector Classification (C-SVC) task. SVMs are
applicable to binary classification tasks in which an optimal
hyperplane is learned from training data. The hyperplane
divides the data sample space into two sections, each corre-
sponding to a given class. The classification is based on a deci-
sion function, which uses a set of support vector samples and a
kernel function. The kernel function introduces non-linearity to
the optimal hyperplane. Additional information on how SVMs
learn can be found in [224].

Decision trees learn a tree structure containing nodes,
branches, and leaves from a training dataset. Nodes represent
binary input attribute tests, branches represent test outputs,
and leaves represent a class that can be assigned. An unseen
input dataset goes throughout the entire tree and is ultimately
assigned to a single class label [43]. More information regard-
ing decision tree construction can be found in [225].

Most approaches using a SVM or decision tree have been
classified as an ensemble of several classifiers. These ensem-
bles are formed with special multi-class and ensemble learning
strategies such as one-versus-one [47], [64], [78], [79], [139],
random forest [42], [45], [49], [50], [91], [137], [143], and
AdaBoost [189]. Commonly, by letting several weak classifiers
assign class labels to a given input, the final classification
output is determined via majority voting.

Other models include clustering [53], [73], [136], [160],
Support Vector Data Description (SVDD) [83], Minimax
Probability Machine (MPM) [84], Self-Organizing Map
(SOM) [56], Learning Vector Quantization (LVQ) [56], and
k-Nearest Neighbors (k-NN) [72], [127], [129]. Clustering is
an unsupervised learning algorithm to divide data into several
clusters of data points that are similar to one another. Different
techniques such as K-means [73], [160], DBSCAN [53], [138],
Mean shift [71], or DenStream [136] clustering have been
used. SVDD and MPM are similar to a SVM. They differ
from a SVM because both learn a hypersphere rather than
a hyperplane that separates all data and feature samples into
two classes [83], [84]. A SOM is an unsupervised one layer
neural network that reduces n-dimensional input vectors into
a 2D feature map. A class is assigned to an unseen input
sample based on how close the input sample corresponds to
a feature map weight vector based on a distance metric. The

LVQ is a supervised two layer neural network containing a
competitive and fully connected layer. The competitive layer
is similar to a SOM apart from having a limited and predefined
number of outputs instead of having an output for every feature
map weight vector and containing a transfer function. The
output of the transfer function is fed into a fully connected
layer to return a classification result for a set of user defined
classes [56]. A k-NN model assigns a class to an input based
on a majority vote of labels from k-nearest samples in a given
data space.

b) Deep black box models: Most deep black box models
belong to the machine learning paradigm called deep learning.
The basic idea of deep learning is that by concatenating
a number of submodels (layers), increasing the number of
computation nodes in a submodel (neurons), and combining
every submodel with an activation function, a non-linear vector
mapping function that varies in complexity is learned from
training data. The varying complexity comes at the cost of
requiring large training datasets and a long training time.
In their most basic form, deep learning models consist of
a number of fully connected layers. This means that every
neuron from the previous layer is involved in the computation
of a neuron in the current layer during a forward pass of input
data samples. This has been represented mathematically via
matrix multiplication in Equation 8. The symbol x is the input
vector, y the output vector, b the bias vector, σ the activation
function (element-wise function), and W the weight matrix.
Weights determine the degree of involvement of a certain
neuron from the previous layer in computing a neuron in the
current layer. The superscript i is the layer index. The input
x (i) of the current layer is the output of the previous layer
y(i−1).

Training a deep learning model happens with data batches
and epochs. During a single epoch, a complete dataset is
passed through the model with so called batches (smaller
subsets of a dataset). After a batch has been passed through
the model, the model output vectors are compared to label
vectors, expected values, original input batch, etc. via a cost
function C depending on the type of learning and model task
type. The cost function is minimized via gradient descent
which involves iterative weight and bias updates based on an
average batch cost function value. A single weight update is
depicted in Equation 9. The symbol η is a hyperparameter that
controls the amount of a partial derivative that is used to update
weights and biases. Because the forward pass of input data
samples involves layer concatenations, the partial derivative
is calculated via a backpropagation algorithm that has been
derived with help of the Calculus chain rule. Additional
information on deep learning can be found in [223].

y(i) = σ(W (i)x (i) + b(i)) (8)

W (i)
n = W (i)

n − η
∂C

∂W (i)
n

(9)

A Convolutional Neural Network (CNN) is a deep learning
model of which at least one layer involves convolution oper-
ations. CNNs found in millimeter wave sensing application
pipelines are mainly combined with 2D spectrograms [48],



10356 IEEE SENSORS JOURNAL, VOL. 21, NO. 9, MAY 1, 2021

TABLE XIII
SUMMARY OF HYBRID ANALYTICAL MODELS USED IN MILLIMETER WAVE SENSING PIPELINES. THE ABBREVIATIONS ARE EXPLAINED

THROUGHOUT SECTION IV-D

[53], [92], [93], [123], [127], [130] and 2D radar images [103],
[120], [174], [181], [192], [193]. CNNs have been used exten-
sively for images originating from vision and object detection
domains in the past. Spectrograms and radar images share
similar characteristics with these images. The data types are
2-dimensional and features relevant to the mapping function
are made up of values local to one another in the value
matrix. Another observation is that many approaches base
their model on existing vision and object detection models
such as VGG [92], [93], ResNet [92], [123], ZFnet [193],
Faster R-CNN [130], [181], YOLO [192] and FCOS [120].
The pipelines therefore rely on experience gathered with
images in the vision and object detection domains. In addition,
a few approaches have tried using a temporal CNN with 1D
profile [158] data and a feature distributed CNN with a single
point cloud frame [124] as input.

An approach that can be combined with time sequence
data is the Recurrent Neural Network (RNN). RNNs are very
good at discovering time dependencies among these sequences
because they take into account historical information (i.e.
information from previous input data samples) via hidden state
vectors. Most approaches adopt the Long Short Term Memory
(LSTM) network which is a special type of RNN that deals
with the vanishing gradient problem noted when training tradi-
tional RNNs [128]. The authors in [77] use a Gated Recurrent
Unit (GRU) layer. This layer is comparable to a LSTM layer
apart from not having separate memory cells. The LSTM
network is mainly combined with a flattened (voxelized) point
cloud frame sequence [46], [47], Manually extracted 2D spec-
trogram sequence features [72], RSS fingerprint matrix [143],
PCA extracted feature sequence [76], and alpha-beta filtered
trajectory [128]. An important observation here is that LSTM
requires some kind of feature extraction prior to using the time
sequences for training.

CNN/LSTM combinations harness the strengths from both
models. Comparable to local spectrogram and radar image
features, point cloud frames contain clouds that are located
very sparsely. In contrast, the positioning of points inside a
given cloud is very compact. Therefore, time distributed CNNs
can be used to obtain features from a single spectrogram, radar
image, and point cloud frame in a sequence while LSTM mod-
els the time dependency in the sequence afterwards in an end-
to-end fashion [77], [125], [138]. The authors in [46] denote

that bi-directional LSTMs converge faster than CNN/LSTM
combinations for a person identification task. However, this
does not mean that they are better since the authors in [47] note
that a CNN/LSTM combination outperforms a bi-directional
LSTMs network in a human activity detection task. Therefore,
model testing remains the norm when creating new models.

3) Hybrid Modeling: In Tables XI and XII several rows
include multiple crosses, indicating use of multiple models.
There are reasons for combining models. The authors in [47],
[56], [145] compare several self-created models to each other.
Authors in [46], [55], [72], [89], [94], [96], [114], [127], [132],
[134], [135], [143], [185] incorporate different processes in
their millimeter wave sensing application pipeline that use a
distinct model. Several papers use pipelines that include a tree
or sequential set of multiple models coming from both the
data and model driven paradigms. These sets are considered
to be hybrid models. Table XIII presents our analysis of
hybrid models used in millimeter wave sensing application
pipelines.

In principle, hybrid models are constructed by putting the
mathematical and data driven models together in a sequential
or tree-based manner. Hybrid models constructed in a sequen-
tial manner were found in [45], [48], [53], [92], [160]. In [45],
a Bayesian filter was combined with a random forest output
to reduce sporadic false-positive errors. A patient behavior
detection task first tracks the patient with a combination
of clustering and a Bayesian filter. Tracking information is
used to construct two dimensional Doppler spectrograms that
can be used with a CNN for behavior detection. This limits
computational complexity since additional pre-processing with
STFT or FWT is omitted [53]. Environmental mapping [160]
is performed with a specific set of steps. First, spatial channel
profiles consisting of AoA, AoD and RSS information are
associated to a potential reflector through clustering. After-
wards, reflector points are retrieved through elementary geom-
etry. An issue experienced in moving target classification is
having micro-Doppler signatures spread across many different
range bins in profiles across time. This issue is solved by
tracking the position of these bins with a Bayesian filter and
association/allocation combination. Afterwards, the bins are
passed through STFT and fed into different neural networks
for classification [92]. Motion behavior detection in [48] is
performed by first applying a clustering algorithm on point
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TABLE XIV
SUMMARY OF EVALUATION METRICS USED FOR MEASURING PERFORMANCE OF THE ANALYTICAL MODELS MENTIONED IN SECTION IV-D. THE

DATA DRIVEN EVALUATION METRIC ABBREVIATIONS ARE EXPLAINED THROUGHOUT SECTION IV-E.1

cloud data to form micro-Doppler signature data. The sig-
nature data is afterwards fed into a CNN to predict motion
behavior.

There are two versions of tree-based hybrid models as
addressed in [95], [128], [136], [186]. In the first version,
the tree-based hybrid model either branches off to perform
multiple processes simultaneously or fuses the output of

several simultaneously performed processes to perform a sin-
gle consecutive process. In addition to vision data fusion with
a Bayesian filter, millimeter wave data is first clustered [95].
Simultaneous Localization And Mapping (SLAM) is solved
by first clustering a raw radar scan to make it more sparse.
Secondly, the scan is fused with odometry sensor data in a
particle filter to estimate an odometry pose. Meanwhile, scan
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matching with a reference scan is implemented on the sparse
radar scan for retrieving new parameters used for updating
the cluster model [136]. In the second tree-based hybrid model
version, a model decision is taken based on a particular context
at particular points in the tree. An air writing pipeline [128]
tracks consecutive three dimensional locations with an α − β
filter. The locations are determined via trilateration with range
estimates coming from several radars. Afterwards, both a CNN
and LSTM are tested on a character recognition task. Another
model pipeline used for solving the SLAM problem [186]
first chooses a triangulateration, angle/time or RSS model for
both client and anchor node localization based on whether
the environment map is known or not. Secondly, a decision
between a RSS or angle/time model is made for estimating
obstacle surfaces. Thirdly, the surface limits are determined
either by analyzing the difference in RSS at AoAs situated
at the limits or interaction of obstacle sides if the shape
is two dimensional. Fourthly, clustering is used to reduce
measurement bias due to noise. Lastly, an extended Kalman
filter is deployed to improve the results.

4) Gaps and Challenges: An interesting observation derived
from Tables XI and XII is that use of white box and shal-
low black box models in the context of millimeter wave
sensing applications is restricted. White box models solely
rely on physical and or mathematical knowledge for model
construction. Several shallow black box models, such as
SVMs and decision trees, rely on manually crafted data
features for model construction [43], [78], [79], [147], [159].
Crafting features manually relies heavily on experience and
knowledge of domain experts. The observation and infor-
mation regarding white box and shallow black box model
types suggest that there is ample room for research geared
towards better understanding the millimeter wave sensing
environment, i.e., ample room for analyzing millimeter wave
sensing environment dynamics and uncertainties. Secondly,
Table XII indicates that most research with deep black box
models is restricted to CNNs and LSTMs. This leaves room
for exploring the use of Temporal Convolutional Networks
(TCNs) for modeling time dependency in raw data sample
or data feature sequences. Lastly, Tables XI and XII indicate
that the variety of models used in the millimeter wave sensing
application pipelines is limited. Many application pipelines use
CNNs, LSTMs, Bayesian filters, and or association/allocation.
Therefore, increasing model variety and thus the knowledge
on how analytical modeling in the millimeter wave sensing
environment can be approached is a challenge that remains to
be addressed.

E. Modeling Evaluation
In this section, we review evaluation metrics used to mea-

sure model performance of models employed in millimeter
wave sensing applications as mentioned in Section IV-D.
We also describe techniques used to improve data driven and
grey box model training performance and evaluation.

1) Performance Evaluation Metrics: Table XIV summarizes
performance metrics that are used in the reviewed papers.
It can be seen that confusion matrix and accuracy are the
most often used metrics in data driven model performance

assessment. In training and validation of data driven models,
the validation dataset is used to make choices about the
model, including its hyperparameters [223]. After iteratively
training and validating the model, the final model performance
in relation to the application goal is evaluated on a held
out test dataset consisting of samples that the model has
not seen before. The outcome of the testing is compared
to data labels and results are presented in the form of a
confusion matrix and or metrics that summarize the content of
a confusion matrix. The confusion matrix [78], [123] shows
model classification performance for every class in the test
dataset. The rows and columns represent ground truth and
predicted classes respectively. Diagonal elements in the matrix
denote the number, or fraction, of true positives for every
class. When the diagonal elements are removed, the remaining
row elements denote the false positives and remaining column
elements the false negatives for every class. Positive samples
are those that have been predicted to belong to a certain class.
Negative samples are those that have been predicted to not
belong to a certain class. Accuracy is defined as the overall
proportion of predicted test dataset labels that match with
the ground truth test dataset labels. Precision is a ratio of
the number of true positive predictions to the number of all
positive predictions made for a certain class. Recall is a ratio
of the the number of true positive predictions to the number of
all samples with a positive label in the ground truth dataset for
a certain class [223]. Sometimes the inverse of accuracy and
precision, the so called misclassification rate [43], [51], [94]
and false discovery rate [189], [191], are also used. F1 score is
the harmonic mean of precision and recall [123]. Specificity
is a ratio of the number of true negative predictions to the
number of all samples with a negative label in the ground
truth dataset for a certain class [104]. The area under the
Receiver Operating Characteristic (ROC) curve has also been
used, which shows the degree of output separability [181].
A paper on gesture recognition used invalid gesture rate in
conjunction with accuracy and misclassification rate to test
data driven modeling performance for a set of gesture classes.
Invalid gesture rate is defined as a ratio of samples classified
as invalid gesture compared to the total number of samples in
the test dataset [43]. Several model driven model results are
also reported with the accuracy metric.

Model driven model performance is measured based on
output comparison with a baseline, i.e., via an error metric with
a well-established measurement technique. Error is defined
as output deviation compared to the baseline and can be
measured through various parameters such as Root Mean
Square (RMS), Cramér-Rao Lower Bound (CRLB), mean,
and standard deviation. CRLB is defined as the minimum
achievable variance [152] of a certain parameter. A few data
driven models were also tested with an error metric. Both data
and model driven models sometimes rely on visual inspection
to determine model performance. Visual inspection can be
used to assess feature separability [83], [84], [127], [158] or
model behavior [44], [55], [67], [96], [114], [150], [161].

2) Model Improvement and Evaluation Techniques: After
developing mathematical proofs or conducting numerous
quantitative experiments, physical and or mathematical



VAN BERLO et al.: MM SENSING: REVIEW OF APPLICATION PIPELINES AND BUILDING BLOCKS 10359

TABLE XV
SUMMARY OF MODEL IMPROVEMENT, OPTIMIZATION, AND EVALUATION TECHNIQUES USED TO IMPROVE AND EVALUATE DATA DRIVEN AND GREY

BOX MODEL PERFORMANCE

information required for solving a particular problem becomes
known. Once this information is known, the white box model
construction process for solving the problem is straightforward
and the resulting model will exhibit good performance [227].
This is not the case for grey and black box models. Grey box
models involve hidden state updates and or use of cost and
similarity functions that depend on input data or features. This
requires grey box model evaluation through numerous experi-
ments every time the sensing application context, input data or
feature distribution changes. As explained in Section IV-D.2,
black box models are constructed through an iterative process
in which a model is eventually created that performs well on
a test dataset or feature set. This section elaborates on several
problems that occur during grey box and black box model eval-
uation and black box model creation, and how these problems
can be solved with special model improvement, evaluation, and
or optimization techniques. These techniques are summarized
in Table XV. Because new model creation is explained in
Section IV-D, we do not focus on it in this section. Elements
causing training instability are not further explained. Predic-
tion denoising through Non-Maximum Suppression (NMS) or
fusion performed by [181] is out of context in this section
and is therefore not addressed. Next we explain main model
improvement, optimization, and evaluation techniques used
with data driven and grey box models in millimeter wave
sensing applications.

a) Regularization: An issue frequently encountered during
model training is model overfitting, in which model parameters
and mapping function completely adapt to the training data or
feature set. This will cause the model to exhibit sub-optimal
performance on held-out (unseen) data. Various regularization
techniques try to avoid overfitting and help the model to
perform well on a wider variety of data it might encounter
when deployed in specific applications [223]. For example,
the ability of a cost function to minimize or a reward function
to maximize itself can be limited with a special constraint [47],
[78], [79], [150], [158], [193] and weight decay [92], [120],
[128], [181] parameters added to the function. It can be
decided to occasionally stop a parameter update for a limited
number of model parameters in a particular training cycle
through means of dropout [46]–[48], [53], [63], [77], [92],
[103], [125]–[128], [130], [138]. In early stopping, the val-
idation data or feature set can be used to inspect the model
performance after every training cycle. In case the performance
starts to diminish compared to previous training cycles, model
training is stopped [103], [128]. A certain percentage of the
training set can include noise samples to make the eventual
model robust to input noise [77].

b) Hyperparameter tuning: Most data driven models involve
some kind of manual hyperparameter tuning as shown in
Table XV. Hyperparameters include number of layers, neu-
rons, forest size, forest depth, number of training cycles,
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number of data or feature inputs before an update is applied to
model parameters, etc. Sometimes it is difficult to set the right
initial hyperparameters due to a lack of a priori knowledge and
experience. In this case, an exhaustive hyperparameter search
using a grid search [47], [50], [78], [79] can be implemented,
through which a complete grid of hyperparameter values is
constructed. Afterwards, for every possible hyperparameter
combination, a model is created and its performance is eval-
uated. The set of final hyperparameters is selected as the
one that gives the best model performance. Not adapting the
learning rate, i.e., a hyperparameter that controls how much
parameter update is used to change the model parameters, dur-
ing training cycles can result in long execution time for model
training or training instability. To combat these problems,
adaptive learning rate techniques such as Adaptive Moment
(ADAM) estimation [46], [47], [53], [63], [76], [92], [103],
[123], [124], [126]–[128], [130], [158] or manual learning rate
decay [125], [174] can be employed.

c) Cross validation: Cross validation refers to training a
model and evaluating model performance multiple times on a
variety of different data or feature set splits. Splitting refers to
partitioning a data or feature set into a subset designated for
model training, a subset designated for model validation, and
a subset designated for model testing. If model performance
results are retrieved from a single training, validation, and
test split, the model performance results will have a split
specific bias. This means that the performance result will
strongly deviate from the mean performance result that could
be expected based on a given data or feature set. To combat
this, model training, validation, and testing can be executed
on a variety of splits for more robust performance result
evaluation. This can be implemented very exhaustively with
leave-one-out cross validation in which the train-validate-test
split is repeated for every possible combination [137], [139].
Instead, methods such as Monte Carlo [123] and k-fold cross
validation [47], [50], [78], [79], [91], [92], [125], [129], [137],
[139] can be used in which the data or feature set splits are
limited to a certain number.

d) Training stabilization: Elements like gradient exploding,
gradient vanishing, internal covariate shift, noisy parameter
updates, and bad parameter initialization have a negative
impact on training stability. Training stability refers to an
analytical model whose cost or reward function gradually
minimizes or maximizes over time when new training samples
are encountered during model training. Training instability
examples include the cost or reward function prematurely
becoming constant, a cost function that suddenly starts to
increase with continuous acceleration, etc. Batch normal-
ization [16], [63], [92], [123], [124], [128], [138], [192],
initializing the model parameters prior to training with Xavier
initialization [126]–[128], [192], making changes to existing
model types with for example the ResNet layer [92], [123]
or LeakyRELU activation function [48], [53], [77], [138], and
parameter update averaging over multiple training cycles with
momentum [120], [125], [181], [193] have been proposed to
solve the problem of training instability.

3) Gaps and Challenges: A challenge often encountered in
model evaluation is determining a set of metrics that can

completely and objectively assess model performance. From
Table XIV, it can be concluded that there is no such universal
metric and none of the existing works covered all or even
a majority of the given performance metrics. This, in com-
bination with model variation, makes benchmarking between
models difficult. A widely used metric that does not portray a
complete performance picture is the accuracy metric. Accuracy
cannot discriminate between a good or bad performing model
in case data or feature sets are heavily skewed in terms of
class distribution. More information regarding the selection of
a suitable set of performance metrics can be found in [228].
Designing models that perform well in both lab and real-life
contexts is still a major challenge. Model simulation [133],
[184], [186], [201], controlled experiments [47], [83], [84],
[104], and system challenges related to generalization [142]
and impact [107] are frequently observed in scientific studies.
Examples of controlled experiments and restricted experi-
mental environment include test subjects performing activities
directly in front of a radar [47] and object detection with very
limited and pre-defined objects placed at specific positions
in a radar’s FOV [83], [84]. Table XV shows that many
papers do not harness the strength of multiple regulariza-
tion methods. It is reasonable to think that combining loss
constraint, dropout, and or weight decay is not required or
it is undesired because a single one of these methods may
already result in good model performance on unseen data or
they might negatively influence the training process [223].
Therefore, combining loss constraint, dropout, and or weight
decay to improve model performance on unseen data is always
subject to extensive evaluation. However, using early stopping
in combination with other regularization methods can omit
the need for exhaustively tuning the required number of
training cycles to achieve optimal model performance while
not negatively influencing the training process [223].

V. CHALLENGES, TRENDS, AND FUTURE PERSPECTIVE

This section presents and explains identified scientific and
technological challenges and trends for applications of mil-
limeter wave as a sensing technology. The challenges and
trends have been categorized into several challenge and trend
categories: hardware, unsupervised representation learning,
support from other sensing domains, application integration,
and crowd analysis. In addition, this section also provides a
future perspective for applications of millimeter wave as a
sensing technology.

A. Hardware
Several challenges related to the hardware used to collect

data have an effect on how well a millimeter wave sensing
methodology performs. Human vital sign monitoring pipelines
are currently not reliable enough in the context of multiple
humans that are all located at varying distances from each
other and at various positions in reference to the data collection
system. Issues include different relative error results compared
to a baseline in the context of changing measurement positions
(measuring in front or at a side of a test subject) [107],
[147], impact of random body movement [62], [105], [144],
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and measurement occlusion issues when humans are standing
too close to each other [144], [147]. One study focused on
finding the most optimal vital sign sensing position [202].
Several pipelines experience performance deterioration at large
distances from the data collection system [79], [86], [97],
[102], [113]–[115], [124], in the presence of solids such as
occluding objects [93], [100], [102], [114] and brick/concrete
wall barriers [79], [112], [113], not using 3D printed placement
constraints [139], and in the context of hard to distinguish
entities [78], [91], [103], [116], [149], [153]. A challenge in
concealed object detection and pedestrian detection is the vari-
able reflection intensity caused by different types of clothing
people wear [189], [196]. One gesture recognition methodol-
ogy in a car analyzed the impact of measurement position [42].
The optimal sensor placement was found to be on the center
console (for use by front seat passenger and the driver) or in
between the backs of the front seats (for use by the back-seat
passengers). Performance deterioration was encountered when
the sensor was placed too close to detectable objects such
as the gear shift. Robustness against environmental effect
analysis is limited to ego-motion estimation in [132]. Other
challenges for manufacturers are to bring the cost of millimeter
wave systems down to allow large deployments on a budget
(e.g., for crowd analytics) and to improve the design and the
form factor such that these systems do not cause architec-
tural and aesthetic concerns for environments where they are
deployed.

B. Unsupervised Representation Learning
Unsupervised representation learning has been used to

pre-train a denoising autoencoder [174] in millimeter wave
application pipelines. The network can be used afterwards
to extract features from a dataset that generalize to a wide
variety of end tasks [217]. Features are transferred from a
pre-trained neural network to a supervised end learning task
network. The networks used during pre-training and the end
task share no learning task relation [229]. More information
can be found in a review written by Bengio et al. [217].
In 2014, a new breakthrough in unsupervised pre-training
was realized by Dosovitskiy et al. [230]. A concept called
self-supervised learning was envisioned in which a supervised
neural network tries to classify data transformations applied
to unlabeled data in the pre-training stage. Since millimeter
wave data is unlabeled too when it is sampled from the
underlying hardware, it remains to be determined if unsuper-
vised representation learning can reduce the amount of labeled
data required for training end task deep learning models by
using either unsupervised or self-supervised learning in a given
pre-training stage. Millimeter wave datasets that can be used
for experimentation include the UWCR radar mini, NuScenes,
RadHAR, and Solinteraction datasets [47], [93], [139], [200].
However, the ability to explore is currently hindered by a lack
of more datasets as indicated in [103] for pose estimation.

C. Support From Other Sensing Domains
Some pipelines apply sensor fusion of millimeter wave data

with data originating from other sensing domains. Sensing

domains include vision [51], [61], [66], [67], [71], [95], [105],
[120], [146], depth [44], [105], lidar [71], inertial measure-
ments [89], and exerted forces [91]. Data originating from
these domains complement millimeter wave data and there-
fore cause more accurate analytical modeling performance in
several situations. Analytical modeling performance in on-road
detection and tracking suffers from limited spatial resolution
of, and noise in, millimeter wave data [51], [61], [67], [95],
[120]. Odometry information model performance also suffers
from noise in millimeter wave data [89]. Data originating
from other sensing domains have been used to guide a radar
collection system to the most accurate vital sign sensing
position [105] and have lead to increased analytical model
performance [44], [66] and model state accuracy in object
detection for visually impaired people [44]. Millimeter wave
data also provide benefits to other sensing domains in return.
The data are used for example to differentiate objects based on
material, density or volume where exerted forces only measure
similar object geometries [91]. In the future, fusion with
other sensing domains can be extended. For example, when
measuring crowd density in a limited space inside a building,
fusion with heat energy obtained through a temperature sensor
can be explored.

D. Application Integration
A variety of different sensing applications integrate different

application types. Examples include combining communica-
tion and sensing [80], [140], combining vital sign, activity,
and gesture sensing for more robust occupancy detection [81],
SLAM [136], [154], [185], [186], detection/tracking and iden-
tification [46], [123], [143], and detection and activity recog-
nition [77]. Detection and tracking make identification and
activity recognition more robust in unknown environments.
Research combining communication and sensing is limited
to vision [80] and range simulations [140]. Due to per-
formance deficiencies with communication-only access point
sensing [80], sensing capabilities built into special access
points are envisioned to enable better elderly monitoring and
building analytics without extra costs related to installation
of dedicated sensor hardware. The combination of commu-
nication and sensing in Vehicle to Vehicle (V2V) scenario’s
is envisioned to enable robust driver assistance systems [231].
Yassin et al. [186] denote that SLAM research with millimeter
waves is still at its infancy.

E. Crowd Analysis
Throughout the review process no papers have been

found that explore crowd analysis with millimeter wave
sensing. The non-image based crowd counting review by
Kouyoumdjieva et al. [232] is recommended as an introduc-
tory read since millimeter wave crowd analysis applications in
the future will belong to the non-image based crowd analysis
application category. Future millimeter wave crowd analysis
research will include density/size, flow/trajectory/movement,
and activity/behavior analysis. Density/size analysis refers to
counting the number of people and their distribution in a given
area. Kouyoumdjieva et al. [232] denote that for disaster man-
agement and city-wide public transportation crowd counting
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tier models should be developed that have the ability to provide
a macro crowd count based on local estimates calculated
over different micro or meso areas. Flow/trajectory/movement
analysis refers to determining major movement flows and
directions in a given area, as well as identifying minimum
and maximum bounds in terms of target numbers and dynam-
icity. Activity/behavior analysis refers to determining meso
and macro level crowd activities, as well as identifying the
correlation between location and activities and minimum and
maximum bounds in terms of target numbers and granularity
of activities. Major challenges for millimeter wave crowd
analysis include methodology scalability to major events
including thousands of people and operation security. The cost
to deploy a grid of millimeter wave data collection systems is
currently too high and deployed grids, in case the grid is not
concealed in the environment, will interfere with decor design.
Kouyoumdjieva et al. [232] denote that no non-image based
crowd counting methodologies explore security in the form of
robustness to output manipulation and malicious users trying
to disable methodology functionality.

F. Future Perspective
We notice that most millimeter wave sensing research is

currently limited to a personal lab scope. This means that
research is most often performed with one person, a few
people, one object or a few objects in simulated or controlled
experiment environments. We believe that there is a lot of
potential for research geared towards exploring millimeter
wave sensing in large scale active and dynamic industrial and
urban area’s involving numerous people, other mammals, and
or objects in the future.

Millimeter wave sensing infrastructures are unobtrusive in
nature and will be deployed ubiquitously. Future millimeter
wave infrastructures will also co-exist and collaborate with
other sensing and communication infrastructures, and serve
multiple sensing applications in parallel. For example, sensing
capabilities will be integrated into special communication
access points in the future to enable better elderly monitoring
and building analytics without costs related to installation of
dedicated sensor hardware [80]. Integration of communication
and sensing in V2V scenario’s will enable robust driver
assistance systems [231].

Analytical modeling will become more prominent in mil-
limeter wave sensing application pipelines. Jiang et al. [158]
have presented an analytical model that has the ability to
extract input data features that are environment and user
specific information (i.e. domain) independent in the context
of human activity detection. We believe that the ability to
learn extraction of domain independent input data features
is an important goal for future research in the context of
analytical models that work with millimeter wave data. This
ability will allow analytical models to be robust against
influences from a variety of domains and therefore to perform
well in real-life scenario’s in the future. Analytical modeling
research should be conducted to determine which domain
influences can or cannot be mitigated, which domains can
or cannot be integrated in an analytical model, how an
analytical model can learn latent domains from the input

data, and which analytical model types work best in a wide
variety of different application types. For example, several
hardware challenges can be regarded as a domain, rather than
trying to mitigate hardware challenge influence and application
robustness deterioration with cancellation methods [233] per
challenge, using sensor fusion, or integrating application types.
A variety of different models that extract domain independent
input data features can be found in papers which do not
consider millimeter wave sensing. For example, papers that
consider WiFi CSI [234]–[236]. An important step in analyti-
cal modeling, due to the labor intensive nature of labelling
millimeter wave data, is the development of unsupervised
models that achieve performance that is on par with supervised
counterparts. We believe that it is also important to investigate
how learning domain independent input data feature extraction
can be integrated with creation of analytical models through
means of unsupervised or self-supervised representation
learning.

Stimuli such as sound, light, stress, anxiety, overtraining,
temperature, humidity, etc. have an effect on our health and
vitality [237]. The COVID-19 pandemic and confinement mea-
sures taken during the pandemic result in stress and anxiety in
a wide variety of different people [238]. We believe that this
will spark debate in the general public about the effect of stress
and anxiety and how we can reduce stress and anxiety in our
daily lives in the near future. We also believe that this will
stimulate research regarding the effect of stimuli on health
and well-being with millimeter wave sensing systems. Vital
sign sensing with millimeter wave systems can be used in
niches where so called contact sensors, i.e., sensors involving
electrodes, air analysis with nasal cannula or mask, a strap-on
system, smart watch, smart phone, etc., [233], [239], cannot be
used. Examples include, but are not limited to, skin irritation
and allergic reactions, damaged skin (rashes, burns, hives,
etc.), in the presence of clothes and obstacles [240], multiple
beings, and humans that have certain behavioral conditions
(e.g. severe autism, dementia, etc.).

VI. CONCLUSION

This is the first review that completely covers millime-
ter wave sensing application pipelines and pipeline building
blocks in the form of a systematic literature review to the best
of our knowledge. The millimeter wave technology covers a
wide bandwidth and its short wavelength gives limited range.
The limited range in turn provides low signal interference.
This means transceivers can be packed very densely in an
area without disrupting each others’ communication signals.
These properties of the technology not only yield high com-
munication rates, but also provide a great opportunity for
sub-millimeter accuracy level sensing of the surroundings,
easily penetrating through simple obstacles like plastic and
fabric.

Our analysis of the literature showed that there are indeed
a variety of application types for millimeter sensing that
we group into three domains; namely, human, object, and
environment sensing. The application pipelines in the literature
are made up of (a subset of) five common building blocks:
data collection, pre-processing, feature extraction, analytical



VAN BERLO et al.: MM SENSING: REVIEW OF APPLICATION PIPELINES AND BUILDING BLOCKS 10363

modeling, and modeling evaluation. There is naming confusion
in the literature in terms of which models and techniques
take part in which building blocks. In this paper, we pro-
vided sharp descriptions of millimeter wave sensing build-
ing blocks; i.e., the hardware, algorithms, analytical models,
and or model evaluation techniques that are covered by
each block.

For different applications in the literature, each building
block may select from a variety of models and techniques.
A close look into many application instances reveals that
a large majority of them stick to a combination of a few
common solutions in their sensing pipelines. The rest of the
models and techniques remain application-specific and their
usage is not explored widely in other applications. This is not
surprising as this field of research and development is still
young and it is safer to rely on widely accepted solutions.
For example, it is very common to utilize deep black box
models employing CNNs and LSTM networks in the more
frequently used data driven modeling, whereas Bayesian filters
and association/allocation seem to be the first choices among
model driven approaches. In terms of feature extraction, man-
ual feature mapping is the predominant choice of researchers.
We therefore encourage the researchers entering, or planning
to conduct new research in, the millimeter wave sensing
environment to try out new models. This will increase the
model variety and thus the knowledge on how analytical
modeling in the millimeter wave sensing environment can be
approached.
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