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False-Alarm-Controllable Radar Detection for
Marine Target Based on Multi Features

Fusion via CNNs
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Abstract—Due to the influence of the complex marine
environment, the marine target detection based on statistical
theory is difficult to achieve high-performance. Moreover,
due to various targets’ motion characteristics, only using
a single feature for detection is unreliable. In this paper,
from the perspective of feature extraction and classifica-
tion, marine target and sea clutter are classified by deep
learning methods. To achieve the required false alarm rate,
the dual-channel convolutional neural networks (DCCNN) and
false-alarm-controllableclassifier (FACC)-based marine target
detection method is proposed. Firstly, the measured sea clut-
ter and the target signal are preprocessed to obtain the time-
Doppler spectrum and amplitude information. The Marine-
DCCNN (MDCCNN) is then constructed for features extraction and fusion, and the feature vectors of the signals are
obtained. The performance of different feature extraction models is tested and compared. Finally, the FACC is used as
a detector to classify the feature vectors into two categories and the control of the false alarm rate is realized. The
detection performances were verified by two popular public radar datasets, i.e., IPIX radar dataset (floating target) and
CSIR dataset (maneuvering marine target). The results show that compared with single-channel CNN and histogram of
oriented gradient support vector machine (Hog-SVM) classification, a combination of MDCCNN feature extraction model
and softmax classifier can achieve higher performance and controllable false alarm rate. Moreover, HH polarization and
mixed training datasets under different sea states can help improve detection performance.

Index Terms— Radar target detection, marine target, feature extraction, dual-channel convolutional neural network
(DCCNN), false alarm controllable classifier (FACC).

I. INTRODUCTION

SEA surface target detection is important in both military
and civilian fields [1]. As the primary means, radar is

widely used for maritime search and rescue, ocean surveil-
lance, and national defense security [2]–[4], etc. However,
sometimes the radar echo of marine target is weak due to the
strong sea surface radar reflections, i.e., sea clutter [5], [6]. The
marine target may exhibit low observability characteristics,
which makes the radar detection performance difficult to meet
the actual needs. Robust and adaptive detection of targets in
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sea clutter is a worldwide problem and a key point for radar
signal processing [7], [8].

The traditional detection method is based on statistical
theory [9], and the detection process is based on the ampli-
tude distribution model hypothesis [10]. However, in prac-
tical applications, it is difficult to accurately describe the
sea clutter distribution with the statistical models. Achieving
high detection performance is difficult in complex marine
environments [11]. Another kind of marine target detection
method is from the perspective of characteristic differences
[12], [13]. In addition to the radar amplitude, the speed
variation is different for target and sea clutter, and the micro-
Doppler can reflect the instantaneous velocity change of the
target or the scattering points [14]–[16]. The time-Doppler
spectrum using time-frequency analysis is useful, which stands
for the frequency distribution over time [17], [18]. It is essen-
tially the coherent integration, which can improve the signal-
to-clutter ratio (SCR) of target’s returns [19]. These methods
include linear transform, such as short-time Fourier transform
(STFT), fractional FT (FRFT), etc.; and nonlinear transform,
such as Wigner-Ville distribution (WVD), fractional ambiguity
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function (FRAF), etc. However, they need to match with the
target motion characteristics to achieve higher integration gain,
and the detection performance cannot adapt to different motion
status as well.

Recently deep learning methods are developed, which are
quite efficient and effective for data expression [20], [21],
especially for high-dimensional feature extraction [13]. As the
most popular solution of deep learning, convolutional neural
networks (CNN) models begin to be applied to radar signal
processing, target detection, and recognition, such as SAR
image processing [22], gesture recognition [23], clutter sup-
pression [24], navigation radar image detection [25], etc. Ref-
erence [21] combined the preprocessed SAR image with the
original image and classified the images with CNN, in order
to achieve high recognition performance. Reference [26] used
CNN to classify range-Doppler images of radar signals to
achieve gesture recognition. In [24], the deep neural network
(DNN) is applied for binary classification, i.e., target detection.
In [25], CNN is employed to classify the segmented maritime
radar image samples to achieve the classification of maritime
targets, clutter, and coastline. Since the target detection is a
binary classification of the signal, the binary classification of
CNN can be applied to distinguish the target from the clutter.

Different from image detection and classification, several
essential issues need to be considered when using CNN
for radar signal detection and classification in clutter back-
grounds. On the one hand, the radar detection environment
is involved with different target characteristics. Only using a
single feature is unreliable. For example, due to the influence
of strong backscatters of the sea surface, e.g., sea spikes,
sea clutter sometimes exhibits similar characteristics with
the moving target on the time-Doppler spectrum [27], [28].
In [29], CNN was used to classify several types of micro-
motion targets, achieving a classification accuracy of 99.46%.
However, the target echo is discontinuous due to the influence
of sea waves. Moreover, due to the low speed, the target’s
spectrum will be overlapped and covered by sea clutter on
the time-Doppler domain, resulting in classification errors.
Therefore, only using single-channel CNN (the time-frequency
information) for maritime target detection is not satisfactory.
In [30], multi-channel CNNs are used to extract and fuse lidar
and hyperspectral images for ground objects classification. For
radar signal detection under complex sea clutter background,
how to select the multi-channel features and design proper
CNN models still remains investigated.

The other important factor which should be considered for
real applications is the controllable false alarm for stable
detection performance [31]. The traditional constant false
alarm rate (CFAR) detector is an adaptive threshold method
determined by the statistical distribution characteristics of the
background [32]. Because the prior probability information of
the target is not available, the risk function of false alarm
and missing alarm are different and cannot be quantified,
and the minimum Bayes risk decision method cannot be
adopted for CNN [33]. It is proved that the machine learning
model using the minimum mean square error loss function
could be used as the Neyman-Pearson (NP) criterion [34].
In [11], a cost-sensitive support vector machine (2C-SVM)

is proposed, which is an SVM with different penalty factors
for different classification categories. When processing the
simulated signal of Swerling I and II target and additive
white Gaussian noise (AWGN) background, this detector has
good performances when detecting. However, the detection
probability is lower when processing the real measured signal.
Reference [35] extracted the radar signal sequence’s statistical
information to construct the feature vector, and used the SVM
to classify the signal feature vectors to realize controllable
false alarm. Existed CNN based detection methods mostly
calculate false alarm based on the result itself, e.g., SAR
image detection [36], while most works do not consider
how to achieve better detection performance with controllable
false alarms. Therefore, further research on the CNN-based
detection method is needed to meet the actual radar false alarm
requirement [37]–[39].

In this paper, a marine target detection method based on
marine dual-channel CNN (MDCCNN) with a false-alarm-
controllable classifier (FACC) is proposed for complex back-
grounds. Two typical features, i.e., time-frequency information
and amplitude information of radar returns are both subjected
to feature extraction and fusion processing to improve radar
target detection performance. In order to achieve the actual
radar target detection requirements, two classifiers are con-
structed to realize controllable false alarm rates based on the
NP criterion, i.e., variable threshold Softmax classifier and
false alarm controllable SVM. Two types of real radar data
under different conditions, i.e., polarizations (HH, HV, VH,
VV), sea states (low and high), target characteristics (floating
and maneuvering) are used for verification. Moreover, the pro-
posed method is compared with the traditional histogram
of oriented gradient (HOG)-SVM [40], single-channel CNN
method, and CFAR detectors. The rest of the paper is orga-
nized as follows. The principle of the proposed MDCCNN and
two types of FACC are introduced in section II. In section III,
the detailed detection procedure for marine target is given and
the datasets used in the paper are introduced. The effectiveness
of the MDCCNN is demonstrated and validated by two real
radar data in section IV. The last section concludes the paper
and presents its future research direction.

II. PRINCIPLE OF MDCCNN AND FALSE ALARM

CONTROLLABLE CLASSIFIER

A. Principle of Target Detection Based on CNN
When using CNN for image processing, the CNN can be

regarded as a function whose input is the original image and
the output is the classification result [20].

y = fsoftmax ( ffc ( fconv (x))) (1)

where y is the result of classification, x is the input image, ffc
is a fully-connected layer operation and fconv is a convolution
layer operation.

Compared with the traditional fully-connected network,
the use of the convolutional layer in CNN improves the feature
extraction performance significantly. Usually, a CNN consists
of several layers. For each layer, the input of the current layer
is the output of the previous layer. Using CNN to classify
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Fig. 1. Full connection layer structure for target detection.

the target and clutter signals include the procedure of feature
extraction and classification, and the structure corresponds to
the convolution-pooling and the fully-connected layer [41].

1) Convolutional Layer: The operation of the convolutional
layer is as follows [20]

yc
j = f

⎛
⎝ M j�

i

xc
i ⊗ k + bc

⎞
⎠ (2)

where, yc
j is the j th node in output of current convolutional

layer, f ( ) is a nonlinear activation function, such as sigmoid,
hyperbolic tangent function, rectified linear unit, exponential
linear unit, etc., xc

i is the i th node in input of current
convolutional layer, M j is the value range of node xc

i , i.e., the
local receptive field, ⊗ indicating a convolution operation. And
k and bc are trainable parameters, which are convolution kernel
and biases, respectively.

2) Pooling Layer: The pooling layer implements a down
sampling operation, which is performed independently in each
feature map. One node, which is in the output feature map,
is the function of the nodes in the corresponding receptive
field in the input. The function of the receptive field is

y j = fdown (x1, x2, · · · , xN ) , xi ∈ P (3)

where N is the number of nodes in the receptive field P,
and fdown is the down sampling function, and the maximum
pooling is usually selected (calculating the value of node with
maximum value in the P) or the average pooling (calculating
the average value of each node in the P).

3) Fully-Connected Layer: The convolutional layer and the
pooled layer operation complete the image feature extraction,
and the fully-connected layer calculates the category corre-
sponding to the feature. Each node in the fully-connected
layer input has a value link between each node in the output,
as shown in Fig. 1.

The operation of the fully-connected layer is shown as

y f
j = f

� o f�
i

x f
i · w + b f

�
(4)

where o f is the number of the elements in the feature map
output by last layer, w and b f are the weights and biases of the
fully-connected layer. x f

i is the i th node in input of current
fully-connected layer, and y f

j is the j th node in output of
current fully-connected layer.

Usually the first fully-connected layer converts multiple
feature maps into vectors, and the last fully-connected layer
acts as a softmax classification layer. When using CNN for

Fig. 2. The proposed DCCNN structure diagram.

image classification, the dimension of the network output, i.e.,
the number of nodes of the last fully-connected layer, is equal
to the number of categories. The output vector is used to
obtain the classification result according to a certain decision
criterion.

B. Principle of the MDCCNN
Due to the similarity of frequency characteristics of some

targets and clutter, the accuracy is usually low only using time-
frequency graphs with CNN. The CNN classification via time
series amplitude information also has a high error rate because
the phase information of the signal is not utilized, i.e., Doppler
information. Therefore, a novel dual-channel CNNs model is
proposed, using both amplitude and Doppler characteristics of
the signal. The MDCCNN structure proposed in this paper is
shown in Fig. 2.

The MDCCNN includes two CNN channels, which respec-
tively implement time-Doppler and amplitude features extrac-
tion. After extracting the two features, the fusion is performed
with the fully-connected layer, and then the FACC is used for
features classification. The decision threshold is determined
according to the output data of the training set and the required
false alarm rate. The network structures of two features
extraction channels (taking LeNet and VGG19 as an example)
are shown in Fig. 3.

The dual-channel feature extraction network includes an
input layer, channel 1 and channel 2. The input layer separates
the time-frequency graph and the amplitude vector in the
sample matrix, and the two features are output to the extraction
channels. One convolutional layer, a pooled layer, all or part of
a fully-connected layer are employed for each channel CNN.

The m-th layer of convolution layer convolves the input
feature map xm by the convolution kernel km , and expands the
convolution area with the offset coefficient bm , which enables
the edge feature more completely extracted and automatically
extracts the characteristics of the signal in the feature map.
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Fig. 3. Structure of two feature extraction channels: LeNet channel (left)
and VGG16 channel (right).

Then nonlinear factor is introduced via the rectified linear
unit (ReLU) activation function [42],

f (x) =
	

x, x > 0

0, x ≤ 0
(5)

where x is input of the activation function. ReLU activation
function converges quickly and robustly, and the problem of
gradient vanishing can be solved.

Then the output feature maps,

ym
j = f (

�
i∈L

xi ⊗ km
i j + bm

j ) (6)

where, km
i j represents the j-th convolution kernel indicating the

convolution operation of the i -th feature map in the m-th layer,
bm

j indicating the j -th bias coefficient corresponding to the j -
th convolution kernel in the first layer, xi is the input feature
map, and ym

j represents the j -th feature map of the first layer
output.

The n-th layer of the pooling layer is down sampled by
the pooling function yn to reduce the data dimension and the
computation burden. The j-th feature map yn

j of the n-th layer
output is obtained, and the pooling function adopts the average
pooling.

yn
j = Ān(yn

j )c×c (7)

where the function Ā()c×c is the average pooling function,
Ā(yn

j )c×c means that the average value of the feature map
matrix yn

j in each c × c pooling kernel window, and c is the
preset pooling kernel size. The value of c is in correspondence
with that in the CNN type which the channel applies.

The number of output nodes of the p-th fully-connected
layer is q , and the output feature vector of the (p −1)-th layer
is multiplied by the weight matrix wp, and an offset coefficient
bp is added. L p is the output feature matrix,

L p = f


wp L p−1 + bp

�
(8)

The feature fusion network splices the two output feature
vectors of the dual-channel feature extraction network by
one or more layers of fully-connected layers. The number of
layers and the number of nodes per layer are set according
to the application scenario. Take the feature fusion network
with three layers of fully-connected layers for example. The
number of output nodes of the first fully-connected layer is
512, and the feature vector output from the feature extraction
network is multiplied by the weight matrix w3,1. The offset
coefficient b3,1 is added and L3,1 is the output feature matrix,

L3,1 = f


w3,1 [Lc1, Lc2] + b3,1

�
(9)

The number of output nodes of the second fully connected
layer is 128, and the output feature vector of the first fully-
connected layer is multiplied by the weight matrix w3,2, and
the offset coefficient b3,2 is added. L3,2 is the output feature
matrix,

L3,2 = f


w3,2L3,1 + b3,2

�
(10)

The number of output nodes of the third fully-connected
layer is 2, indicating a binary classification, and the feature
vector outputted by the second layer is multiplied by a weight
matrix (2 × n), and an offset coefficient b3,3 is added. L3,3 is
the output feature matrix

L3,3 = f


w3,3L3,2 + b3,3

�
(11)

C. False Alarm Controllable Classifier
Existed marine target detection is mainly based on CFAR

detection. Under the premise of the clutter distribution char-
acteristics, the CFAR detection can achieve a constant false
alarm rate. However, CFAR detection has the disadvantage
of being significantly affected by the environment. When the
statistical characteristics of sea clutter are inconsistent with
the thresholds, the method cannot achieve high-performance
[43].

Radar target detection usually obeys NP criteria, which can
been achieved by machine learning methods. The machine
learning network trained by minimum mean square error
function can achieve CFAR detection. The minimum mean
square error function is:

J (F) =
�

I



z, F(z),

∂ F(z)
∂z1

, · · · ,
∂ F(z)
∂zL

�
dz (12)

where, z is the input, F(z) is the output, I represents the
mean square error. L is the length of input vector z. The F(z)
under the assumption the minimum J (F) can be obtained by
Lagrangian equation

∂ I

∂ F
−

L�
k=1

∂

∂zk



∂ I

∂ F �
k

�
= 0 (13)
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where F �
k = ∂F

∂zk
. Due to

I (z, F(z)) =
1�

i=0

P (Hi)


F(z) − tHi

�2 · f (z, Hi ) (14)

where Hi represents categories, and tHi represents correspond-
ing desired output. Then,

∂

∂ F

�
1�

i=0

P (Hi)


F(z) − tHi

�2 · f (z, Hi)

�
= 0 (15)

The solution F0(z) can be obtained which satisfies the mini-
mum mean square error condition

F0(z) = P (H1) f (z |H1 ) tH1 + P (H0) f (z |H0 ) tH0

P (H1) f (z |H1 ) + P (H0) f (z |H0 )
(16)

Since the softmax function of the CNN output layer can
convert the classification result into a classification probability,
it can be used as a NP detection.

S(x) = 1

1 + e−x
(17)

Then (16) can be rewritten as

F0(z) = P(H1)�(z)tH1 + P(H0)tH0

P(H1)�(z) + P(H0)
(18)

where �(z) is the likelihood ratio. Extracting �(z) and com-
paring F0(z) to threshold η0, (18) can be rewrite as

�(z)
H1
>
<
H0

P (H0)


η0 − tH0

�
P (H1)



tH1 − η0

� = ηlr (19)

where ηlr is new threshold. The relationship between ηlr and
η0 is

η0 = ηlr P (H1) tH1 + P (H0) tH0

P (H0) + ηlr P (H1)
(20)

which does not depend on the input z. Therefore, it can be
used as a detector that satisfies the NP criteria.

In this paper, two kinds of false alarm controllable detectors
are designed from the perspective of iterative training parame-
ter optimization and statistical learning, i.e., variable threshold
softmax classifier and false alarm controllable SVM.

1) Variable Threshold Softmax Classifier: The value of each
node of the network output satisfies the interval [0, 1], and
the sum is 1. The output vector of the output layer is a 1 × 2
array, and the value of the first bit indicates the probability
that the sample is clutter, and the value of the second bit is
the probability that the sample is target. By setting thresholds,
different false alarm rate can be controlled,

threshold = O1 (i) (21)

i = Pfadesired · Nclutter (22)

where O1 is the output of the clutter samples sorted by the
value of the first bit from small to big, Pfadesired is the false
alarm probability value to be controlled, and Nclutter means
the number of clutter samples.

2) False Alarm ControllableClassifier SVM (FACC-SVM): 2C-
SVM achieves false alarm rate control by setting different
types of penalty factors [35]. Suppose Fi is the input vector of
the softmax layer after the training samples with MDCCNN,
and label yi ∈ {−1,+1} represents the clutter (−1) and target
(+1) samples, respectively. The training set of the SVM is
{(Fi , yi ), i = 1, 2, . . . , M}, where M is the number of
training samples. The SVM maps the input vector to the
multidimensional feature space via a kernel function, which
is usually used by a radial basis function:

k (F1, F2) = exp



−�F1 − F2�

2δ2

�
(23)

where δ is an adjustable parameter which controls the radial
range of the function. And it is set as 1 (default value) in this
paper. �F1 − F2� is the square of Euclidean distance.

At this time, the target and clutter samples data are linearly
separable, and the hyperplane ωT F-b = 0 is determined
according to the principle of maximum classification interval
to distinguish the two kinds of data. The hyperplane in SVM,
i.e., ω and b are determined by

min
ω,b,ξ

1

2
�ω�2 + β

Mt�
i=1

ξi

s.t. yi [k (ω, Fi ) − b] ≥ 1 − ξi , ξi ≥ 0, i = 1, 2, · · · , M

(24)

where ξ1 is a slack variable, which is used to enlarge the
parameter solution ranges, β is the penalty parameter, which
is used to set the tolerance for the error.

When training the SVM, the tolerance errors of different
classifications are of little difference. For radar target detec-
tion, the false alarm rate, i.e., the misclassification ratio of
the clutter signal, is strictly required; while the detection
probability, i.e., the correct classification ratio of the target
signal, allows appropriate compromise. Therefore, we propose
a new 2C-SVM that different penalty parameters are set for
the two types of targets, βtarget and βclutter. And by increasing
βclutter, the classification accuracy of the clutter signal is
increased, i.e., reducing the false alarm rate [35].

min
ω,b,ξ

1

2
�ω�2 +

Mt�
i=1



1 + yi

2
βtarget + 1 − yi

2
βclutter

�
ξi

= min
ω,b,ξ

1

2
�ω�2 + βtarget

Mt�
i=1



1 + yi

2
+ 1 − yi

2
β1

�
ξi

s.t. yi [i (kω, Fi ) − b] ≥ 1 − ξi , ξi ≥ 0, i = 1, 2, · · · , Mt

(25)

where β1 = βclutter
βtarget

. Determine the corresponding β1 according
to the required false alarm rate.

III. MARINE TARGET DETECTION METHOD BASED ON

MDCCNN-FACC
As shown in Fig. 4, the detection method includes three

procedures: radar signal preprocessing, dataset construction,
and model training. The data preprocessing phase extracts the
time-frequency and amplitude information of the radar returns.
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Fig. 4. Detection flowchart of the proposed DCCNN FACC.

TABLE I
DESCRIPTION OF IPIX DATASETS

Then build the dataset using the information. The network
parameters are trained and optimized and the CNN model that
can be used for marine target detection is finally obtained.

A. Introduction of Radar Dataset
We use two types of internationally recognized radar sea

clutter data for training and testing, i.e., intelligent PIXel
processing radar (IPIX) data and radar data collected by
council for scientific and industrial research (CSIR) [44]–[46].
Multiple datasets of measured data are used to reflect the
detection performance of the proposed method for different
observation conditions and target characteristics. The marine
target in the IPIX dataset is a floating spherical block of
styrofoam, wrapped with wire mesh, while in the CSIR dataset
the target is maneuvering with different motions. Moreover,
in these datasets, radar returns were selected under different
sea state, i.e., low, medium and high sea states, and different
polarizations, i.e., HH, VV, HV, and VH polarizations.

IPIX data was collected in 1993, by a fully coherent
X-band radar [47], whose parameters and information can be
found at http://soma.ece.mcmaster.ca/ipix/. The experiment
field is at Osborne Head Gunnery Range (OHGR), Dartmouth,
Nova Scotia, Canada, on a cliff facing the Atlantic Ocean,
at the height of 100 feet above mean sea level and an
open ocean view of about 130◦. The target is a one-meter
diameter spherical block of styrofoam, wrapped with wire
mesh. The average signal to clutter ratio varies in the range
0-6 dB. Three datasets are selected as training and test
data under different polarizations and sea states. Guard
range bin is the range bin adjacent to the target range bin.
The sea state in this paper is used as Douglas sea state
(https://en.wikipedia.org/wiki/Douglas_sea_scale#cite_note-
1). The IPIX data and CSIR data used in this paper are shown
in Table I and Table II.

B. Data Preprocessing
In order to obtain input data for the two channels, the radar

signal sequence is subjected to time-frequency analysis and
modulo operation. In this paper, we mainly analyze and

TABLE II
BRIEF INTRODUCTION TO CSIR DATASETS

compare the outputs using different classical time-frequency
analysis methods, e.g., STFT, WVD, and smooth pseudo
WVD (SPWVD). The target and clutter signals are from IPIX
data. WVD comes across severe cross-term effects, and the
classification accuracy is low. For the signal of the same
length, SPWVD is time-consuming, and therefore STFT is
chosen for further analysis.

C. Dataset Construction
The data file IPIX_01# is used to construct the dataset,

where the 7th range bin is the target bin, and the 1-5th,
9-14th range bins are clutter bins. The training set has
17000 clutter samples and 7872 target samples, and the test
set has 44,033 clutter samples and 4000 target samples. The
observation time is 131 s, and the sampling frequency is
1000 Hz. There are 10 datasets, each consisting of a time
series of 131000 points. In order to balance the computational
quantity of the time-frequency analysis and the output SCR,
each sample sequence is set to the length of 1024. If all
samples are entirely independent, about 100 target datasets
and about 1000 clutter datasets can be obtained. Training
the CNN based on such small samples may lead to over-
fitting. Therefore, different samples have overlapped parts, and
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Fig. 5. Structure and dimension of training datasets.

the interval of 10-50 points is equally spaced according to
the sampling frequency of different data. It is necessary to
ensure that the training set and the test set are independent of
each other. The training set is built with the first 90 s signal
sequence, and the test set is built with the latter 41 s signal
sequence.

During the training process, the dataset samples are input
to the neural network randomly. The different features of a
sequence are encapsulated as the input of the CNN. As shown
in Fig. 5, each sample is a matrix of 229×224, which consists
of two features of a signal sample. The compressed time-
frequency graph occupies from row 1 to row 224, then row
225-228 and the first 128 points of row 229 are the amplitude
vectors after folding. Examples of dataset samples are shown
in Fig. 6. Finally, the samples are saved as images. And the
amplitude values of each images are normalized to the interval
[0, 1] at the input layer when processed by the network.

D. Model Training
1) MDCCNN Training: The training process is carried out in

the Tensorflow 1.13 environment. The computer configuration
includes CPU: i7-8700K, GPU: Nvidia 1080Ti, and computer
memory 16 GB. When selecting the basic structure of MDC-
CNN, the IPXI data of the second-degree sea state is used
to test three classic CNNs: LeNet, VGG16, and ResNet. The
batch size is 32, the learning rate is 0.01, the iteration number
is 10000 times, and gradient descent optimizer is employed as
the parameter optimization strategy [20],

θi = θi − α
∂

∂θi
J (θ) (26)

where i is the number of trainable variables. θi is model
parameter to be optimized. α stands for learning rate, and
J (θ) is the loss function. The cross-entropy is used as the
loss function,

J (θ) = −
M�

i=1

y (θ, input)i log


y (θ, input)i_

�
(27)

where y (θ, input)i is the desired output, and y (θ, input)i_ is
the actual output.

Other parameters and settings of the MDCCNN model are
as follows:

Fig. 6. Some examples of clutter and target data samples (IPIX01#).

a) Parameter initialization: The convolutional layer and the
full connection layer weight are initialized by Xavier [20], and
the offset is initialized to 0.

b) Pre-training: For the VGG16 gradient vanishing prob-
lem, the transfer learning method is used. Instead of the
original initialization method, load the pre-training weight to
initialize the weight and offset of the VGG16 convolution
layer, and the gradient vanishing problem can be solved.

c) Model selection: ResNet may come across a serious
over-fitting effect due to the low complexity of the samples
and the small amount of data. We try to improve the method by
increasing dropout and reducing the learning rate in the fully-
connected layer. Finally, under the condition of the learning
rate 105 and 50,000 iterations, only 59% (clutter) and 48%
(target) classification accuracy are obtained. According to
the test results, LeNet of one-dimensional convolution kernel
is finally selected to process amplitude vector feature, and
VGG16 and LeNet are used as the time-frequency graph
feature extraction channels respectively. After constructing
the MDCCNN structure, the corresponding weights of the
previously trained single-channel CNN are loaded into the
corresponding layers of the MDCCNN for initialization.

2) FACC Training: The purpose of the training process of the
false alarm controllable SVM is to determine the penalty factor
β0 that satisfies the false alarm rate control condition. A set
of vectors output from the trained MDCCNN output layer
after inputting training data is used as training set during this
process. The softmax classifier determines different thresholds
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TABLE III
CLASSIFICATION ACCURACY OF DIFFERENT POLARIZATIONS

TABLE IV
MDCCNN STRUCTURE AND FUSING MODES

based on training set samples, labels, and given false alarm
rates.

IV. EXPERIMENTAL TEST AND RESULTS ANALYSIS

A. Performance Analysis of Target Detection Under
Different Polarizations

The radar echo characteristics obtained by different polar-
izations have obvious differences. In order to analyze the
influence of polarization modes on CNN models, the LeNet
is first used for the analysis of the four polarization modes
of IPIX data, i.e., HH, HV, VH, and VV. Each data file in
IPIX data contains echo signal data obtained by four radar
polarizations under the same conditions. The data IPIX_01#
is used to train and test the model. The training set consists
of 4500 clutter samples and 4500 target samples, and the test
set includes 1500 clutter samples and 1500 target samples.
The results are shown in Table III, which shows that under
HH polarization [48], the characteristics difference of target
and clutter are most apparent. Some works also suggested
that generally, the HH polarization can achieve lower clutter
scattering intensity [49]–[51], which is consistent with our
results. Therefore, in the following analysis, data with HH
polarization is employed or model training and testing to
obtain higher classification accuracy.

B. Performance Analysis of Different MDCCNN Models
In this part, we will analyze and compare several MDCCNN

models. Considering the computational cost and performance,
two CNN models, i.e., LeNet and VGG, are employed as the
dual-channel feature extraction networks. The feature fusion
network adopts two fusion modes: decision layer fusion and
feature vector layer fusion. Therefore, the following four
network structures are employed, which is shown in Table IV.

1) Performance Analysis of Feature Extraction Models: The
IPIX_01# is used for building datasets, and different feature
extraction methods are trained and tested. The performances
of feature extraction models, the single-channel CNN, and tra-
ditional HOG-SVM image processing methods are compared,
which are shown in Table V.

Fig. 7. ROC curves of different classifiers using IPIX data.

Compared with the Hog-SVM image classification method
[40], CNN has apparent advantages in classification accuracy
of target and clutter time-frequency graphs with faster clas-
sification speed. Compared with single-channel CNN, MDC-
CNN employs both amplitude and time-frequency informa-
tion, which can significantly improve the target classification
accuracy. Model 4 using VGG16 and LeNet to extract the
time-frequency and amplitude characteristics can achieve an
accuracy of 90.0% for the target samples. The calculation cost
is reduced accordingly because the number of fully-connected
layers in the feature extraction channel is reduced. Therefore,
the classification time of MDCCNN is shorter than the single-
channel VGG16 operation time.

2) FACC Detection Performance Analysis: Model 4 is
selected for feature extraction and fusion. The variable thresh-
old softmax classifier and false alarm controllable SVM are
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Fig. 8. False alarm loss curves of different classifiers using IPIX data.

used as classifiers to classify the test set. Then receiver operat-
ing characteristic (ROC) curves of the test results (IPIX_01#,
IPIX_02#, IPIX_03#) are given in Fig. 7, which indicates the
relation between the false alarm probability (Pfa) and the
detection probability (Pd).

Under the same Pfa , FACC-SVM can achieve higher Pd,
but it has a problem of excessive Pfa. The Pfa on the test
set is higher than that of the training set. Moreover, during
the training process, the Pfa of the training set can reduce
to 0. Since the test set data is different from the training set
data characteristics, it would result in a mismatch between the
model training parameters and the test data. When testing the
model with the test set, the Pfa is still high and cannot be
lowered further, which is called false alarm loss, as shown in
Fig. 8. The x-axis is the desired Pfa , and the y-axis represents
the actual Pfa while the variable threshold softmax classifier
can achieve a lower Pfa.

The green dotted line in the Fig. 8 indicates that the actual
Pfa is equal to the set Pfa . It can be seen that due to the

Fig. 9. ROC curves of different training sets under different sea states.

difference between the characteristics of training data and test
data, the actual Pfa will be higher than the Pfa during training.
Compared to SVM, the actual Pfa of the softmax classifier
is close to the training set Pfa , i.e., smaller false alarm loss.
Therefore, the softmax classifier is more suitable for practical
target detection.

C. Performance Analysis Under Different Sea States
In practical applications, the radar working environment

is complex and changeable. The trained network needs to
adapt to various sea conditions. The radar returns collected
in different sea states are used for model training in order to
improve the generalization ability of the model. Four different
training datasets are used, including the second, third, and
fourth-degree sea state, and samples of mixed sea states.
Model 4 was trained with the four training sets, and the
variable threshold softmax classifier is used as the output layer.
The target detection performance under different sea states is
shown in Fig. 9.
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Fig. 10. False alarm loss curves of different training sets under different
sea states using IPIX data.

Fig. 11. Description of CSIR_01# data.

In terms of Pd, the performances of the two training sets
with the 2nd and 3rd degree sea states are quite similar. The
performance of the model obtained by training the mixed sea
state as the training set is better. Further analysis of the false
alarm losses of the two methods is shown in Fig. 10. The
test results show that training the model with a variety of sea
states data can effectively reduce the false alarm loss. And

Fig. 12. Description of CSIR_02# data.

TABLE V
FEATURE EXTRACTION PERFORMANCE OF DIFFERENT MODELS

under higher sea state, the detection probability can increase
by 25%. It should be noted that if the Doppler spectrum of sea
clutter and target is largely different, i.e., not overlapped with
each other, the Pd is usually higher. While for the second-
degree sea state, the target and clutter Doppler spectrum are
overlapped of and under the 4th degree sea state, the clutter is
strong. Hence the detection probabilities of the two conditions
are lower. But it does not change the conclusion, i.e., using
mixed data training under different sea states would bring in
lower false alarm losses.

D. Maneuvering Target Detection Performance Analysis
With X-Band CSIR Data

The target in CSIR_01# moves uniformly, while in
CSIR_02#, the marine target maneuvers with high-order
motion. The target time versus range bin image is shown in
Fig. 11 and Fig. 12. The CSIR data can obtain the target real-
time position data using GPS, and therefore the true target
location can be confirmed as well. In this part, the detection
results are compared with traditional CFAR methods, e.g.,
cell-averaging CFAR (CA-CFAR) [52] and greatest of CFAR
(GO-CFAR) [53]. In most simple CFAR detection schemes,
the threshold is calculated by estimating the noise level around
the cell under test (CUT). This can be found by taking a block
of cells around the CUT and calculating the average power
level. A target is declared present in the CUT if it is both
greater than all its adjacent cells and greater than the local
average power level.
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Fig. 13. Detection results of CSIR_01# using different methods.

Fig. 14. Detection results of CSIR_02# using different methods.

TABLE VI
DETECTION PERFORMANCE OF DIFFERENT METHODS FOR CSIR_01#

AND CSIR_02# DATASETS

The time series of 1024 lengths in the data matrix is divided
into one sample, and all samples are binary-classified by
the MDCCNN. The detection result of each range unit is
compared with the target prior GPS information, and then
the number and position of false alarms and missing samples
are obtained for Pfa and Pd, which are shown in Fig. 13 and
Fig. 14. Fig 13(a) and Fig 14(a) show the relationship between
the classifier threshold and Pfa of CSIR01# and CSIR02#.
Fig 13(b) and Fig 14(b) show the ROC curves of the three
detection methods, i.e., MDCCNN, CA-CFAR, GO-CFAR.
Fig 13(c) and Fig 14(c) show the false alarm loss of the

two datasets. The detail detection performance of different
methods for CSIR_01# and CSIR_02# datasets is shown in
Table VI. It can be seen that the proposed MDCCNN-FACC
can achieve a higher Pd under the same Pfa. Due to the data
preprocessing in section III A (time-frequency analysis and
amplitude segmentation), the proposed method is more time-
consuming. However, only considering the detection process,
MDCCNN-FACC, CA-CFAR, and GO-CFAR are almost the
same.

V. CONCLUSION

In this paper, using deep learning, marine target detection
is carried out by binary classification. The performance of
different feature extraction models and classifiers is tested by
using measured sea clutter and target signal data. The MDC-
CNN detection method with the FACC is proposed, which
realizes the application of the deep learning method in marine
target detection. The time-Doppler spectrum and amplitudes
information are both utilized, and the features are extracted
by VGG16 and LeNet networks, respectively. Sea clutter and
marine target are classified by the false alarm controllable
SVM and the variable threshold softmax classifier, which
can achieve more practical detection results. The following
conclusions can be summarized: 1) The selection of train-
ing set greatly influences the performances of deep learning
networks. Compared with single-channel CNN and traditional
image processing methods, the dual-channel CNN has better
feature extraction ability and higher classification accuracy for
target and clutter samples. The feature layer fusion MDCCNN
based on VGG19 and LeNet can achieve 90.00% target sample
classification accuracy and 97.02% clutter sample classifica-
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tion accuracy. 2) FACC-SVM can achieve higher detection
probability. However, the false alarm rate is also higher, and
the false alarm loss is severe. The softmax classifier is suitable
for target detection applications with a lower false alarm rate.
3) Under high sea state, the model trained by the mixed
sea states data can achieve a 25% increment for detection
probability (false alarm rate 10−5). Training the model with
data collected under different sea states can help improve the
detection performance and enhance the generalization ability.
4) Compared with traditional CFAR detectors, the proposed
method achieves a higher detection probability under the same
false alarm rate. And the computational quantity is almost the
same, which indicates promising application prospects. In the
future, more data will be collected to verify the algorithm
under multiple observation conditions. Other signal features
will be analyzed to improve the model performance to adapt
complex maritime environment.
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