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Abstract—Long term sensors drift is a challenging problem
to solve for instruments like an Electronic Nose System (ENS).
These electronic instruments rely on Machine Learning (ML)
algorithms for recognizing the sensed odors. The effect of
long-term drift influences the performance of ML algorithms
and the models those are trained on drift free data fail to
perform on the drifted data. Moreover, the response of an
electronic nose system depends on the variable response of
the sensors and a delay is expected in reaching a steady
state by the sensors. In this paper, these two problems of
‘sensors long term drift’ and ‘delayed response’ are solved
simultaneously to propose a robust and fast electronic nose
system, with following merits: (i) only initial transient state
features are used in the proposed system without waiting for the sensors to reach a steady state, (ii) a modified boxplot
approach is used to handle noisy/drifted data points as a preprocessingstep before the classificationsetup, (iii) a heuristic
tree classification approach with optimized transient features is proposed, (iv) the proposed approach only relies on
adapted ML methods contrary to the traditional approaches like system recalibration or sensors replacement for handling
sensors drift, and (v) the proposed ML model does not require any target domain data and uses only the source domain
data for learning the classifier, opposed to the other ML solutions available in the existing literature. The proposed method
is tested using a large scale gas sensors drift benchmark dataset available freely on UCI Machine Learning repository
and is found better than the existing state-of-the art approaches with an overall accuracy of 87.34%.

Index Terms— Artificial olfaction, electronic nose, heuristic optimization, industrial gases, sensors drift.

I. INTRODUCTION

ARTIFICIAL Olfaction (AO) refers to identifying and dis-
criminating different odors using electronic instruments

like an Electronic Nose System (ENS). The ENS has a broad
range of applications including the food industry [1]–[3],
health sector [4], [5], environment monitoring [6], oil and gas
industry [7], and security purposes [8], [9], among others.
An ENS is comprised of two units, a sensing unit and a
recognition unit. In the sensing unit, an array of different
sensors is used to record the response of different Volatile
Organic Compounds (VOCs) and the recorded response is
utilized by the recognition unit to identify and discriminate
between different VOCs.
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Machine Learning (ML) models used in the recognition
unit of ENS play a vital role in classifying odors and setting
the prediction accuracy of the overall system [10]. However,
the performance of these ML models deteriorates due to the
gradual occurrence of long-term sensors drift. This happens
due to the unpredictable shift in the sensor response data over
time and what makes it even more challenging is the fact
that the behavior of drift is non-deterministic in nature [11].
Therefore, the models trained on the data that is acquired using
new sensors fail to perform when tested on the data acquired
using relatively old/used sensors. This means that, for real
applications the same device cannot be used for longer periods
of time and the system either needs to be recalibrated or
requires sensors replacement. Recalibration of system requires
a baseline gas that can be used to compensate the drift
and sensors replacement/calibration is also associated with an
additional cost to the system, which hinders deployment of
these sensors outside the Lab and in real-life applications.

Besides the performance of ML algorithms in the pres-
ence of drift, another important factor that contributes to the
performance of the overall system is response time of the
system. The response time of the system is the time a system
takes in making a prediction after its exposure to an odor of
interest. This response time mainly depends on (i) the response
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time of the sensors used in the sensing unit of ENS and
(ii) the amount of time ML algorithm takes for computation
in the recognition unit. Classical ML algorithms mainly rely
on the steady state response of the sensors to discriminate
between different odors of interest. The steady state response
is also termed as the ‘gold-standard’ for feature extraction in
chemo-sensory community [12]. However, to reach a steady
state response the system needs to wait for a very long time
(typically in the order of minutes) resulting in unreasonable
latency hindering deployment in time-critical applications.

In this paper, the two challenging problems of long-term
sensors drift and the large latency of the system are simulta-
neously solved to propose a fast and robust system, with the
following merits:

1) The proposed system does not need to wait for the sensors
to reach a steady state, rather it uses only the transient state
features to discriminate between different VOCs of interest and
it makes the overall response time of the system low, without
compromising on the classification accuracy of the system.
This makes it suitable for time-critical real applications of
ENS.

2) In order to compensate the drift, a novel tree clas-
sifier which uses different classifiers at its different nodes
is proposed. The nodes of the tree classifier are provided
with different heuristically optimized features to discriminate
between different VOCs of interest.

3) The proposed solution relies purely on a ML approach
and thus it does not require any system recalibration or the
sensors replacement for real applications of an ENS.

4) The proposed approach does not require any target
domain data for drift compensation as required by other
semi-supervised ML solutions proposed in existing literature
and relies only on the source domain data for learning the
classifier.

5) To the best of our knowledge, this is the first study to
test initial transient features for long-term drift compensation
in gas sensors.

The proposed technique is tested using a widely used, large
size, benchmark dataset for drift and is compared with several
existing state-of-art approaches and is found better in terms of
classification accuracy with an added advantage of utilizing
only the transient state features for a faster response time.
The overall classification accuracy achieved is 87.34% which
is higher than the existing approaches.

The rest of the paper is organized as follows: Section II
(Related work), Section III (Proposed Methodology),
Section IV (Performance Evaluation), Section V (Conclusion).

II. RELATED WORK

One of the pioneering works for systematically analyzing
the sensors drift in real operating conditions is presented
in [13], [14] by Romain et al. The authors presented a detailed
insight of the sensors drift problem by collecting and analyzing
a large dataset over a long period of time. The key conclusions
drawn from these studies include the following three points:
(i) Metal oxide gas sensors are the best option for long term
use, (ii) estimation of drift is recommended using a calibration
gas for compensating the drift, and (iii) sensors replacement

is considered must for long term use. However, solutions like
system recalibration and sensors replacement are tedious and
impose an additional maintenance cost.

Other than the solutions listed above, a number of other
solutions are also presented in the literature to compensate
the drift in sensors. These solutions can be broadly classified
as (i) univariate approaches, (ii) multivariate approaches, and
(iii) ML approaches [15], [16]. Some examples of univariate
approaches are frequency analysis, differential measurement
and baseline manipulation [17] whereas, the drawback of
these approaches is their sensitivity to sample rate varia-
tion [18], [19]. Examples of multivariate approaches include
clustering and signal correction [20], [21]. The drawbacks of
these approaches are the requirement of frequent sampling
and recalibration. ML approaches on the other hand solve
the problem of drift by intelligently adapting the model to
compensate the drift without any description of the drift.

Some recent ML approaches presented in the scientific
literature for drift compensation are mainly based on sub-
space learning/domain transformations [22]–[24], deep neural
networks [25], transfer learning [26], feature selection [27]
and semi-supervised learning [16], [28]. Almost all the ML
methods presented in literature are able to handle the sensors
drift to some extent but still there exists a room for improving
the accuracy of these models. Furthermore, these models have
some limitations like the computational complexity of the
classifiers that contributes to a further delay in the response
time of the system, complex hyperparameter tuning, require-
ment of target domain data for semi-supervised learning and
requirement of steady state response of the sensors for better
classification accuracy.

X. Pan et al [29] have recently proposed a fast gas recogni-
tion system based on a hybrid of convolutional and recurrent
neural network that discriminates between different gases
based only on the transient features acquired from the begin-
ning of response curve without waiting for the sensors to reach
a steady state. The study paves the way to use only transient
features for a faster response with high accuracy. However, this
study did not consider the effect of long-term sensors drift.

Keeping in view the ability of ML models against sensors
drift, with an added advantage of no maintenance cost, this
paper proposes a novel tree based classification model with
an ability of fast response and robustness again sensors drift.
For a better generalization the nodes of the proposed tree
based classifier are optimized with a heuristic feature selection
algorithm and different classifiers are used at different nodes
of the tree for a better classification accuracy. Furthermore,
to enhance the response time of the system only transient
features acquired at the beginning of the response curve are
used for classification.

III. PROPOSED METHODOLOGY

The overall proposed model is based on four stages: (i) fea-
ture extraction, (ii) sample cleaning/denoising based on a
modified distance based boxplot, (iii) features optimization
using an iterative evolutionary feature selection algorithm and
(iv) classification using a multi-classifier tree approach. The
details of proposed model are given as follows:
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Fig. 1. Response of 16 gas sensors for Ethanol exposure.

Fig. 2. Three regions of response curve.

A. Feature Extraction
The aim of the study is to utilize only the transient features

acquired at the beginning of the response curve of the sensors.
So, in this study only transient features are studied for dis-
crimination of six different gases in the presence of long-term
drift. A typical response of 16 sensors array (having four
different type of gas sensors) towards a particular gas (Ethanol)
can be seen in Fig. 1. Upon the exposure of gas to sensors,
the resistance of gas sensors starts to increase, the initial
stage of response from where the response starts increasing
from its baseline until it reaches a steady state is called its
initial transient state. The region when the response reaches its
maximum value and remains almost linear is the steady state
region and the region when the response starts going back to
its baseline value is the final transient state region. All these
three regions are marked in Fig. 2. The features extracted from
the initial transient state are of interest in this study, because
if only initial transient features are used, the system does not
need to wait for the steady state and final transient features.
Thus, decreasing the response time of the system.

The initial transient features used in this study are calculated
by the authors of [30], using the exponential moving average

function as:
Yα [k] = (1 − α) Yα [k − 1] + α (r [k] − r [k − 1]) (1)

where, r [k] represents the sensor’s time series response at time
k and α is a smoothing factor. Using three different values of
α in (1), three different features for each gas sensor T Fsensori

are computed from the rising portion of the response curve as:

T Fsensori =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
k

emaα=0.001(r [k])
max

k
emaα=0.01(r [k])

max
k

emaα=0.1(r [k])
(2)

The sensors array used in this study contains 16 gas sensors
and for each gas sensor three initial transient features are
extracted, thus creating a feature vector of size 48. Four differ-
ent types of sensors are used for acquisition of the data which
are TGS2600, TGS2602, TGS2610 and TGS2620 (4 each).
These sensors are manufactured and tagged by Figaro Inc. The
response of these gas sensors is a sixteen channel time series
response which represents the change in resistance on the
active layer of the sensors. A test chamber of 60 ml volume is
used to expose the sensors array to different VOCs individually
with different concentration values. The concentrations are
controlled with three mass flow controllers (MFCs) and the
exposure is done in a random manner. The flow rate is set
to 200 ml/min and the sampling rate used is 100 Hz. Based
on the time of acquisition, the data is placed in ten different
batches. A complete description of the hardware setup is given
in [30].

B. Sample Cleaning/Denoising
The sample cleaning/denoising is performed to mitigate the

effect of overall sensors drift and noise in data. In order to
do the sample cleaning, a modified distance based boxplot
approach is used. The data sample/observation under consider-
ation is evaluated for possible outliers or noisy data points that
may occur due to the sensors drift. If any element in an obser-
vation deviates significantly from the other element/entries in
the same observation then it is detected as a noisy/drifted data
element and it is replaced by the mean of non-drifted entries
of the same observation.

Rather than using the traditional boxplot to identify the
outliers from the unique dimensions, one useful idea is to
calculate the distance between all the data points and to use the
resulting distance vector for identifying the outliers. The use of
distance vector enhances the ability of boxplot by considering
the compactness of data. Consider the case of a data sample
Sn ∈ R, the n dimensional data sample can be transformed
to a distance vector dn , by computing the distance of each
observation in S to its kth closest neighbor. The concept of
transformation can be summarized as the following function:

Sn
k−→ dn (3)

where, dn ∈ R is a vector of length n containing the Euclidian
distance of each observation in S to its kth closest neighbor
and dn can be further used to compute a modified boxplot
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Fig. 3. Data cleaning/denoising. Row 1: response of three sensors to six different gases without denoising. Row 2: response of sensors after
denoising.

with extreme values are computed as:{
L Edn = Q1dn − c1

(
Q2dn − Q1dn

)
,

U Edn = Q3dn + c2
(
Q3dn − Q2dn

)
.

(4)

where, L Edn and U Edn are respectively the lower and upper
extreme values of the modified boxplot and Q1dn , Q2dn , and
Q3dn are the first, second and third quartiles of the boxplot.

The outliers can be identified as the observations that lie
outside the defined extreme values in (4). The constants c1
and c2 can either be tuned for better performance or can be
kept constant as equal to 1.5 or 3 as suggested by different
authors in the literature. The resulting box-whisker plot is
easy to implement and can identify the underlying outliers
in a dataset accurately. For-example, in Fig. 3 the modified
boxplot technique is applied on three different sensors against
their response to six different gases. From the results it can
be seen that, denoising the samples removes majority of the
peaks present in the raw features and gives more stability to
the response behavior. Here, in this paper the values of k = 3
and c1 = c2 =3 are kept fixed for all the experimentation and
the detected outliers are replaced by the sample inlier mean
values.

C. Features Optimization
Optimization of sensors array in an ENS is required to

find out the best combination of sensors for a particular
application. Furthermore, feature selection algorithms reduce

the dimensionality of the data and contribute towards memory
requirement, power consumption, computational overhead and
production cost [31]. Besides these advantages, feature selec-
tion can also mitigate the effect of sensors drift [27]. In order
to further investigate the ability of feature selection to mitigate
the effect of drift, this study uses only transient features to
classify six different gases collected using the same sensors
array over a period of 36 months [30].

Wrapper feature selection methods are considered more
suitable as compared to the filter selection methods due to their
interaction with the classifier. As the filter based methods are
independent of the classifier their accuracy is always expected
to be low as compared to the wrapper methods. However,
wrapper based methods are prone to overfitting and require
a thorough validation.

Metaheuristics feature selection algorithms like Particle
Swarm Optimization (PSO) and Shuffled Frog-Leaping (SFL)
in a wrapper setup are found suitable for optimizing the
sensors array for an ENS [32]–[34]. In this study, the abil-
ity of PSO is further enhanced by a modified boxplot
to cope with sensors drift and multiple classifiers in a
tree setup are wrapped with PSO for classification of
gases.

The problem of sensors array optimization using PSO is a
discrete optimization problem which is solved by the following
three basic steps:

Step 1: Computing the fitness of particles against an objec-
tive function.
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Step 2: Updating the personal and global best fitness and
positions of particles.

Step 3: Updating the velocities and positions of particles in
the swarm.

These steps are iterated until a stopping criteria is reached.
The velocities and positions of the swarm are initialized

randomly as:

V =

⎡
⎢⎢⎢⎣

v11 v12 . . . v1n

v21 v22 . . . v2n
...

...
...

...
vm1 vm2 . . . vmn

⎤
⎥⎥⎥⎦

m×n

(5)

vi j = −vmax + 2vmax × rand() (6)

X =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

...
xm1 xm2 . . . xmn

⎤
⎥⎥⎥⎦

m×n

(7)

xi j = randint () (8)

where, vmax is the maximum velocity with which a particle can
accelerate and it is a user specified value to control exploration,
randint () is a function that generates a random binary matrix
for defining the initial positions of particles, m represents the
swarm size and n is the size of each particle (is equal to the
length of feature vector).

Once a swarm of particles is initialized, PSO evaluates
each particle in the swarm against a fitness function. Here,
each particle’s position is a combination of binary bits which
indicates either selection of feature (if the index location is 1)
or non-selection of feature (if the index location is 0). The
features with index location 1 are evaluated for classification
and the classification error is returned as a fitness value of the
model. The fitness function is defined as:

Fi = C E (xi1, xi2, . . . , xin) ; ∀xi j == 1 (9)

where, Fi is the fitness of i th particle, C E is the classi-
fication error after evaluating the combination of features
(xi1, xi2, . . . , xin) with index location xi j equal to 1 and n
is the length of feature vector. Global best particle is the one
with lowest Fi .

After evaluating all the particles in swarm against a fitness
function, the velocities and positions of the particles are
updated for re-evaluation in the next iteration. The velocity
of particles is updated as:

vi (t + 1) = w × v(t) + c1 × r1 × [p(t) − xi (t)] + c2 × r2

×[g (t) − xi (t)] (10)

where, i represents the i th particle whose velocity is being
updated, vi (t) is the velocity of i th particle at iteration t , xi (t)
is the position of i th particle at iteration t , w is the inertia
constant, c1 (0 ≤ c1 ≤ 2) and c2 (0 ≤ c2 ≤ 2) are exploration
and exploitation constants, g (t) is the global best position of
the swarm at iteration t and p(t) is the personal best position
of the i th particle at iteration t .

Fig. 4. Classification model for drift compensation.

The position Xi (xi1, xi2, . . . , xin) of the i th particle is
updated as:

i f rand() < S
(
vi j (t)

)
(11)

xi j = 1

else,

xi j = 0.

S
(
vi j (t)

) = 1

1 + e−(vi j (t))
(12)

where, rand() is a uniformly distributed U (0, 1) random
number and S (.) is the sigmoid function. After each iteration
the personal best and global best positions and fitness are
updated by comparing the fitness values to the previously
achieved fitness values. Once the algorithm completes the
maximum allowed number of iterations the best combination
of features for classification can be found in the global best
position of the swarm.

D. Classification Setup
The problem of multi-class classification in the presence of

long-term sensors drift is solved by using the strategy of divid-
ing the main problem into sub-problems. At the initial stage of
classification, only those optimum features are searched which
can classify all the six gases in two sub-groups using classifier
number 1. Group 1 contains Gas2 and Gas3 while Group2 has
Gas1, Gas4, Gas5 and Gas6. In the second stage of classifi-
cation Gas2 and Gas3 are further classified using classifier
number 2 with its own optimized features and the gases in
Group2 are further classified as Gas1 and Group3. In the third
stage of classification the gases in Group3 are further classified
as Gas4 and Group4 using classifier number 4, with different
optimized subset of features. In the last stage of classification,
the gases in Group4 are classified as Gas5 and Gas6 using
classifier number 5. The overall structure of the classification
model is described in Fig. 4. This specific classification setup
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TABLE I
TRANSIENT FEATURES USED FOR EXPERIMENTATION

is adapted after a comprehensive experimentation on grouping
and identification of the VOCs under consideration which is
further elaborated for better understanding in the performance
evaluation section.

In the proposed tree structured classification model, each
node contains a different classifier optimized with different
subset of transient features. The classifier at each node is
selected after a thorough experimentation of different clas-
sification models and the selection is based on the best
performing model for the gases of interest. Each node uses
its own separately optimized subset of transient features to
enhance the overall classification performance of the system.
The classifiers tested at each node include Support Vector
Machines (SVM), K-Nearest Neighbor (KNN), Naïve Bayes
(NB), Discriminant Analysis (DA), Logistic Regression (LR)
and Decision Tree (DT).

IV. PERFORMANCE EVALUATION

The proposed drift compensation model based on the initial
transient features of the response curve is tested using a
famous large scale benchmark drift dataset freely available
online at UCI Machine Learning repository. A brief description
of the dataset and the performance of the proposed model
follows in this section.

A. Dataset
The dataset used in this study for performance evaluation

was acquired using an array of 16 gas sensors manufac-
tured by Figaro Inc. The sensors used in the array are
TGS2600, TGS2602, TGS2610 and TGS2620. Six different
analytes are used in the collection of dataset over a period
of 36 months using the same sensors array. The analytes used
are Ammonia, Ethanol, Acetone, Acetaldehyde, Toluene and
Ethylene. A wide range of concentration variation (between
5-1000 ppmv) is exposed to the sensors array to test the ability
of sensors sensitivity against low and high concentration of
these pure gaseous substances. A total of 13910 measurements
are recorded and based on the time of acquisition these
measurements are organized in 10 different batches. For-
example the measurements recorded in first two months are
placed in batch1 and the measurements recorded in the last
36th month are placed in batch10. As the data is organized in
different batches based on the time of acquisition, the effect of
long term drift gradually increases with an increase in batch
number. In order to demonstrate the effect of drift on the
distribution of data, measurements recorded for Ethylene using
a fixed concentration level (100 ppmv) are shown in Fig. 5.
It can be observed from the distribution of data in Fig. 5 that if
a ML model is trained on data contained in Batch 1, it will fail
to correctly predict the data in Batches 2-10 as the distribution

Fig. 5. Effect of drift on distribution of data for Ethylene with a fixed level
of concentration (100 ppmv), y-axis and x-axis are the first and second
Principal Component (PC) of the feature vector.

is totally random in upcoming batches due to drift. Therefore,
a strategy to compensate the drift has to be incorporated in a
ML model.

In the actual dataset provided by the authors of [30], the fea-
tures extracted are both the transient features and the steady
state features. For each of the 16 gas sensors, 2 steady state
and 6 transient features are computed, making a feature vector
of 128 in length. Among the six transient features 3 features
against each sensor are computed from the initial rising state
of the time series response curve and 3 are computed from the
final decaying portion of the response curve.

The aim of this study is to use only the initial transient
features, so the features extracted only during the initial
rising response curve of the sensors are used. Thus, only
3 features against each gas sensor are used and this makes
a feature vector of length 48 (16 sensors x 3 features). The
feature vector is explained using Table I, where each feature
number (F1-F48) can be mapped to its correspondence sensor
number (S1-S16) and the value of smoothing factor α used
for computing the respective feature value in (1)-(2).

B. Results
The details of dataset used are reported in Table II. For

evaluation of proposed drift compensation model, the data
contained in batch1 is used as training data for classifier
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TABLE II

DETAILS OF DATASET CONCENTRATIONS OF ANALYTES TRAINING DATA SAMPLES TESTING DATA SAMPLES AND TOTAL DATA SAMPLES

TABLE III
CLASSIFICATION PERFORMANCE OF STATE-OF-ART CLASSIFIERS

USING ALL RAW TRANSIENT FEATURES

TABLE IV
CLASSIFICATION PERFORMANCE OF STATE-OF-ART CLASSIFIERS

USING ALL THE TRANSIENT FEATURES AFTER DATA CLEANING

learning and the data contained in batches 2-10 is used as the
testing data. This is done primarily to evaluate the performance
of the proposed ML model against drift by training it on
almost drift free data (batch1) and testing it on the drifted
data (batch 2-10). The data in batch1 is considered drift free
because this data was acquired when the sensors were new.
The results of different state-of-the-art classifiers for classifi-
cation of all six gases using all the 48 initial transient features
are given in Table III. Here, the features are used in their
original form without doing any processing to compensate the
drift. It can be seen from the results in Table III that if these
transient features are used in their actual form, none of the

TABLE V
CLASSIFICATION PERFORMANCE OF STATE-OF-ART CLASSIFIERS

AFTER DATA CLEANING AND FEATURE SELECTION

TABLE VI
DA CONFUSION MATRIX

TABLE VII
DA PERFORMANCE EVALUATION PARAMETERS

classifier is able to discriminate between gases in the presence
of drift. The maximum accuracy achieved is 41.05% using the
linear SVM which shows that the classical ML algorithms fail
to perform when trained on almost drift free data and tested
on the drifted data.

The same transient features are processed using the modified
boxplot technique described in section III-B and the noisy data
points contained within a sample are replaced by the mean of
inlier data samples. After performing the proposed data clean-
ing process, the same state-of-the-art classifiers are evaluated
again and the results are reported in Table IV. It can be seen
from the results in Table IV that the data cleaning process has
contributed towards an increase in the classification accuracy
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TABLE VIII
BEST CLASSIFICATION RESULTS AT EACH NODE OF THE PROPOSED MULTI-CLASSIFIER TREE APPROACH

of all the classifiers. However, the overall accuracy to classify
the gases in presence of drift remains low.

To further enhance the classification performance of clas-
sifiers, feature selection process is carried out using PSO as
described in section III-C. The best classification results after
feature selection and optimization of hyperparameters of all
the classifiers are given in Table V.

The results reported in Table V give a clear insight that
feature selection has the ability to compensate sensors drift
and when combined with a data cleaning preprocessing step
the best classification accuracy has increased from 41.05% to
68.16%. To further get more clear insight of the classification
performance of the best performing classifier (DA), confusion
matrix and some other performance evaluation parameters are
computed and the results are given in Table VI and Table VII,
respectively.

From the results in Table VI, it can be observed that
although the classifier has ability to discriminate some gases
but there exists an overlap between some gases which con-
tributes to the misclassifications. For-example a clear overlap
between Gas1, Gas4, Gas5 and Gas6 is observed, as majority
of Gas4 and Gas5 samples are either misclassified as Gas1 or
Gas6. Based on this observation, the Gases are classified
by dividing the overall multiclass classification problem into
subproblems. For example, at the initial classification stage
the gases are only classified as Group1 (Gas2 and Gas3) and
Group2 (Gas1, Gas4, Gas5, and Gas6). In further classification
stages these Groups are either classified as recognized gases
or new groups as previously described in the proposed classi-
fication architecture (Fig. 4). In order to maximize the classi-
fication ability of the proposed multi-classifier tree approach,
all the nodes of the tree structured classifier are optimized
separately in terms of the classifier used and the selected
features. The best classification results after evaluating each of
the state-of-art classifier, at each node of the proposed multi-
classifier tree approach, are given in Table VIII.

The overall performance of the proposed multi-classifier
tree approach for discriminating all the six gases in the pres-
ence of long-term sensors drift is reported using a confusion
matrix and performance evaluation parameters in Table IX and
Table X, respectively. The proposed classification approach
using only transient features, combined with a data cleaning
preprocessing step and feature optimization resulted in an
overall accuracy of 87.34%, with 87.23% sensitivity and
97.47% specificity. The performance of proposed architecture
with respect to individual gases is reported in Table XI.

C. Comparison With State-of-Art Approaches
The proposed approach (using only transient features)

for a faster system response is compared with the existing

TABLE IX
CONFUSION MATRIX FOR PROPOSED MULTI-CLASSIFIER

TREE APPROACH

TABLE X
DA PERFORMANCE EVALUATION PARAMETERS

TABLE XI
PERFORMANCE OF PROPOSED MULTI-CLASSIFIER

TREE FOR INDIVIDUAL GASES

state-of-art approaches in terms of classification accuracy and
the results are reported in Table XII. The results for Kernel
PCA (KPCA), Geodesic Flow Kernel (GFK), marginalized
Stacked Denoising Autoencoder (mSDA), Information- The-
oretical Learning (ITL), Structural Correspondence Learn-
ing (SCL), Subspace Alignment (SA), Transfer Component
Analysis (TCA), Maximum Independence Domain Adapta-
tion (MIDA), Semi-supervised MIDA (SMIDA) and Semi-
Supervised TCA (SSTCA), are taken from [35]. The results
for multi class SVM with Radial Basis Function (RBF) kernel,
Component Correction PCA (CC-PCA), Extreme Learning
Machine (ELM) with RBF kernel (ELM-rbf), Geodesic Flow
Kernel (GFK), Combination kernel (comgfk), Domain Adapta-
tion ELM (DAELM-S and DAELM-T) are taken from [36].
The results for Multi-Feature Kernel Semi-Supervised joint
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TABLE XII
COMPARISON WITH EXISTING STATE-OF-THE-ART APPROACHES

Fig. 6. Comparison in terms of overall classification accuracy (All Data).

learning (MFKS) are taken from [37]. A visual comparison
in terms of classification performance is provided in Fig. 6.

It can be observed from the results in Table XII that
the proposed Multi-Classifier tree approach has shown bet-
ter performance to compensate the sensors drift, using only
transient features. As the proposed model depends only on
the initial transient response of sensors, the overall system
response decreases making the system faster as compared
to the existing approaches. For example, from the response
of a typical gas sensor shown in Fig. 2, it can be seen

that a model that depends on entire sensor response has
to wait almost 600-700 seconds before starting the process
of recognition, whereas the proposed model only has to
wait 100-200 seconds to start the recognition process. This
shows that besides performing better in terms of classification
accuracy the proposed approach is also better in terms of time
complexity. Furthermore, keeping in view the performance of
the proposed model against drift when trained only on the
data acquired in the initial two months (when the sensors are
new), it is expected that if any of the sensor in the sensor’s
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array needs a replacement, it can be done without requiring
any retraining of the model if new sensor of the same type is
available. However, if a new sensor of the same type is not
available due to any reason and the replacement needs to be
done with a different type of sensor or a relatively old sensor
of same type, the model will require retraining to ensure the
best classification performance.

The important conclusions drawn from this study are as
follows: (i) Feature selection plays a vital role in drift compen-
sation of gas sensors. (ii) Initial Transient response of Figaro
Gas sensors (TGS2600, TGS2602, TGS2610 and TGS2620)
have an ability to discriminate between different analytes in
the presence of drift. (iii) Figaro gas sensors when combined
with a powerful classification algorithm are highly sensitive
towards Ethylene and Ammonia, even in the presence of long
term drift.

V. CONCLUSION

In this study, two challenging problems: (i) sensors long
term drift and (ii) system’s large latency are simultaneously
solved using a powerful ML model optimized with a com-
bination of initial transient features. The proposed approach
is based entirely on ML techniques and therefore it does
not require any system recalibration or sensors replacement.
Furthermore, contrary to the ML solutions available in existing
literature the proposed solution does not depend on any target
domain data for classifier learning and is based only on the
source domain data for learning.

The proposed model is trained and tested on drifted tran-
sition data that was acquired over a period of 36 months
and the proposed model is found robust against drift with an
overall classification accuracy of 87.34%. A multi-classifier
tree approach is proposed to handle long term sensors drift and
for reduced system’s response time initial transient response
of sensors is used as features for learning the classifier.
Furthermore, the study shows the importance of feature selec-
tion in compensating drift for gas sensors and it is seen
that a suitable combination of initial transient features has
powerful discriminatory abilities in the presence of long-term
sensors drift. The merits of the proposed approach include its
ability to perform in the presence of long-term drift and its
dependence only on the initial transient features for a faster
system response. This makes the proposed approach feasible
for real time critical applications of an ENS.
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