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Abstract—The coronavirus disease 19 (COVID-19) pan-
demic that has been raging in 2020 does affect not only
the physical state but also the mental health of the general
population, particularly, that of the healthcare workers. Given
the unprecedented large-scale impacts of the COVID-19 pan-
demic, digital technology has gained momentum as invalu-
able social interaction and health tracking tools in this time of
great turmoil, in part due to the imposed state-wide mobiliza-
tion limitations to mitigate the risk of infection that might arise
from in-person socialization or hospitalization. Over the last
five years, there has been a notable increase in the demand
and usage of mobile and wearable devices as well as their
adoption in studies of mental fitness. The purposes of this
scoping review are to summarize evidence on the sweeping impact of COVID-19 on mental health as well as to evaluate
the merits of the devices for remote psychological support. We conclude that the COVID-19 pandemic has inflicted a
significant toll on the mental health of the population, leading to an upsurge in reports of pathological stress, depression,
anxiety, and insomnia. It is also clear that mobile and wearable devices (e.g., smartwatches and fitness trackers) are
well placed for identifying and targeting individuals with these psychological burdens in need of intervention. However,
we found that most of the previous studies used research-grade wearable devices that are difficult to afford for the normal
consumer due to their high cost. Thus, the possibility of replacing the research-grade wearable devices with the current
smartwatch is also discussed.

Index Terms— Mental health, Smartwatches, wearable devices, smartphones, COVID-19.

I. INTRODUCTION

THE world is currently facing a public health calamity
driven by the global pandemic of coronavirus disease

19 (COVID-19) [1]. Deriving a conclusion from an abun-

Manuscript received October 27, 2020; revised December 12, 2020;
accepted December 17, 2020. Date of publication December 21, 2020;
date of current version February 17, 2021. This work was supported
in part by PTT Public Company Limited, in part by Siam Commercial
Bank (SCB) Public Company Limited, in part by the Thailand Science
Research and Innovation under Grant SRI62W1501, and in part by the
Office of National Higher Education Science Research and Innovation
Policy Council under Grant C10F630057. The associate editor coor-
dinating the review of this article and approving it for publication was
Dr. Edward Sazonov. (Kawisara Ueafuea, Chiraphat Boonnag,
and Thapanun Sudhawiyangkul contributed equally to this work.)
(Corresponding authors: Theerawit Wilaiprasitporn; Supanida Piyayotai.)

Please see the Acknowledgment section of this article for the author
affiliations.

Digital Object Identifier 10.1109/JSEN.2020.3046259

dant collection of evidence, the World Health Organization
(WHO) points out that the virus SARS-CoV-2 is primar-
ily transmitted from one person to another via respiratory
droplets [2]. As such, WHO recommends the general popula-
tion to keep a safe physical distance and vigilantly maintain
hand hygiene by sanitizing one’s hands with alcohol-based
gel or solution, or washing them thoroughly with soap or
detergent [3]. Despite several attempts by researchers to come
up with the magic-bullet treatment for COVID-19, to date,
no specific antiviral medication has yet been approved by
the Food and Drug Administration (FDA) [4]. Currently,
the first-line treatment for those contracting COVID-19 is
symptomatic and supportive therapies [5]. There is a sil-
ver lining, given copious vaccine research projects that
have been ongoing or are set to begin in the forthcoming
months for the possibility that a cure will sooner, rather
than later, be discovered [6]. The unfortunate news, how-
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ever, involves the estimation by most experts that COVID-19
vaccines would take 12 to 18 months before reaching market
readiness [7].

With no available vaccine nor specific treatment options,
restricting social activities is the obvious route for policymak-
ers to implement. In fact, this measure has been put in place
in numerous countries crippled by the exponential rise in case
numbers and other countries with less alarming increase alike.
It has been reasoned that using nation-wide lockdowns to help
flatten the spread of COVID-19 would provide some breathing
room for the health system to handle the outbreak. Evidently,
the lockdown policy in Wuhan, China, resulted in a significant
reduction in the infection rate [8]. In fact, lockdowns have
proven rather successful in slowing the spread of the virus.
However, this decrease in case numbers was made to occur at
the expense of a significant decline in economic activity [9].
Simply put, the COVID-19 pandemic has not only debilitated
the health system but also continues to devastate the world
economy [10].

It is now a foregone conclusion that the global economy
will experience a recession in several years to come, although
the degree of severity remains to be seen. The economic crisis
is also expected to have multifarious knock-on impacts on the
population’s mental health [11]. Both emerging diseases and
recession can contribute to the disruption of market activities
on a global scale. In the face of this catastrophic event, people
are forced to rapidly adjust to a new way of working and
staying at home by relying on the use of technology. It is
apparent that the pandemic has had significant social and
psychological effects on the general population, be that from
the rising unemployment rate, separation from loved ones,
domestic violence, and various other unexpected changes in
the ordinary way we were accustomed to living.

Several reports documented that the number of people diag-
nosed with mental illness have risen considerably over the past
decade. Notably, during COVID-19, many of these patients
have been receiving sub-optimal care due to the overstretching
health system, whose resources have been mostly allocated to
deal with COVID-19. The global pandemic highlights the role
of current digital tools, offering care in time of needs [12].
Digital devices present a wide range of opportunities for
healthcare professionals, ranging from individual health to
the common population. Digital devices, especially mobile or
wearable devices, are increasingly capable of capturing various
sources of real-time behavioral, physiological, and psychoso-
cial data in a precise and confidential manner [13]–[15]. Exam-
ples of these technologies include smartphones [16]–[18] and
smartwatches [19], [20]. Interestingly, how we use these
technologies to improve mental well-being or mitigate men-
tal illness in terms of emerging uncertainties is opened to
discussion.

This situation has already created a large area of interest
and research opportunities between mental health and existing
wearable technology. It also calls for the need for more
research to study its implication on mental health based on the
data from previous literature. The aim of this scoping review is
to gather evidence to determine the potential use of mobile or
wearable devices for remote psychological support during the

COVID-19 pandemic. Three specific issues that are focused
on are as follows:

1) To understand the mental health impact of COVID-19 on
the general population, at-risk population, and healthcare
professionals.

2) To focus on the possibility of using the current mobile or
wearable devices to early address any detectable mental
health conditions.

3) To identify the issues of wearable devices in the previous
study and evaluate the potential of using the current
smartwatch toward psychological supports.

II. SCOPE OF WORK

A. Eligibility Criteria
The eligibility criteria for the research included in this

scoping review following literature survey were empiri-
cal articles that examined mental health outcomes associ-
ated with COVID-19 pandemic and/or evaluated the mental
health-related conditions by using smart devices; which could
be categorized as follows:

1) Studies that reported the psychiatric symptoms in
the general population, healthcare workers (HCWs),
or patients with a prior or current diagnosis of
COVID-19.

2) Studies that evaluated the application of smart-
phones, wearable devices, or smartwatches in mental
health-related conditions.

B. Information Sources
The search covered various academic databases, including

ACM digital library, IEEEXplore, ScienceDirect, and PubMed,
with the objective of finding academic literature. Only articles
published in English were included. The search was limited
to the studies published within the past 5 years.

C. Literature Search
Literature searches were carried out using the keywords

‘mental health’, ‘psychological distress’, ‘behavioral problem’,
‘depression’, ‘anxiety’, ‘insomnia’, and cross-referencing
them with ‘COVID-19’, ‘pandemic’, ‘smartphone’, ‘wearable
devices’ or ‘smartwatch’. After screening the titles and online
abstracts, articles were retrieved in full-text reports and further
reviewed to determine compliance with inclusion criteria. The
word cloud, as shown in Figure 2, displays the most frequently
used keywords in the articles found in our selected literature
search.

D. Sections
This scoping review is organized into 6 sections (see

Figure 1 for the overview). In Section I, the on-going state of
the COVID-19 pandemic, its effect on mental health, and the
possibility of wearable technology as a medium to improve the
healthcare system during the inopportune time are addressed.
The search method and how this review was structured are
defined in Section II, the scope of work. Section III presents
the current evidence from observational studies on the impact
of COVID-19 on mental health. The potential applications of



7164 IEEE SENSORS JOURNAL, VOL. 21, NO. 6, MARCH 15, 2021

Fig. 1. Schematic layout of this scoping review: (I) Introduction,
(II) Scope of work, (III) Mental health issues and the capability of mobile
devices to detect them, (IV) Smartwatch toward psychological supports,
(IV) Discussion, and (V) Conclusions.

Fig. 2. Word cloud of keywords presented in the studies included in this
review.

mobile and wearable devices to measure these physiological
signals are emphasized in Section III. Section IV shows the
limitations of wearable devices used in previous studies and
presents the usage potential of the current smartwatch in the
aspect of mental health monitoring. Discussion and conclu-
sions are presented in Section V and Section VI, respectively.

III. MENTAL HEALTH ISSUES AND THE CAPABILITY OF

MOBILE AND WEARABLE DEVICES TO DETECT THEM

Stress, anxiety, depression, and insomnia are carrying men-
tal risks to individuals globally. Indeed, the symptoms of stress
can lead to alterations in physical, emotional, and behav-
ioral constitutes. Universally, clinicians exercise face-to-face
interactions and self-reported questionnaires for diagnosis and
assessment. These methods are time-consuming, expensive,
and often require the involvement of professionals. Moreover,
data from self-reported questionnaires could be unreliable due
to memory limitation and subjective recall issues. During
the COVID-19 pandemic, the potential practicality of digital
evaluation for mental health has become urgently apparent.
Wearable devices could be used to monitor the psychological
conditions [21] and suitable for monitoring the populations at
risk as well as those in quarantine [13].

As evidenced by recent studies, smart devices (i.e., phone,
watch, computer, and glasses) could be used to collect data

on ambulatory activity, communication patterns, electrodermal
activity (EDA), eye movement, facial expression, heart rate
variability (HRV), location, mobility, social interaction, social
media, speech patterns, and technological usage relevant to a
diverse range of mental illnesses [22]. However, some devices,
such as glasses equipped with electrooculography (EOG)
components, are not widely used.

In 2020, the number of smartphone users in the world
reaches up to 3.5 billion, which translates to 45.15% of
the world’s population owning at least one smartphone [23].
There are several smartphone apps that were developed specif-
ically for improving mental health care, such as Shine [24],
Calm [25], Coa [26], Ginger [27] for anxiety, and Lite-
sprite [28] and Sanvello [29] for depression. Moreover, the new
models of smartphones are capable of detecting activity, com-
munication patterns, location, mobility, and speech patterns,
which have been demonstrated to be associated with mental
health, as shown in Figure 3.

Figure 3 presents the technology equipped in smartwatches,
displaying similar detection capabilities. Additionally, some
recent models are capable of detecting EDA and HRV data.
EDA is a measure of neuron-mediated effects on sweat gland
permeability [30]. This can be observed as changes in the
resistance of the skin to a small electrical current or as differ-
ences in the electrical potential between different elements of
the skin. HRV is the fluctuation in the time intervals between
adjacent heartbeats [31]. Advance in wearable technology
allows manufacturers to incorporate Photoplethysmography
(PPG), using light-based sensing technique comparable to
the bio-potential measured by electrocardiogram (ECG), for
comfort in assessing HRV [32], [33]. The usefulness of EDA
can be regulated as a biomarker for mental health [34],
whereas HRV is associated with stress and anxiety [32], [35].
According to Statista, a business data platform, the smartwatch
sales in the United States of America (USA) are predicted to
leap from 9 million units in 2016 to almost 23 million units
by 2020 [23].

In this section, the impact on mental health as a con-
sequence of the current pandemic and the monitoring of
mental health using smart devices, i.e., mobile phones and
smartwatches, are emphasized. We have constructed a method
for collecting data on the assessment from questionnaires,
study designs, countries, participants, COVID-19 exposure,
and mental health outcomes. The data on the prevalence of
mental health outcomes and key results (risk or protective
factors) were extracted. However, we did not perform a
quantitative analysis of the overall prevalence and correlations
due to the heterogeneity of varieties of questionnaires and the
lack of clinical diagnosis, as shown in Table I. The usage
of sensors equipped on the devices, specifically for stress,
depression, anxiety, and insomnia, corresponding to the effects
of COVID-19 is described. Table II summarizes the related
works, which aimed to employ the sensors on these devices
for mental health.

A. Stress
1) Increased Stress Levels During COVID-19: The definition

of stress combines the physiological changes of the nervous
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Fig. 3. Psychological alterations, in addition to emotions, can have an impact on both mind and body, particularly in the context of systemic effects.
Some of these changes, either physiological or behavioral signals, can be detected by smartphones and smartwatches. These wearable devices
are equipped with the functions to detect basic personal health data, which are transferred via application programming interfaces (APIs) through
the cloud system provided by the vendor’s application.

system as well as the immune system in response to the
exposure of external stressors, triggering the fight-or-flight
response and impacting the mental health of an individual [58].
Long quarantine, boredom, inadequate resources, insufficient
information, financial loss, unemployment, and stigma were
the major stressors reported during the COVID-19 restric-
tions [59]. Nine articles measured the prevalence of perc-
eived stress in different groups [37], [41], [42], [46]–[49],
[56], [57]. Only Depression Anxiety Stress Scales (DASS)-21,
a self-report stress questionnaire, was used to identify stress
level in the study population. DASS-21 is a short version
of DASS-41 [60], in which Antony et al. had chosen seven
elements from each of the initial DASS subscales [61].
The cut-off for moderate symptomatology for stress used in
the included articles was equal to or greater than 19 in the
DASS-21 stress subscale. The range of the stress prevalence
during COVID-19 period was 1.5 - 50.1 % (5.2 - 31.0 % in
Healthcare workers). One review paper identified being uni-
versity students, especially in the undergraduate level, as one
of the risk factors for stress among the general population [41].
In addition, being women, being young, having fewer experi-
ences, and suffering physical symptoms were associated with
stress in HCWs [48], [49].

2) Smart Devices for Convenient Stress Detection: Recently,
sensing technologies have been used to detect or predict stress
levels. Various studies demonstrated a significant correlation
between data detected by smartphone (i.e., accelerometer,
screen on-off) as well as other wearable devices (i.e., HRV
and EDA) and stress level. In the last five years, many
prominent works recruited participants with tertiary education
and workers, given that the level of stress, especially in their
respective environment, is found to be skyrocketed [62]–[65].
In 2017, Statista assembled different reasons for stress at work
among employees in North America: 39% from workload,
31% from social issues, 19% from juggling work and personal
life, and 6% lack of a job, while only 5% were not stressed.
This might contribute further to the psychological effects
instigated by COVID-19.

Tertiary level students, e.g., aged 18 to 22, experience
a tremendous amount of stress due to the changes in their
lives, such as leaving parents, meeting new peers, and the
pressure from academic struggling [23]. Thus, they are the
prime target participants for stress assessment. Can et al.
developed an automatic stress detection system using smart
bands for physiological data collection [63]. The stress level
of 16 doctorate students was determined by the detected



7166 IEEE SENSORS JOURNAL, VOL. 21, NO. 6, MARCH 15, 2021

TABLE I
STUDIES OF PSYCHIATRIC SYMPTOMS DURING THE COVID-19 PANDEMIC AMONG GENERAL POPULATION AND HEALTHCARE WORKERS

HRV and skin conductance (SC) during an 8-day period.
The participants were asked to complete the Perceived Stress
Scale (PSS) questionnaires as a baseline. The HRV signal
achieved approximately 80% accuracy, using a Multilayer
perceptron (MLP) model, whereas the SC signal showed a
maximum of 73.59% accuracy with Random forest (RF).
A work from MIT Media Lab showed that using long

short-term memory neural network models (LSTM) improved
the forecasting of stress [64]. The data were collected from
142 college students for 30 days. The results reached 83.6%,
using the stress score (0-100) as ground truth, collected 7 days
prior to the actual experimentation. The study also used only
objective and passive data, collected from mobile phones and
wearable devices, to forecast high/low binary stress levels on
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TABLE II
SUMMARY OF RELATED WORK FOR MENTAL HEALTH USING SMART DEVICES

the next day. The results showed 81.4% accuracy. The stress
level was shown to be forecasted more accurately using the
objective features in combination with LSTM. Bedtime was

one of the features which weighted higher on the forecasting.
The data from smartphones (e.g., brightness), rather than
self-reported sleep diaries, were collected to determine sleep
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behavior, which may contribute to the improvement of the
accuracy.

Detection of work-related stress has been shown to be
associated with various behaviors (i.e., nail-biting, pacing, and
changes in appetite) [23]. Equipped sensors on smartphones
have been contributing to the data collection associated with
individual behaviors. Garcia-Ceja et al. paved the first step
to use data obtained from only built-in accelerometer in the
smartphone [65]. Combinations of different statistical models
to classify stress level were performed. The overall accuracy
achieved 71% for user-specific models, relying solely on data
from a single accelerometer and validating with the Oldenburg
Burnout Inventory (OLBI) questionnaire. Broadening the types
of sensor used, Maxhuni et al. acquired physical activity level
(accelerometer), location, social-interactions (cellular, Wi-Fi,
and Google Maps), and social activity (application usage)
during the workday and analyzed the changes in behavior [62].
The classification model included decision trees (DT) as well
as the incorporation of semi-supervised learning methods,
resulting in 67.57% accuracy and 71.73% after applying a
semi-supervised method with Profile of Mood States (POMS)
and OLBI as ground truth.

B. Depression
1) Increased Depression Levels During COVID-19: Individ-

uals with depression may display several clinical features
such as negative cognitive contexts as well as psychomotor
signs and symptoms, leading to difficulties with decision
making, and eventually other psychological disorders such
as major depression [66]. Seven different self-rating scales
were employed in 20 articles assembled in this review.
DASS-21 is the most common tool used in articles, followed
by Patient Health Questionnaire-9 (PHQ-9) (9 and 6 articles,
respectively) PHQ-9 is a nine-item questionnaire designed
for depression screening in primary care and other medical
settings [67]–[69]. The standard cut-off score for screen-
ing to identify possible major depression is 10 or greater.
PHQ-9 appears to be sensitive, although less specific for
young adults. However, it has been shown that a cut-off
score can be used irrespective of age [70]. In the present
review, the moderate or higher severity of depression, which
is equivalent to the score of 10 or above in PHQ-9, was
used to identify the prevalence of depression across different
questionnaires. Regarding the nature of the studied population,
the prevalence of depression found in studies carried out in the
general population ranged from 3.7 - 48.1 % (3.7 - 48.1 % and
7.4 - 17.4 % in DASS-21 and PHQ-9, respectively). Although
various self-reporting questionnaires were utilized, the preva-
lence of depression was higher than the global health estima-
tion of 4.4 % assessed by WHO in 2017 [71]. Among the
general public, women [45], [47], those who did not receive
support [39], those with suspected COVID-19 symptoms [40],
and/or those with sleeping problems [43] were identified as
the population at risk of developing a depressive symptom.
Moreover, the results of epidemiological studies showed that
HCWs who were women [49], [54], nurses [50], frontline
workers [49], [51], [54], those lacked support [52], and/or
those with physical symptoms [48] were at higher risk of

having depression. However, health literacy was demonstrated
as a protective factor [40] of depression during COVID-19
pandemic.

2) Smart Devices for Convenient Depression: Greater
emphases on depression are demanding treatment and ame-
lioration. Several studies have been successful in detecting
and predicting the severity of depression using the data from
smart devices. A significant correlation between the location
data provided by mobile phone and depression severity was
found [72]. To monitor depression, the team acquired the data
from the sensors equipped on the smart device to analyze
various behaviors, such as time spent being alone, duration
of staying home, changes in sleep pattern, communication
with family and friends, and time spent using social media
platforms.

In several works, the assessment of depression fixated on
physical activity and movement patterns as they are associated
with the behaviors of individuals with depression, e.g., living
alone and avoiding social interaction. Palmius and colleagues
employed the GPS data for determining depression from
an individual’s mobile device [73]. The GPS data revealed
the movement patterns with an accuracy of 86%, using
Quick Inventory of Depressive Symptomatology (QIDS-SR),
a weekly questionnaire, as a baseline. Yue et al. collected
data from two sources: GPS and WiFi association recorded
by the phone [74]. The evaluation was performed using
a dataset from 79 college students. The results showed a
stronger correlation with PHQ-9 self-report. This led to depres-
sion prediction with much higher F1 scores; up to 0.76 in
comparison to 0.5 prior to the application of data fusion.
Similarly, Mohammed et al. assessed the depression level of
an individual using acceleration sensor and GPS sensor on
the smartphone for physical activity and movement patterns,
respectively [75]. The implemented model was able to detect
three different depression levels (i.e., absence, moderate, and
severe) with 86.4% accuracy using the PHQ-9 as a baseline.

Not only the sensors but other minor aspects of mobile
phone usage may not be so trivial in evaluating depression.
Razavi et al. proposed a method of depression screening from
mobile phone usage without the measurement of physical
activity and movement patterns [76]. 412 participants reported
a range of smartphone usage statistics, and Beck Depression
Inventory—2nd Ed (BDI-II) was used to measure the severity
of depression among the participants. The team calculated the
average number of daily calls and text messages (inbound and
outbound) as well as the average time spent on conversing,
social media, web browsing, and entertainment application
data from the smartphone. The RF classification model showed
a balanced accuracy of 0.768 and an AUC of 0.733 for
classifying the two groups. The study demonstrated that the
participants with depression were found to have fewer saved
contacts on their devices, spend more time on their mobile
devices to make and receive fewer and shorter calls, and send
more text messages than participants without depression.

In addition to mobility and socialization, smart devices
could detect certain symptoms of depression. Asare and
colleagues presented scenarios where the triggered anomalous
behaviors could be detected, e.g., extra-long duration of device
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usage, physical and social isolation, and changes in sleep
patterns [77]. The results regarded sleep as an important
feature to detect depression.

C. Anxiety
1) Increased Anxiety Levels During COVID-19: Anxiety is

a symptomatic milestone that occurs in the early stages of
numerous mental illnesses. Some indications of depression and
anxiety disorders may be overlapped as some patients may
have a history of either one earlier in life before developing
another [78]. Although slightly vague, anxiety can be defined
as the adaptive feedback as a defensive coping in response
to struggling encounters and personal uncertainty, in which
the conflicts may result in behavioral alterations and various
kinds of anxiety disorders [79]. Any uncertain situations can
lead to panic-induced behavior [80]. The common behavioral
signs and symptoms of anxiety disorders include nervousness,
irritability, and problems with sleeping and concentrating [81].

Due to the restrictions during the COVID-19 pandemic,
self-confinement and a lack of proper management have
led to masses of panic and anxiety. A total of 19 studies
reported anxiety as an indicator for psychological impact:
among them, 7 recruited HCWs for the assessment. Different
validated scales to measure anxiety are the Depression, Anx-
iety and Stress Scale (DASS)-21, Generalized Anxiety Disor-
der (GAD)-2/-7, Hamilton Anxiety Rating Scale (HAM-A),
and self-rating anxiety scale (SAS). DASS-21, which fol-
lows the Patient Health Questionnaire-9, is the most pop-
ular tool used in articles. 9 studies used DASS-21, while
7 studies used GAD-7 to assess self-reported anxiety symp-
toms. GAD-7 was initially validated in 2,149 primary care
patients, regarding a score of 10 or greater represents anxiety
(sensitivity 89 %, specificity 82%) [82]. Also, the GAD-2,
HAMA and SAS applied in 3 additional studies each. The
overall prevalence was 3.6 - 45.4 % (10.6 - 47.1 % in
HCWs), as presented in Table I. It was found that being
female [45], [47], lacking support [36], experiencing sleep
difficulty [37], or hovering over COVID-19 news [38] had
higher risk of anxiety. Additionally, women [49], [50], young
individuals [49], less experienced workers [50], nurses [50],
frontline workers [50], [51], [54], or those with physical
symptoms [48], were associated with anxiety in HCWs.

2) Smart Devices for Convenient Anxiety Detection: Detect-
ing anxiety remotely without access to psychological experts
could be challenging in various ways. Studies have been
attempting to measure anxiety using smart devices in order
to address different anxiety disorders, such as generalized
anxiety disorder (GAD) and social anxiety. Distinguished from
previous studies using smartphone emphasizing only on a
single feature [83], Fukuzawa et al. considered environmental,
real-world, and online behavioral features to predict the stress
level alteration of 20 young adults [84]. Data from different
equipped sensors, such as acceleration, illuminance, volume,
location, and smartphone orientation, as well as application
usage and call log activity, were analyzed. The participants
were asked to complete the monthly State-Trait Anxiety
Inventory (STAI), a self-report questionnaire, for validation.
The results of the model learned by RF and XGBoost yielded

an F-score of 74.2%, which was shown to be higher than the
results achieved by previous studies, analyzing only a single
smartphone feature. Additionally, the variation of illuminance
in specific events, e.g., using social network applications in a
dark room while being motionless, may have contributed to
the changes in anxiety level.

The decision trees (DT) with the combination of both
mobility and communication to predict the social anxiety
level among the tertiary level students has been examined
and yielded 85% accuracy [85]. Boukhechba and colleagues
analyzed the GPS location, text messages, and call data col-
lected from 54 college students over a two-week period using
the self-reported Social Interaction Anxiety Scale (SIAS).
In another work by the same team, only GPS data were
used to detect behavioral patterns associated with social
anxiety [86]. 228 undergraduate participants were recruited
to be assessed for 2 weeks using SIAS as ground truth.
The results showed 85% accuracy using MLP. Pastor et al.
developed a technique for digital phenotyping of patients
with alcohol and anxiety symptoms, using data collected
from smartphone and smartwatch to analyze the usability and
patient satisfaction [87]. 60 participants were presented with
STAI, the Beck Depression Inventory-II (BDI-II), and the
Alcohol Use Disorders Identification Test (AUDIT) once per
week through the HumanITcare app. The study demonstrated
that monitoring patients using both smart devices is practical.
Anxiety disorders have also been found to be associated with
reduced HRV [35]. Moreover, the increase in galvanic skin
response (GSR) has been shown to be related to different levels
of anxiety [88], which could be detected using smartwatches.

D. Insomnia
1) Increased Insomnia Levels During COVID-19: Preced-

ing the limitation of health-related researches during the
COVID-19, insomnia has been one of the major sleep prob-
lems among the general population. Insomnia is a common
condition associated with impairments of daily performance
and the quality of life as well as physical and mental mor-
bidities [92]. Researchers from several countries, such as
China [93], France [94], Greece [95], and Turkey [96], with
the ability to conduct studies, have begun to assess the affected
communities, especially in HCWs. To control for objectivity
and validation, 8 studies employed different scales, including
Insomnia Severity Index (ISI) and Pittsburgh Sleep Quality
Index (PSQI) to measure sleep disturbances (Table I). While
5 studies used ISI with different cut-off scores to deter-
mine insomnia with a prevalence of 2.4 - 36.1 %, 3 studies
used PSQI with the range of prevalence of 18.2 % - 52.4 %.
Cellini et al. confirmed the associations between sleep diffi-
culty, stress, anxiety, and depression in general public [37].
Moreover, in the healthcare profession, HCWs, who worked
in an isolation unit, worried about being infected, or per-
ceived the lack of mental support, had a higher risk of
insomnia [52], [54].

2) Smart Devices for Convenient Insomnia Detection: Insom-
nia has been shown to affect daily routines, such as
performance at work or school, the lack of energy, and the
increase of risk for car accidents. Insomnia is found to be
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caused by physical or mental health issues. The symptoms
may include difficulty in falling asleep at night, waking up
during the night, and waking up during unwanted time. A com-
bination of physiological signals detection techniques, called
polysomnography (PSG), is considered a gold standard for
sleep detection and diagnosis. However, acquiring a PSG study
can be expensive and uncomfortable for some individuals.
Data on audio function and the equipped accelerometer on
smartwatches and smartphones can be collected and combined
to determine the basic sleep patterns, such as the number of
hours of sleep, number of awakenings during the night, and
occurrence of snoring [97].

Some smartphone features can be used to verify the pos-
sibility of insomnia. Andrea et al. adopted a Bayesian model
to extract individual sleep patterns from screen on/off events
on smartphones [91]. Data of the screen interaction sensor
on smartphones were collected from more than 400 users to
compare with the sleep tracking data extracted from fitness
tracking armbands. The model performance reached 89%
accuracy, inferring that the smartphone interaction could be
an option in monitoring sleep patterns. Ren et al. presented
a fine-grained sleep monitoring system to detect an indi-
vidual’s breathing rate and sleep events by the microphone
equipped on smartphones to capture the breathing sound for
breathing rate monitoring [18]. To achieve higher detection
accuracy, the team developed a body movement-assisted sleep
event detection by capturing body movement patterns via an
accelerometer embedded on smartphones. The experiments
recruiting 9 subjects over a period of six months showed that
their system could achieve high accuracy.

In clinical practice, cognitive behavioral therapy for insom-
nia (CBT-I) is one of two major approaches to treatment,
the alternative being pharmacotherapy [98]. Additionally,
internet-delivered CBT-I has been previously found to be
effective and can be considered a viable insomnia treatment
of choice [99], [100]. Besides Andrea et al., another team
developed a smartphone application, Sleep Ninja, to tackle
sleep difficulties in adolescents [90]. Sleep Ninja has been
developed under the concept of internet-delivered CBT-I such
as recommended bedtime based on sleep guidelines and a
series of sleep tips as well as providing general information
regarding sleep. 50 young teenagers with sleep difficulties
were recruited for experiments. Significant improvements were
observed on sleep variables including insomnia.

Detection of sleep/wake state and sleep onset/offset using
a combination of features from wrist sensor (i.e., skin con-
ductance (SC), skin temperature (ST), and acceleration) and
smartphone (i.e., screen on-off, SMS, call, and location) has
been shown to attain 96.5% accuracy with LSTM model in
comparison to neural networks, LR and SVM [89]. In this
study, sleep experts from Harvard Medical School scored
the sleep stages from diaries with actigraphy data used as
ground truth. Although the process was considered time-
consuming, it was deemed more reliable than employing data
from self-reports or actigraphy alone. The results demonstrated
that the best performance was obtained from the combination
of accelerometer, ST, and time features, whereas the smart-
phone features showed the lowest performance among the

comparisons between different modalities. Some limitations
of using the smartphone for sleep detection have been shown
to involve the waking up times during the night and the
possibility that the smartphones are not used.

E. Summary
Overall, studies have been demonstrating that sleep detec-

tion or prediction can be performed well using data from
smart devices in comparison to self-reported questionnaires.
Most studies still employed different questionnaires as ground
truth as these are deemed simple and standardized. However,
subjective answers and omitted truths, as well as limited
memory recalls, might pose an issue for accuracy. Despite the
global usages of smart devices, studies related to mental health
using smartwatches can be found less than smartphones. Nev-
ertheless, smartwatches are capable of detecting physiological
data with more accurate details. Thus, the use of smartwatches
will indisputably be of major interest in studies related to
mental health and social interaction in the future [101].

IV. SMARTWATCH TOWARD PSYCHOLOGICAL SUPPORTS

In the previous section, the studies in the past five years
illustrate the possibility of utilizing smart devices in monitor-
ing mental health issue, including stress, depression, anxiety,
and insomnia. The information solely from the smartphone
hitherto is proven to be enough for predicting the mental
health issue of the participants [62], [75], [84], [91]. However,
the summary shown in Table II demonstrates that combining
the information from the smartphone and another wearable
device can provide higher prediction accuracy in comparison
to relying only on the information from the smartphone
(83.6% [64] compared to 71% [65] in the case of stress
and 96.5% [103] compared to 89% [91] in the case of
insomnia). This is because the wearable device can provide the
physiological data (i.e., HRV and SC) to complement the data
from the smartphone, which are limited only to the behavior
(i.e., acceleration and GPS) and social interaction (i.e., call
and SMS) of the participants.

Among various physical health data from the wearable
devices, SC and HRV were scientifically proven to be related
to mental health problems [32], [34], [35], [104]. The SC
response of the patients with depression has been shown
to be lower than that of the persons with strong mental
health [104]. Additionally, patients with stress and anxiety
symptoms were found to display lower HRV than that of
the control group [32], [35]. In most of the previous studies,
the wearable devices used in the researches are research-grade,
in which they can provide one or both of these two information
(i.e., Affectiva Q Sensor and Empatica E4) [63], [64], [103].
Affectiva Q Sensor can measure the acceleration, SC, and
ST at the sampling frequency of 32 Hz [105]. Similarly,
Empatica E4 can measure the acceleration at the sampling
frequency of 32 Hz, SC and ST at 4 Hz, inter-beat interval
(IBI), and blood volume pulse (BVP) at 64 Hz [106]. IBI
refers to the interval between individual heartbeats and BVP
refers to the volume of blood that passes through the sensor
with each heartbeat. Both features can be further used to
compute HR and HRV. These research-grade devices provide
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TABLE III
COMPARISON BETWEEN SPECIFICATIONS OF SMARTWATCH AND RESEARCH-GRADE WEARABLE DEVICE

full support in extracting the raw data from the devices by
using either their application programming interface (API) or
exporting through their applications. However, the prices of the
research-grade wearable devices are fairly expensive, as shown
in Table III. From a financial feasibility standpoint, it could be
more widely affordable if the research-grade wearable devices
can be replaced by the smartwatch.

Figure 4 shows the worldwide shipments of the
smartwatches of the top 5 vendors from 2016 to 2019.
It could be seen that the demands of these smartwatches
are increasing exponentially. Multiple studies have steered
the attention to the utilization of smartwatch for health and
wellness [107]. However, to the best of our knowledge, there

are only a few studies that used the smartwatch for mental
health-related applications, e.g., the case-control study by
Pastor et al. [87]. One of the possible reasons for such a few
investigations utilizing smartwatches could be due to their
lack of capability to measure SC and HRV. Recently, however,
some of the top smartwatch vendors (i.e., Fitbit [108]) have
released a new smartwatch model with an application for stress
tracking. This demonstrates the potential usage of the latest
debut of these smartwatches toward mental health monitoring
applications. Therefore, in this section, we will explore the
possibility of using these smartwatches instead of the high-cost
research-grade wearable devices in mental health monitoring
applications. To this end, we surveyed the top model
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Fig. 4. Top 5 smartwatch unit shipments worldwide by different vendors
from 2016 to 2019 (in millions) [102].

smartwatches from 5 vendors with the highest market share,
including Apple Watch Series 6 [109], Fitbit Sense [110],
Samsung Galaxy Watch 3 [111], Huawei GT 2 [112], and
Amazfit Stratos 3 (Xiaomi) [113]. The surveyed smartwatches
were compared with the research-grade wearable devices
presented in this review from both consumer and developer
perspectives (Table III).

A. Sensor
1) PPG Sensor: PPG is one of the most popular

non-intrusive measuring technologies for collecting informa-
tion related to vital signs [114]. Although PPG signal can be
very susceptible to motion artifacts caused by hand movements
and easily affected by environmental noise [115], PPG sensor
can still be found in most of the smartwatch models due to its
cost-effectiveness, comfortable to wear, and portability [116].
PPG’s working principle is based on light absorption and
reflection of the vascular tissue and blood. PPG sensor illu-
minates light into the skin and uses photodiode to detect the
light intensity [117]. The characteristics of the vital sign can be
investigated through the fluctuation of light intensity caused by
light absorption of the hemoglobin in blood [118]. In the past,
most of the PPG sensors used in the smartwatch consisted
of only green color LED [119]. This is because the shorter
wavelength (530 nm) of green light is robust to the motion
artifacts. However, it is also due to its short wavelength that it
is difficult to penetrate deeper into the skin [120]. On the other
hand, red and infrared light have longer wavelengths (660 nm
and 850 nm, respectively) and can penetrate deeply into the
skin. Nonetheless, they are reported to be highly susceptible
to noise from motion artifacts [121]. Human skin has multiple
layers with different types of blood vessels embedded in
different layers. For example, capillaries can be found in the
epidermis (outermost layer), while arteries are located deeply
in the hypodermis layer [122]. By utilizing multiple light
wavelengths in the PPG sensor, the blood pulsation informa-
tion from different blood vessels can be measured. This result
in better working performance and a wider range of application
(e.g., blood pressure approximation) [123], [124]. Therefore,
the later generation of PPG sensors in the smartwatch is

equipped with multiple LEDs with different wavelength (gen-
erally green, red, and infrared LEDs) [109]–[112].

Each smartwatch vendor, as shown in Table III, have devel-
oped their respective technology for the PPG sensor. In Apple
Watch Series 6, the new PPG sensor consists of 4 clus-
ters of green, red, and infrared LEDs in combination with
4 photodiodes [109]. In Fitbit Sense, the newly debuted Pure-
Pulse 2.0 PPG technology, consisting of 6 LEDs (red, green,
and infrared) and 4 photodiodes [110]. In Samsung Galaxy
Watch 3, the PPG sensor consists of 8 LEDs (red, green, and
infrared) and 4 photodiodes. In Huawei GT 2, the PPG sensor
is equipped with 2 LED clusters (green, red, and infrared) and
2 photodiodes [112]. In Amazfit Stratos 3, the PPG sensor
contains 2 green LEDs and 1 photodiode [113]. As all of the
reviewed smartwatches in Table III were introduced into the
market only recently, not many research articles are published
to clarify the accuracy of these PPG sensors.

Aside from HR, the data from the PPG sensor can also
provide information on blood oxygen saturation (SpO2), HRV,
and blood pressure [125]. SpO2 refers to the oxygen level
in blood where the optimal range is between 95-100% in
a healthy person [126]. PPG sensor can measure SpO2 by
emitting two different wave-length lights (typically red and
infrared) through the skin [127]. The ratio between light
intensity of red and infrared lights sensed by the equipped
photodiode can be used to analyze the oxygen level in blood
given that the oxygenated hemoglobin can absorb infrared
more than red light and the deoxygenated hemoglobin can
absorb red light more than infrared [128]. SpO2 measurement
is just recently introduced to consumer-grade smartwatches
as it can be used in the sleep tracking application [129].
Despite the featuring of SpO2 in all of the smartwatches
presented in Table III, with the exception of Amazfit Stratos 3,
no research study is found investigating the accuracy of SpO2
measurement in these models.

As previously mentioned, HRV is essential data for mental
health analysis. Even though the best method that yields
the highest accuracy in HRV measurement is via an ECG
sensor [33], a PPG sensor can also be used as a surrogate.
HRV can be derived from the PPG sensor’s raw data by
observing the variation of an interval between two adjacent
R-waves [130]. The concern over the measuring of HRV
through PPG sensor involves the reliability of the sensor only
in resting state (low motion artifacts) [131]. Only several
smartwatches available in the market are catered with HRV
feature. Amongst the reviewed smartwatches, only Apple
Watch Series 6 and Fitbit Sense offer the HRV tracking
feature. Although one study shows high reliability (more
than 0.9) of HRV measurement from PPG sensor in the
previous generation Apple Watch [132], further report on
the reliability of Fitbit Sense HRV measurement is yet to
be seen.

Blood pressure is related to the blood pulse transit time,
which in turn, related to PPG signal pulse characteristics,
such as rising time, falling time, and amplitude [133], [134].
Presently, not many smartwatches are furnished with tech-
nology to measure blood pressure. Within our reviewed
smartwatches, only Samsung Galaxy Watch 3 provides the
feature for reading the blood pressure [135].
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2) EDA Sensor: Electrodermal activity (EDA) can be easily
referred to as the changes in electrical conductance of the skin
caused by the modulation from the sweat gland [136]. EDA
signal consists of two different components; skin conductance
response (SCR) modulated by skin conductance level (SCL).
SCR is the change in skin conductance when the sudomotor
nerve is activated and is usually represented as a transient event
in the EDA signal (0.05 - 1.5 Hz). On the other hand, SCL is a
slow changing of skin conductance (0 - 0.05 Hz) responding to
a tonic stimulus [137]. Currently, there are 3 methods avail-
able for measuring EDA: endosomatic methodology (ESM),
exosomatic methodology with direct current (DC−EXM), and
exosomatic methodology with alternating current (AC−EXM).
ESM is a method to measure the EDA without applying
an electric current. On the other hand, both DC−EXM and
AC−EXM are measured by applying direct current and alter-
nating current to the skin, respectively. Among the three
methods, DC−EXM is the most widely utilized in wearable
devices because the response from ESM is very difficult to
interpret and the AC−EXM has no empirical demonstration
of the superiority over DC−EXM yet [138]. EDA is best
measured at the place with a high density of sweat glands,
especially at hands and feet [139]. Interestingly, the only
smartwatch that has the EDA sensor available at present is
Fitbit Sense [108]. Fitbit Sense is capable of measuring the
SC of the subject’s palm while the user needs to be seated
and asked not to move. This is the optimal method that yields
accurate results since the noise will be low; however, it is not
practical for ambulatory use and 24/7 monitoring [140].

B. Data and Limitations
In order to replace the research-grade wearable device

with the smartwatch, the feasibility of data extraction
must be considered. All of the reviewed smartwatches and
wearable devices can be connected to their companion
device (i.e., smartphone) via Bluetooth for the data transfer.
As research-grade wearable devices are designed to be used
in the research, raw data can be easily extracted. For example,
Empatica provides a web application for export the raw data
(E4 Connect) and provides API and software development
kit (SDK) for further research and development [106]. API is a
computer interface used as a medium for interaction between
multiple software. It can be a set of commands, functions,
protocols, or objects [141]. SDK is a tool for developing an
application and it usually contains API for the communication
between the application and the target device. In smartwatches,
some vendors provide official applications that can export the
data for the normal consumers and also provide the API or
SDK for the developer. The difference between exporting data
from the official application and using API to extract the data
is the obtained sampling rate. The sampling rate from the
former method is unchangeable and usually low to reduce the
power consumption, while the latter allows more flexibility
for the setting or even the possibility to extract the raw data
from the sensors. Unfortunately, the data that can be extracted
by the provided API are limited depending on each vendor.

Apple Watch operating system (OS) is iOS and WatchKit
SDK can be used for developing an application and extracting

some raw data [142]. Apple provides CoreMotion framework
for extracting raw acceleration (100 Hz), angular acceleration
(100 Hz), compass data, and altitude data. This framework
can adjust the sampling rate of the data. Apple also pro-
vides HealthKit API for extracting vital signs and other
health-related data from Apple Health storage. However, some
data extracted with HealthKit API are not the raw data but the
already derived data, i.e., raw PPG signal is not available, but
HR, HRV, and SpO2 are available. Interestingly, there is still
a method to export raw data from the PPG sensor by using
Breath app developed by Apple [132]. In iOS 14, ECG data
extraction is also available via HealthKit API [143]. In order
to access any of these services, Apple developer program
enrollment is necessary (cost 99 USD/year) [144].

Fitbit SDK can be used to develop an app for Fitbit’s
smartwatch. Even though Fitbit Sense has the most number of
sensors among the reviewed smartwatches, only acceleration
(100 Hz), angular acceleration (200 Hz), HR (1 Hz), location,
and atmospheric pressure (40 Hz) can be extracted using their
Device API. Fitbit also provides Web API for accessing Fitbit
cloud storage data such as activities data and HR, however,
with the limit requesting rate of 150 requests/hour. There is
no cost for developing with Fitbit SDK or API. At present,
Fitbit still does not release the API for accessing SpO2, HRV,
ST, SC, and ECG data. The only method to extract these data
is to subscribe to Fitbit premium user (9.99 USD/month) and
export via Fitbit’s official application.

Samsung provides Tizen SDK for developing an application
for their wearable devices. The company provides Native API
for accessing some raw data from sensors with an adjustable
sampling rate. Acceleration, angular acceleration, location,
atmospheric pressure, and raw PPG data can be extracted
through this API [145]. However, as the SpO2, ECG, and
blood pressure are just recently added, there is still no API
for accessing these data. The only method to extract these data
is by exporting from Samsung official application (Samsung
Health for SpO2 and Samsung Health Monitor for ECG and
blood pressure). There is no cost for developing using Tizen
SDK or exporting data from Samsung’s official application.

Huawei provides HiHealth Kit for developing an appli-
cation related to health monitoring. However, HiHealth Kit
cannot acquire the data directly from Huawei smartwatch and
needs to procure the data through Huawei Health app [146].
Fortunately, the operating system in Huawei is based on
Android, and it is possible to utilize Google Fit SDK and
its API for extracting the raw data [147]. Through Google
Fit, acceleration, angular acceleration, HR, compass, location,
SpO2, and raw PPG data can be extracted with an adjustable
sampling rate.

Amazfit Stratos’s company (Xiaomi) has a subsidiary com-
pany named Huami, which is in control of developing and
manufacturing Xiaomi’s wearable devices. Huami provides
a Web API for extracting activity and health-related data
from their smartwatch [148]. However, this API is not able
to extract the raw data, such as accelerometer, gyroscope,
and compass, from the sensors. Xiaomi also provides an
official SDK for extracting the data from their smartwatch;
however, it is supported only in the Chinese language [149].
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Fortunately, Google Fit appears to be compatible with the
Amazfit smartwatch. Therefore, the raw data can be extracted
through Google Fit API, similar to Huawei.

C. Battery and Price
From a consumer perspective, battery life and price of the

smartwatch are factors that need to be considered. First of all,
in terms of battery life, Amazfit Stratos 3’s and Huawei GT 2’s
battery lives last 35 and 30 hours, respectively, with continuous
GPS usage. This could be due to their lower number of sensors
comparing to the newer model from the other vendors released
this year. Comparing to the research-grade wearable device,
both of the mentioned batteries can last longer. On the other
side, Fitbit Sense comes with a battery life of up to 6 days
(no usage condition explanation) and 12 hours if continuously
using GPS. Apple Watch Series 6 battery endures for the
shortest time of 18 hours in daily life usage or 7 hours if
continuously using GPS. Lastly, Samsung Galaxy Watch 3’s
battery lasts up to 43 hours. However, it is difficult to compare
Samsung Galaxy Watch 3 with the others since there is no
usage condition explanation.

In terms of price, compared to the research-grade wearable
device, the prices of all reviewed smartwatches are much
more affordable. Even the most expensive one among them,
Samsung Galaxy Watch 3, sets its price at least 3 times
lower than Empatica E4. Three of the reviewed smartwatches
(i.e., Apple Watch Series 6, Fitbit Sense, and Samsung Galaxy
Watch 3) are new models released in Q3 and Q4 of this
year. Among the three, Samsung Galaxy Watch 3 is the
most expensive (449.99 USD). Apple Watch Series 6 comes
in second with the price starting from 399 USD. Interestingly,
Fitbit Sense is somewhat cheaper than the other two, despite
the fact that Fitbit Sense introduces the highest number of
sensors in all of the reviewed smartwatches. Huawei GT 2 and
Amazfit Stratos 3 are both smartwatches released in 2019.
Therefore, their prices are on another scale lower than the
previous three.

V. DISCUSSION ON SMARTWATCH CANDIDATES

FOR MENTAL HEALTH MONITORING

Various sensors are one of the main highlights in smart
devices, offering variety in applications. All of the reviewed
smartwatches have a PPG sensor. However, not even one
smartwatch can provide all the features that the PPG sensor
can measure. All of the smartwatches, with an exception
of Amazfit Stratos 3, provide HR and SpO2 features. How-
ever, HRV and blood pressure features are depending on
the model. Apple Watch Series 6 and Fitbit Sense provide
HRV feature but without blood pressure feature. On the
other hand, Samsung Galaxy Watch 3 provides blood pressure
feature but without HRV feature. Huawei GT 2 and Amazfit
Stratos 3 provide none of these features. However, it is
possible to extract raw PPG data from Huawei GT 2 and
Amazfit Stratos 3 with Google Fit API to manually acquire
the HRV and blood pressure. Another noteworthy point that
should be considered is the accuracy of the PPG sensor.
We have reviewed the accuracy of the previous generation
smartwatches of these vendors; the accuracy of Apple Watch is

the best compared to the other smartwatches, and, surprisingly,
better than Empatica E4 [20], [150]. Additionally, Fitbit’s and
Samsung’s smartwatch are comparable to Empatica E4 during
the resting state [20], [150], [151]. Considering that all vendors
upgrade their PPG technology in the new model smartwatches,
higher PPG accuracy can be anticipated, although it has yet
to be clarified. A study has demonstrated the use of a similar
LED configuration as Apple Watch Series 6 (4 cluster LEDs
(green, red, and infrared)). The result showed a reduction of
error in active state HR estimation [123]. Fitbit’s PurePulse
2.0 introduces a PPG sensor with multi-wavelength LEDs,
which should provide better accuracy and robustness compared
to their previous generation PurePulse®, equipped with only
green LEDs [123], [124]. The accuracy validation of these
newly debut PPG technologies is expected to stimulate the
interest for further research.

For ECG sensor, Apple Watch Series 6, Fitbit Sense, and
Samsung Galaxy Watch 3 contain 1-lead ECG that received
the approval from the Food and Drug Administration (FDA)
in some particular countries [152]–[154]. Although the ECG
data from smartwatches are not suitable for precise health
analysis, it is still useful for screening the health condition
and raises the awareness of the public [155]. For the EDA
sensor, only Fitbit Sense provides the sensor for measuring
SC from the user’s palm. The output from Fitbit EDA app is
not the SC raw data but the derived EDA response and stress
analysis. All of the reviewed smartwatches are equipped with
an accelerometer, gyroscope, GPS, and microphone as the
fundamental sensors. Interestingly, all of these sensors can
provide data that are necessary for mental health monitoring,
as shown in Table II. In addition to the fact that some of the
smartwatches can connect to the internet via Wifi and LTE,
it might be possible to use the smartwatches for mental health
monitoring without a mobile phone. Despite the enormous
energy consumption for continuous processing and sending
data, the changes in health-related behavior provided by these
devices are remarkable.

In terms of data extraction, all of the smartwatches can be
connected to the smartphone via Bluetooth for transferring
the data. The fundamental data such as acceleration, angular
acceleration, and location can be extracted by official API in
all smartwatches. Apple’s, Samsung’s, Huawei’s, and Xiaomi’s
smartwatches have their respective methods to extract raw PPG
data with an adjustable sampling rate by using an official or
third-party app (i.e., Breath app and Google Fit). On the other
hand, Fitbit does not offer this option and only derived data
are able to be extracted. Fitbit’s and Samsung’s smartwatches
also contain data that are still unable to be extracted via API
and need to be exported manually through their official appli-
cation. According to these facts, smartwatches show obvious
limitations in terms of data extraction as they were designed
for consumer uses. Even though each vendor provides the
official API/SDK for developers, it is still inflexible and not
possible to access to all of the raw data. In addition to the
several compatible platforms for each smartwatch (i.e., iOS,
Android, and Window) [156], designing a common architec-
ture that can be used to deploy in any smartwatches is a very
challenging issue that needs to be researched further.
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The smartwatch with the highest potential for substituting
the research-grade wearable device in mental health monitor-
ing application appears to be inkling towards Fitbit Sense.
This is because Fitbit Sense possesses similar sensors as
Empatica E4 (PPG, EDA, ST, and accelerometer) and comes
with additional sensors that can be used instead of smartphone
sensors. Fitbit’s smartwatch also has the highest number of
studies, validating their reliability in comparison to the other
vendors [144]. Currently, however, Fitbit still does not provide
access to the PPG and EDA raw data (used in the reviewed
study [63]) and only provides access to the derived HRV
data and stress analysis data (from EDA) on their official
app. It might be possible to use the derived data from Fitbit
Sense instead of the raw data. However, the validation with the
clinical level method as ground truth is necessary. In the future,
if Fitbit offers open access to the PPG and EDA raw data or
a third-party app provides a method to access these raw data,
Fitbit Sense should pose as the best replacement for Empatica
E4 in mental health monitoring application. Another choice for
an alternative is Apple Watch Series 6. This is because Apple
Watch’s PPG sensor is widely proven to be the most accurate
PPG sensor in all of the smartwatches with the possibility
to access the raw PPG data through Breath App. However,
the downside of Apple Watch is that there are no ST sensor
and EDA sensor. As described in Table II, no study has been
found using only HRV for detecting mental health issues,
hence the necessity for further validation to effectively utilize
Apple Watch Series 6 in mental health monitoring application.

VI. CONCLUSION

The evidence from our scoping review confirms that the
wearable devices and mobile technology have the potential
to identify and target individuals with psychological burdens.
Smartphones are able to provide communication data (i.e., call,
SMS, and app usage) and behavior data (i.e., acceleration
and GPS). Moreover, wearable devices can provide physio-
logical health data (i.e., HRV and SC), which are associated
with mental health, such as stress, depression, anxiety, and
insomnia. From our findings, most of the studies use high-cost
research-grade wearable devices that are difficult for the public
to afford. However, we believe that smartwatches have the
potential to replace research-grade wearable devices (or even
smartphones). The use of smartwatches will indisputably be
the major interest in future mental health research. To verify
this assumption, we reviewed top model smartwatches from
5 vendors with the highest market shares from both developer
and consumer perspectives. The result of our review shows
similarity of sensors in the current models of smartwatch,
the research-grade wearable device, and smartphone. Thus,
we believe that the smartwatch has a high potential to
substitute for the other devices in the application of men-
tal health monitoring and psychological support during the
COVID-19 pandemic.
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