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Abstract—Automotive radars have become an important
part of sensing systems in vehicles and other traffic applica-
tions due to their accuracy, compact design, and robustness
under severe light and weather conditions. The increased use
of radars in various traffic applications has given rise to the
problem of mutual interference, which needs to be mitigated.
In this paper, we investigate interference mitigation in chirp
sequence (CS) automotive radars via signal reconstruction
based on autoregressive (AR) models in fast- and slow-
time. The interference is mitigated by replacing the disturbed
baseband signal samples with samples predicted using the
estimated AR models. Measurements from 77 GHz frequency
modulated continuous wave (FMCW) static and moving radars
are used to evaluate the signal reconstruction performance in terms of the signal-to-interference-plus-noise ratio (SINR),
peak side-lobe level (PSLL), and mean squared error (MSE). The results show that the interference is suppressed down to
the general noise floor, leading to an improvement in the SINR. Additionally, enhanced side-lobe suppression is achieved
via AR signal reconstruction, which is compared to a commonly used inverse-cosine method. Furthermore, the paper
notes that the slow-time signal reconstruction can be more beneficial for interference suppression in certain scenarios.

Index Terms— Automotive radar, autoregressive (AR) modeling, chirp sequence (CS), frequency modulated continuous
wave (FMCW), interference mitigation, signal reconstruction.

I. INTRODUCTION

AUTOMOTIVE radars are being increasingly employed
in a variety of safety-critical advanced driver assis-

tance systems (ADASs), e.g., automatic emergency braking
(AEB), blind spot detection (BSD) and adaptive cruise control
(ACC) [1]. In addition, these radars are being utilized in a
number of security applications, e.g., for the surveillance of
railroad crossings and buildings [2]. Due to the increasing
number of radars in traffic and their limited operating fre-
quency range (76-77 GHz for long-range and 77-81 GHz for
short-range applications [3]–[5]), it has become more likely
to end up in scenarios where multiple radar sensors are
transmitting simultaneously and therefore interfering with each
other. This interference results in reduced detection capabilities
for the ego radar [6], and this performance degradation is
more severe for far-distance or low back-scattering targets such
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as pedestrians and cyclists [7]. For the safety of road users,
interference from other radars operating in the same vicinity
should be eliminated [8].

Several automotive radar interference mitigation methods
have been proposed in recent years [9]. These methods can be
classified into those operating at either the transmitter (TX) or
the receiver (RX) end. Random chirp frequency hopping [10],
bats-inspired frequency hopping [11], and PN-coded frequency
modulated continuous wave (FMCW) radar signals [12] are
some of the interference mitigation techniques that work
mainly at the TX end. For these techniques, the radar
system needs to have a built-in ability to transmit chirp
signals of varying center frequency, bandwidth, and duration.
In addition, radar communication (at both the TX and RX
ends) has also been proposed as a method to avoid mutual
interference [13], [14].

At the RX end, it is possible to mitigate the effect of
interference by applying signal processing methods on the
received signal. If antenna arrays are available, then inter-
ference can be suppressed in the spatial domain by using
digital beamforming [15]–[17]. Interference can also be sup-
pressed in the time domain by detecting and zeroing out
the disturbed samples in the received signal [18]. A similar
method is to apply an inverse raised cosine window on the
disturbed section to suppress interference and smooth out
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discontinuities in the resulting time-domain signal [19]. Miti-
gation of interference by reconstructing the disturbed samples
of the time-domain baseband signal by employing Kalman
filtering is presented in [20]. Further interference mitigation
techniques in the signal processing domain include simultane-
ous detection and mitigation using signal separation (decom-
position) methods [21]–[23], comparison of the frequency
spectra of multiple chirps [24], adaptive noise cancellation by
comparing the positive and negative halves of the frequency
spectrum [25], and deep learning methods [26], [27].

Signal modeling has also been used for FMCW radar
interference mitigation. In [28], the received baseband signal is
modeled as a sum of sinusoids. The model parameters (weights
of the sinusoids) are determined using an adaptive method,
and one-step prediction is recursively used to extrapolate
the signal over the disturbed part to mitigate interference.
Recently, autoregressive (AR) modeling has been used for
reconstructing disturbed parts of the received baseband signal
in the short-time Fourier transform (STFT) domain (in an
X-band FMCW radar) [29] and in the time domain (in an
automotive radar) [30], [31].

Current automotive radars generally use a chirp sequence
waveform, and the received signal corresponding to a block of
chirps is coherently related both in fast-time (the time within a
single chirp) and slow-time (the time across chirps in a coher-
ent processing interval). There is a clear indication in [28]–[31]
that good interference mitigation performance can be achieved
by signal reconstruction using AR modeling. However, to our
knowledge, signal reconstruction in slow-time has not been
investigated for automotive radar interference mitigation. In
this work, we compare and evaluate the interference mitigation
and signal reconstruction performance using AR modeling in
fast- and slow-time with the help of real measurements from
static and moving radars. Furthermore, we propose an AR
model selection and parameter estimation methodology suited
for signal reconstruction in FMCW automotive radars. The
focus is sample prediction and how the prediction performance
can be improved by choosing an appropriate model estimation
dimension.

The main contributions of our work are listed below:
-- In this work, a unique method using slow-time signal

reconstruction for interference mitigation is presented.
The method is evaluated using both simulation and
experimental data. In previous works, AR model-based
signal reconstruction techniques for automotive radar
interference suppression are limited to fast-time signal
reconstruction.

-- A comparison between fast-time and slow-time signal
reconstruction is presented.

-- The proposed method is evaluated for dynamic scenarios,
i.e., cases with static and moving radars as well as
targets.

-- A systematic approach for interference suppression suited
for FMCW automotive radars is proposed that includes
the following steps: Interference detection, AR model
order estimation, AR coefficients estimation, and estima-
tion of final prediction values from forward and backward
prediction values.

Fig. 1. Frequency (f) vs time (t) plot of transmitted ( ) and interfering
( ) chirps with identical parameters. τ is the time shift between the
transmitted and interfering signals. The dashed lines above and below the
TX chirp indicate the receiver’s bandwidth BRX, which also determines
the maximum time shift τmax between the chirps for the appearance of
ghost targets. (a) The interfering chirp falls within the receiver’s bandwidth
and results in a ghost target. (b) The interfering chirp falls outside
the receiver’s bandwidth. No interference is observed in the baseband
signal.

In the next section, (Section II), we describe the mutual
interference in chirp sequence radars followed by the signal
model description in Section III. Subsequently, the interference
mitigation and signal reconstruction methodology is presented
in Section IV.

II. MUTUAL INTERFERENCE

Automotive radars generally employ a chirp-sequence
FMCW signal. Interference occurs when multiple radars trans-
mit in the same time interval and there is a frequency
overlap between the transmitted signals [6]. Different transmit
chirp parameters (chirp duration T , center frequency fc and
bandwidth B) result in different interference properties (Fig. 1
and 2). When the transmitted and interfering chirps have
identical parameters, there are two possibilities:

-- Ghost targets appear when an interfering chirp falls within
the receiver’s bandwidth (Fig. 1a).

-- No interference is observed when the interfering chirp
falls outside the receiver’s bandwidth (Fig. 1b).

The probability of the appearance of ghost targets is low
because the time window τmax for the interfering chirp to fall
within the receiver’s bandwidth is very small compared to the
pulse repetition time T (Fig. 1) [6].

Interference is more probable when transmitting signals
from interfering radars have nonidentical parameters (Fig. 2).
This interference results in a time-limited disturbance
in the received baseband signal [7]. The duration of
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Fig. 2. Radars with nonidentical transmit ( ) and interfering ( )
chirps. The area highlighted by the rectangles shows the interference
duration Td. (a) Large difference between transmitted chirp slopes of
the two interfering radars. (b) Small difference between transmitted chirp
slopes of the two interfering radars.

this disturbance

Td = 2 · BRX�� B
T − Bint

Tint

�� (1)

is inversely proportional to the difference in the slopes of the
interfering chirp signals. Here, BRX is the receiver’s band-
width, determined by a low-pass anti-aliasing filter in the radar
receiver. Bint is the interfering chirp’s bandwidth, and Tint is
the interfering chirp’s duration. The noise in the baseband
signal increases as a consequence of this disturbance, leading
to a degradation in the ego radar’s detection performance.

III. SIGNAL MODEL

The time-domain baseband signal is obtained by mixing
the received radio frequency (RF) signal with the transmitted
signal and passing the output through an anti-aliasing low-
pass filter in the radar receiver. In the presence of interference,
the time-domain baseband signal

xb(t) = xe(t) + xint(t) + n0(t) (2)

consists of target echoes xe(t), an interfering signal xint(t), and
the receiver’s noise contribution n0(t). The signal component
corresponding to the echoes from k targets is defined as

xe(t) =
k�

i=1

Ae,i cos
�
2π

�2 fc Ri

c
+ �2 fcvi

c
+ 2B Ri

T c

�
t
��

, (3)

where c is the speed of light. Ae,i , Ri and vi are the signal
amplitude, range and relative radial velocity corresponding to

the i th target, respectively. During the interference interval Td ,
the signal contribution by an interfering source is

xint(t) = Aint cos
�
2π
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t + 1
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where Aint is the signal amplitude, fint is the center frequency
of the interfering chirp, τint is the time delay between the
start of the transmitted and interfering chirps, and �int is the
difference between the initial phases of the transmitted and
interfering chirps [32].

The sampled baseband signal corresponding to the mth chirp
is represented as a vector of length N ,

xb,m = �
xb,m(1) . . . xb,m(n) . . . xb,m(N)

�
. (5)

If M chirps are transmitted, then the baseband signal frame

Xb =

⎡
⎢⎢⎢⎣

xb,1(1) . . . xb,1(N)
xb,2(1) . . . xb,2(N)

...
. . .

...
xb,M(1) . . . xb,M(N)

⎤
⎥⎥⎥⎦ (6)

takes the form of a two-dimensional M × N matrix.
The samples in each row and column of the matrix above

are also referred to as fast-time and slow-time samples,
respectively. In further processing, a two-dimensional discrete
Fourier transform (DFT) of the baseband signal frame is
performed. The peaks in the resulting matrix (also known
as the range-Doppler matrix) ideally correspond to the target
ranges and velocities [33].

IV. METHODOLOGY

The first step in interference mitigation is the detection of
disturbed samples in the baseband signal. The interference that
results in a significant reduction in the SINR has a higher
power than that of the signal scattered by the targets of
interest [7]. Moreover, beat frequencies ranging from −BRx
to BRx are added to the baseband signal when a wideband
interference is superimposed on this signal, resulting in a high
variation in the amplitude of the baseband signal xb,m in the
interval Td . Therefore, it is possible to detect the interference
by identifying baseband signal sections with high amplitude
variations [34]. The high variations in the sampled baseband
signal are detected by comparing the absolute value of the
first-order difference

dx,m(n) = xb,m(n) − xb,m(n − 1), 2 ≤ n ≤ N, (7)

with a threshold λi , which is based on the mean value of
|dx,m(n)|. The main advantage of this detector is that it works
even for relatively low-power interfering signals [34] (Fig. 3).

After interference detection, the interfered samples are
discarded from the baseband signal frame Xb. Removing
interfered samples in the time domain introduces disconti-
nuities in the baseband signal frame, which results in the
appearance of high side lobes in the corresponding radar
image in the range-Doppler domain. In [19], these discon-
tinuities are removed by utilizing an inverse-cosine window
to reduce the side-lobe levels. Further improvements in the
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Fig. 3. Example of a baseband signal xb,m(n) disturbed by interference
from two different sources. Interference A has lower power than that of
B. Interfered samples are identified by comparing their |dx,m(n)| values
against the threshold λi.

side-lobe reduction and target SINR gain can be achieved by
reconstructing the received baseband signal in the interfered
sample locations [28]–[31]. Wide sense stationarity (WSS) is
an important underlying assumption for many of the common
time series analysis methods, such as AR modeling [35], [36].
We extend the WSS assumption to the slow-time for AR signal
modeling in the slow-time domain.

Let s(k) be a general (fast-time or slow time) wide-sense
stationary signal. In a pth-order AR process, the kth sample

s(k) =
p�

i=1

ai s(k − i) + �k (8)

is a linear regression of p past samples. In (8), ai denotes the
weighting coefficients, and �k are residuals with zero mean and
variance σ 2. AR model estimation involves the estimation of
two parameters: 1) model coefficients ai , and 2) the model
order p. A wide range of methods are found in the literature
both for the calculation of AR model coefficients [37] and the
selection of AR model order [38].

In this investigation, the AR coefficients ai for a given
model order p are calculated via Burg’s method [37], [39].
This method is based on the minimization of prediction errors
both in the forward linear predictor

ŝ f (k) =
p�

i=1

ai s(k − i) (9)

and backward linear predictor

ŝb(k) =
p�

i=1

ai s(k + i). (10)

Common AR parameter estimation methods e.g. Yule-Walker’s
equations [35] are based on autocorrelation matrix estimates.
When the sample size is small, there can be an estimation bias
in the autocorrelation matrix, which can lead to a large devi-
ation in the estimated parameters. Therefore, we use Burg’s
method, which correctly estimates the AR model parameters
directly from the available data points and is not sensitive to
autocorrelation matrix estimate bias [40].

Fig. 4. A signal frame �b of size 128 × 256 (slow-time samples ×
fast-time samples), where interfered samples are removed to create gaps
(dark rectangles) in the signal frame. In this example, the fast-time gap
size GFT is 20 samples, the slow-time gap size GST is 5 samples and
the percentage of discarded samples is 8.2%.

The next step is to select a suitable AR model order p
from multiple candidates. Following the recommendations for
sample prediction purposes in [41], we chose the Akaike
Information Criterion (AIC) [42] for AR model selection.
According to this criterion, the model order p is selected which
minimizes

AIC(p) = N · log (σ̂ 2) + 2 p, (11)

where N is the sample size,

σ̂ 2 =
�N

i=1 �̂2
i

N
, (12)

and �̂i are the estimated residuals [43]. It can be observed
in (11) that the higher-order models will suffer from larger
penalties. In this work, a second order variant of the AIC
(AICc), defined as

AICc(p) = AIC(p) + 2 p(p + 1)

N − p − 1
, (13)

is used for model selection. AICc adds a higher penalty to
larger orders and is recommended for small data segments
(N/p < 40) [43].

An example of a baseband signal frame Xb, in which
samples are interfered with and discarded, is shown in Fig. 4.
The coherence of the baseband signal in the complete received
frame makes it possible to estimate a signal model and
perform prediction of the disturbed samples in either fast-time
(within a single chirp) or slow-time (chirp to chirp). Moreover,
to reconstruct a signal more efficiently, the missing samples are
predicted in both the forward and backward directions (Fig. 5).

A complete signal frame is considered to be coherent in
both fast- and slow-time. Therefore, it is sufficient to estimate
one fast-time and one slow-time model for the complete
baseband signal frame. Forward and backward prediction
results in two estimates x̂ f (n) and x̂b(n), respectively, for each
missing sample. The prediction performance decreases as the
number of lost samples increases. Therefore, a weighted sum
of x̂ f (n) and x̂b(n) is used to compute the final prediction
value x̂(n), i.e.,

x̂(n) = x̂ f (n) · γ (n) + x̂b(n) · (1 − γ (n)), (14)

where γ (n) = (G −n +1)/(G +1), with G being the gap size
(number of missing samples) in the corresponding dimension.
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Fig. 5. (BP: Backward Prediction, FP: Forward Prediction, ST: Slow-
Time, FT: Fast-Time and G: Gap Size). The fast-time gap size GFT = 3,
and the maximum slow-time gap size GST = 2. The arrows indicate the
directions of sample prediction using the fast- and slow-time AR models.

Fig. 6. Block diagram of the FMCW radar and the interference
mitigation procedure. The signal frames disturbed by the interference
are reconstructed via AR models before post-processing.

The interference mitigation procedure using AR signal
reconstruction (Fig. 6) is summarized below:

-- Interference is detected in each chirp xb as it is received
using a first-order difference detector, and disturbed sam-
ples are discarded, creating gaps in the two-dimensional
signal frame Xb.

-- AR coefficients for candidate model orders are calculated
using Burg’s method.

-- The most suitable model order is selected using the AIC.
-- Signal reconstruction is performed by forward and back-

ward prediction via selected AR models.

In the next section, we evaluate the interference mitigation
and signal reconstruction performance resulting from AR
modeling in fast- and slow-time with the help of computer
simulations. Real measurements are used to evaluate the signal
reconstruction performance in both dimensions in Section VI.

TABLE I
TARGET PARAMETERS. RCS STANDS FOR RADAR CROSS SECTION

TABLE II
TRANSMIT SIGNAL PARAMETERS OF THE EGO

AND INTERFERING RADARS

The results are also compared with those of the method in [19],
where the time-domain disturbance in the received signal is
suppressed using an inverse raised cosine window.

V. SIMULATION RESULTS

The simulations are based on the target scenario in Table I
and the radar configuration in Table II. The size of the signal
frame Xb is 512 × 256.

Generally, mutual interference between two radars results in
a time-limited disturbance in the baseband signal. The location
of the disturbed samples in consecutive chirps is determined
by the difference in the chirp repetition intervals (CRIs) of
the interfering radars. If the CRIs of both radars are the same,
the disturbance appears in the same samples in each chirp.
However, if the CRIs differ, the interference appears at differ-
ent sample locations. Therefore, the number of consecutively
disturbed samples in slow-time is determined by the CRIs of
the interfering radars.

For the evaluation of the interference mitigation method,
two cases are simulated, and the missing samples are predicted
using fast- and slow-time AR models in both cases. In the
first case (interference between Ego Radar and Radar-1),
more consecutive samples are disturbed in fast-time, leading
to larger gaps in fast-time when disturbed samples are dis-
carded. In the second case (interference between Ego Radar
and Radar-2), a larger number of consecutive samples are
disturbed in slow-time, leading to larger slow-time gaps.

A. Larger Fast-Time Gaps
Mutual interference between Ego Radar and Radar-1 results

in 79 interfered samples (15% of the total samples) per chirp
in the received signal. The chirp repetition times for both
radars are set such that the beginning of the disturbance is
shifted by 10 samples in the sampled signals corresponding to
consecutive chirps. This leads to a maximum of eight consec-
utive disturbed samples (3.1% of the total samples) along the
slow-time at each fast-time sample location. After detecting
the interference using the amplitude variation detector in (7),
the interfered samples are removed (Fig. 7).

Based on the AIC, the selected model orders are pFT = 20
(fast-time) and pST = 31 (slow-time). The signal reconstruc-
tion and interference mitigation performance is evaluated by
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TABLE III
TARGET SINR (dB) FOR THE CASE WITH A LARGER FAST-TIME GAPS

TABLE IV
PSLLS (dB) FOR ALL TARGETS FOR THE CASE WITH A LARGER FAST-TIME GAPS. HIGH SIDE LOBES ARE

OBSERVED IN THE INVERSE-COSINE CASE

Fig. 7. Diagonal lines indicate the locations of the interfered samples.
In each chirp, 79 samples are affected by the interference (GFT = 79).
In slow-time, a maximum of eight consecutive samples are affected at
each fast-time sample location (GST = 8).

comparing the target SINRs and PSLLs in the range-Doppler
maps in Fig. 8. A comparison between the target SINR and
PSLL in the range-Doppler maps as a result of interference
and different ways to suppress the interference are summarized
in Tables III and IV. In the tables, it can be observed that the
interference-induced noise is reduced after reconstructing the
missing parts of the received baseband signal frame using
the inverse-cosine window and AR models in fast- and slow-
time. Additionally, the side lobe levels are reduced com-
pared with the inverse-cosine window interference mitigation
method. In fast-time signal reconstruction, the side lobes are
not suppressed completely. Additionally, due to errors in the
signal reconstruction, some phase noise can be observed in
the Doppler domain (Fig. 8d). The range-Doppler map of
the signal reconstructed in slow-time shows better side-lobe
suppression (Fig. 8e). A comparison of the mean squared error
in signal reconstruction using the fast- and slow-time AR
models (MSEFT = 5.1 × 10−6 and MSEST = 1.7 × 10−5)
also shows that better signal reconstruction is achieved with
slow-time sample prediction.

B. Larger Slow-Time Gaps
Mutual interference between Ego Radar and Radar-2 results

in 17 interfered samples (3.3% of the total samples) per chirp.
The start of interference is shifted by one sample every third
chirp. This results in 56 consecutive interfered samples (21.9%
of the total samples) along the slow-time at each fast-time

Fig. 8. Range-Doppler maps for simulated and reconstructed signals.
In this particular simulation, the simulated signal has longer disturbed
sections in fast-time than in slow-time. After discarding the disturbed
samples, GFT = 79 and GST = 10. (a) Interfered. (b) Interference-
free. (c) Interference mitigation using an inverse-cosine window on the
interfered sections in fast-time. (d) Interference mitigation with signal
reconstruction using the fast-time AR model. (e) Interference mitigation
with signal reconstruction using the slow-time AR model.

sample location. The signal matrix after removing the samples
disturbed by interference is shown in Fig. 9.

A comparison of the mean squared error in signal recon-
struction using the fast- and slow-time AR models (MSEFT =
8.0×10−5 and MSEST = 2.4×10−5) shows that better signal
reconstruction is achieved with the fast-time sample prediction.
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TABLE V
TARGET SINR (dB) FOR THE CASE WITH A LARGER SLOW-TIME GAPS

TABLE VI
PSLLS (dB) FOR ALL TARGETS FOR THE CASE WITH A LARGER SLOW-TIME GAPS. HIGH SIDE LOBES ARE

OBSERVED IN THE INVERSE-COSINE CASE

Fig. 9. The diagonal line indicates the location of the interfered samples.
In each chirp, 17 samples are affected by the interference (GFT = 17).
In slow-time, 56 consecutive samples are affected at each fast-time
sample location (GST = 56).

Since the simulated signal is the same as in Section V-A,
the slow-time and fast-time AR model orders are also the
same. The SINR and PSLL from the range-Doppler maps of
the interfered and reconstructed signals (Fig. 10) are summa-
rized in Tables V and VI. Again, better SINR and side-lobe
suppression is observed in the reconstructed signals than in the
interfered and inverse-cosine cases. Although the gap sizes are
different, there is not much difference in the SINR and PSLL
of the reconstructed signals in fast- and slow-time.

The AR signal reconstruction in both cases shows a
considerable improvement over the inverse-cosine method
in terms of side-lobe suppression. In the range-Doppler
maps (Fig. 8 and 10), the high side lobes resulting from
interference suppression using the inverse-cosine method may
lead to false detections. A part of the received signal is zeroed
out in the inverse-cosine method, which results in a loss in the
SINR for all targets. The results also show an improvement
in the SINR using AR signal reconstruction in both cases.
Comparing the two simulated cases, AR reconstruction in
slow-time shows lower PSLLs when the slow-time gaps are
smaller. Similarly, AR reconstruction in fast-time performs
better when the fast-time gaps are smaller. Therefore, it can
be concluded that a better signal reconstruction performance is
achieved by choosing the dimension (fast-time or slow-time)
with smaller gaps for signal reconstruction.

Fig. 10. Range-doppler maps for simulated and reconstructed signals.
After discarding disturbed samples, GFT = �� and GST = 56. (a)
Interfered. (b) Interference mitigation using an inverse cosine window on
the interfered sections in fast-time. (c) Interference mitigation with signal
reconstruction using fast-time AR model. (d) Interference mitigation with
signal reconstruction using slow-time AR model.

VI. MEASUREMENT RESULTS

The interference mitigation and signal reconstruction per-
formance of the proposed method is verified with the help
of real measurements. 77 GHz mm-wave radar evaluation kits
(AWR1642EVM and AWR1243EVM) from Texas Instruments
are used for the measurements, and DCA1000EVM is used
to capture measurement data over the Ethernet (Fig. 11). One
radar is mounted on a car driving towards the static radar. Both
radars operate in the same time interval and interfere with each
other (Fig. 12). As a result, we have measurement data from
the static and moving radars. The transmit parameters of both
radars are given in Table VII. Different chirp slopes are used
to ensure that interference is encountered.

A. Interference Mitigation Performance
Although interference is observed in both radars, the per-

centage of samples affected by interference is negligible in
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Fig. 11. Radar used for measurements. AWR1642EVM is mounted on
a car and used for dynamic measurements. AWR1243EVM is mounted
on a stand and used for static measurements.

Fig. 12. Experimental setup. The car equipped with AWR1642EVM is
moving towards the static AWR1243EVM. A trihedral corner reflector is
placed behind the static radar (at a distance of 18.1 m away from the
car), which serves as a strong reflector.

TABLE VII
TRANSMIT SIGNAL PARAMETERS OF THE TWO RADARS USED IN THE

FIELD MEASUREMENTS

both cases (1.0% for moving radar and 1.6% for static radar).
As a result, the degradation in the SINR in the range-Doppler
maps is almost negligible. However, it is possible to see the
degradation in the SINR when single interference-affected
chirps are considered. Therefore, single interfered-affected
chirps are considered in both cases (static and moving) to
evaluate the interference mitigation performance.

The estimated AR model orders for the static radar using the
AIC are pFT = 20 and pST = 21. The length of the interfered
section in fast-time is approximately 18 samples (GFT = 18)
and every fourth chirp is affected by the interference, which
leads to only one-sample slow-time gaps. The range profiles
for the reconstructed signals have a lower noise floor compared
to the signal with interference (Fig. 13a). The SINR for the
target (car) at 6.6 m is 12.5 dB, 21.3 dB, and 20.8 dB for the
interfered, fast-time reconstructed and slow-time reconstructed
signals, respectively. The target SINR for the inverse-cosine
case is 20.8 dB. As a reference, the SINR of a neighboring
noninterfered chirp is 21.3 dB.

For the moving radar, pFT = 27 and pST = 10. The length
of the interfered section in fast time is 10 samples (GFT = 10)

Fig. 13. Range profiles for the interfered, fast-time reconstructed and
slow-time reconstructed signals. (a) Static radar. (b) Moving radar.

and only 15 chirps are affected by interference. The range
profiles for the reconstructed signals have a lower noise floor
compared to the signal with interference (Fig. 13b). The SINR
for the target (trihedral corner reflector) at 18.1 m is 14.0 dB,
20.5 dB, and 20.5 dB for interfered, fast-time and slow-time
reconstructed signals, respectively. The target SINR for the
inverse-cosine case is 19.4 dB. As a reference, the SINR of a
neighboring noninterfered chirp is 21.1 dB.

B. Signal Reconstruction Performance
As mentioned earlier, signal frames in the measurement

data do not have a sufficient number of disturbed samples
to observe the effect of signal reconstruction in different
domains. The signal reconstruction performance is therefore
assessed by creating gaps of different sizes in the noninterfered
signal frames at random locations (as done in Fig. 4) and
then comparing the range-Doppler maps and MSE in the
reconstructed signals. Randomly generated gaps of different
sizes can be seen as equivalent to the gaps created in an
interfered signal frame Xb when the interfered samples are
discarded. The availability of noninterfered signal frames also
makes it possible to compute the MSEs by comparing the
reconstructed signals with the clean ones. The main aim of
this evaluation is to show a relation between gap size and AR
reconstruction performance in fast- and slow-time. For this
evaluation, we use measurements from both static and moving
radars.

1) Static Radar: In this experiment, a small drone (DJI Phan-
tom 4) is flown away from the static radar (AWR1243EVM)
at a 0◦ azimuth angle. The signal frame captured when the
drone is 4.8 m from the radar and moving with a velocity
of 1.2 m/s is used for visualizing the range-Doppler maps.
The drone is used to generate a moving target that can clearly
be identified in the range-Doppler domain, separate from the
static clutter. By removing samples from the signal frame (of
size 256 × 255), the gaps of 51 (20%) samples are created
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Fig. 14. Range-Doppler maps in the static ego radar case. The target
is a drone at a distance of 4.8 m moving away from the radar with a
velocity of 1.2m/s. GFT = GST = 51 samples. (a) Interference free. (b)
Signal reconstruction using an inverse-cosine window on the discarded
sections in fast-time to remove discontinuities. The highest side-lobes
are observed in this case. (c) Signal reconstruction using the fast-time
AR model. Side lobes are suppressed compared to the inverse-cosine
case. (d) Signal reconstruction using the slow-time AR model.

in both fast- and slow-time. To compare the reconstruction
performance, the same model order (pFT = pST = 20) is
chosen for the AR model parameter estimation.

The quality of signal reconstruction is determined by com-
paring the range-Doppler maps in Fig. 14. It can be observed
that the range-Doppler map corresponding to the signal frame
reconstructed in slow-time (Fig. 14d) is the most similar
to the range-Doppler map corresponding to the clean sig-
nal (Fig. 14a). There are some artifacts in the Doppler domain
in the fast-time case (Fig. 14c), showing that the reconstructed
signal has some errors. Further degradation is observed both
in the range and Doppler domains in the case where spaces
are filled in fast-time by using an inverse raised cosine
window (Fig. 14b). The calculated MSE values (0.031 for the
fast-time reconstruction and 0.014 for the slow-time recon-
struction) also show that the signal reconstruction in slow-time
performs better than that in fast-time.

The signal reconstruction performance is also assessed
by computing the MSEs. 50 frames of the received signal
are considered for this evaluation. Gaps of fixed size are
introduced in all frames by removing samples from random
locations in all 50 frames. All 50 frames are then reconstructed
in fast-time and slow-time dimensions. The MSE is computed
by comparing all reconstructed frames with the corresponding
original frames. The computed MSE values are then used
to plot the graphs in Fig. 15. It can be observed from the
graphs that the MSE increases with increasing gap sizes in
both dimensions. However, for the tested scenario, the error is
higher in the fast-time scenario than in the slow-time scenario.
Therefore, for the static radar case where the velocity spectrum
is less dense, it is better to perform signal reconstruction in
slow-time.

Fig. 15. The relation between gap sizes in fast- and slow-time and MSEs
for the measurements from a static radar. In slow-time AR reconstruction,
lowest MSE is observed for GST = 2, and highest MSE is observed
for GST = 80. The last data points corresponding to GST = 60 and
GST = 80 in AR (slow-time) are missing because, in some frames, whole
columns are removed when discarding sample blocks.

2) Moving Radar: In this case, the data is captured by a
radar fixed on a car moving towards the static radar. There is
no disturbance in the received signal since the static radar
is not transmitting. The signal frame used for generating
range-Doppler maps is captured when the car is at a 4.4 m
distance from the static radar and moving with a velocity of
1.7 m/s. The size of the baseband signal frame is 256 × 128.
Gaps of 25 (10%) and 25 (20%) samples are created in
fast-time and slow-time, respectively. The model orders are
again kept constant (pFT = pST = 20).

The range-Doppler maps (Fig. 16) show that the side-lobes
are suppressed when the signal is constructed in fast-time or
slow-time. However, when compared with the interference-free
case, there is a marginal degradation in image quality. The
inverse-cosine method again shows the most degradation
(Fig. 16b).

Similar to the static radar case, we also assess the signal
reconstruction performance for the moving radar using MSEs.
Gaps of fixed sizes are introduced in 50 interference-free
signal frames captured by the moving radar. The velocity of the
car changes from 2.5 m/s to 1.5 m/s, and the distance changes
from 6.5 m to 3.2 m in these 50 frames. The MSE is computed
by comparing all reconstructed frames with the corresponding
original frames. In the moving radar case, the difference in
MSE in the fast- and slow-time reconstructed signals is smaller
than in the static radar case (Fig. 17). Furthermore, the slow-
time reconstruction performance is worse for larger slow-time
gaps in the signal frame.

VII. DISCUSSION

The results from the simulations and measurements show
that AR signal reconstruction can be an effective interference
mitigation approach in automotive radars. The time-domain
interference mitigation techniques in the literature mainly
focus on signal reconstruction in fast-time. With the help
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Fig. 16. Range-Doppler maps for measured and reconstructed signals
in the case of a moving radar. A static radar (with a laptop on an iron
stand) at 4.4 m and a trihedral corner reflector at 15m are the strong
targets in this case. GFT = GST = 25 samples. (a) Interference free. (b)
Signal reconstruction using an inverse-cosine window in fast-time. High
side lobes are observed in this case. (c) Signal reconstruction using
the fast-time AR model. The side lobes are suppressed compared with
the inverse-cosine case. However, the side lobes are still visible when
compared with the interference-free case. (d) Signal reconstruction using
the slow-time AR model. The side lobe levels are similar to those in the
signal reconstructed in fast-time.

Fig. 17. The relation between gap sizes in fast- and slow-time and
MSEs for the measurements from a moving radar. The last data points
corresponding to GST = 30 and GST = 40 in AR (slow-time) are missing
because, in some frames, whole columns are removed when discarding
sample blocks.

of simulations and outdoor experiments, we have shown
that slow-time signal reconstruction can also be an effective
approach for interference mitigation. Both the simulation and
experimental results show significant side-lobe suppression in
the range-Doppler maps when the signals are reconstructed
using the AR models. The side lobes can be further reduced

by reconstructing the signal in the dimension (slow-time or
fast-time) with smaller gaps (a smaller number of consecutive
disturbed samples).

When comparing the fast-time and slow-time signal recon-
struction performances in a static radar, it is observed that
the MSEs are generally lower in the signals reconstructed
in slow-time, even for larger gap sizes (Fig. 15). The reason
for the better signal reconstruction in slow-time is probably
that the Doppler spectrum is less dense compared to the
range spectrum for the static radar case. Therefore, especially
in surveillance radars that are generally static, AR signal
reconstruction in slow time can be an effective interference
mitigation approach. The main drawback of slow-time signal
reconstruction is that the whole signal frame needs to be
received before starting model estimation. A direct relation
is observed between the signal reconstruction dimension and
gap size in the case of measurements with a moving radar.
In our measurements, the Doppler spectrum is much denser
than in the static radar case with one moving target.

The focus in this work has remained on interference mitiga-
tion performance evaluation in terms of the SINR and PSLL in
the range-Doppler domain. The angle estimation performance
is also an important factor for automotive radar applications.
Inaccurate AR signal reconstruction on multiple receiving
channels may lead to phase errors that can deteriorate the
angle estimation performance. Therefore, the effect of fast- and
slow-time AR signal reconstruction on the angle estimation
performance requires further investigation.

VIII. CONCLUSION

Mutual interference in automotive radars impairs the detec-
tion capabilities of ego radar. For the safety of road users,
it is important to mitigate the effect of interference. In this
paper, a method for interference mitigation in chirp sequence
automotive radars is proposed. The method is based on the
AR modeling of the received signal in the time domain. After
model estimation, the interfered samples are replaced with
sample values predicted using the estimated models. Signal
coherence in the complete baseband signal frame makes it
possible to perform signal reconstruction in fast- or slow-
time. The proposed method is evaluated using simulations and
measurements from 77 GHz FMCW chirp sequence radars.
The results are compared with a well-known interference
mitigation technique, in which the disturbed part of the
baseband signal is suppressed in the time domain using an
inverse-cosine window. In comparison to the inverse-cosine
method, the SINR is improved, and better suppression of
the side lobes is achieved when AR models are used for
signal reconstruction. For the static radar, the slow-time signal
reconstruction performs better (in terms of the side-lobe sup-
pression and MSE) than the fast-time reconstruction for the
same number of missing samples. The drawback of slow-time
signal reconstruction is that the whole signal frame needs to
be received before starting model estimation, leading to longer
processing delays. However, the frame used is the same as that
used for Doppler processing, so the drawback is not signifi-
cant in many applications. For the moving radar, the signal
reconstruction performance is better in the dimension with
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smaller gaps. The SINR results show an improvement of
∼30 dB (for a complete signal frame) in a simulated scenario
and ∼7.8 dB (for a single chirp) in a real scenario. It should
be noted that the SINR improvement in real measurements is
equal to suppressing the interference down to the radar noise
floor, which is a notable result. Unfortunately, the interference
level in the experiment was low. In an experiment with higher
interference power, the suppression is expected down to the
noise floor, and therefore, it would increase the measured
SINR improvement.

ACKNOWLEDGMENT

The authors would like to thank Saleh Javadi for the drone
support during the radar experiment.

REFERENCES

[1] J. Dickmann et al., “‘Automotive radar the key technology for
autonomous driving: From detection and ranging to environmental
understanding,”’ in Proc. IEEE Radar Conf. (RadarConf), May 2016,
pp. 1–6.

[2] B.-E. Tullsson, “Alternative applications for a 77 GHz automotive radar,”
in Proc. Rec. IEEE Int. Radar Conf., May 2000, pp. 273–277.

[3] Short Range Devices; Transport and Traffic Telematics (TTT); Short
Range Radar equipment operating in the 77 GHz to 81 GHz band;
Harmonised Standard covering the essential requirements of article 3.2
of Directive 2014/53/EU, document EN 302 264 V2.1.1, ETSI, Sophia
Antipolis, France, 2017.

[4] Short Range Devices; Transport and Traffic Telematics (TTT); Radar
Equipment Operating in the 76 GHz to 77 GHz Range; Harmonised
Standard Covering the Essential Requirements of Article 3.2 of Directive
2014/53/EU; Part 1: Ground Based Vehicular Radar, document EN 301
091-1 V2.1.1, ETSI, Sophia Antipolis, France, 2017.

[5] Short Range Devices; Transport and Traffic Telematics (TTT); Radar
Equipment Operating in the 76 GHz to 77 GHz Range; Harmonised
Standard Covering the Essential Requirements of Article 3.2 of Directive
2014/53/EU; Part 2: Fixed Infrastructure Radar Equipment, docu-
ment EN 301 091-2 V2.1.1, ETSI, Sophia Antipolis, France, 2017.

[6] M. Goppelt, H.-L. Blöcher, and W. Menzel, “Automotive radar-
investigation of mutual interference mechanisms,” Adv. Radio Sci.,
vol. 8, pp. 55–60, Jan. 2010.

[7] T. Schipper, M. Harter, T. Mahler, O. Kern, and T. Zwick, “Discussion
of the operating range of frequency modulated radars in the presence
of interference,” Int. J. Microw. Wireless Technol., vol. 6, nos. 3–4,
pp. 371–378, Jun. 2014.

[8] M. Kunert, “The EU project MOSARIM: A general overview of
project objectives and conducted work,” in Proc. 9th Eur. Radar Conf.,
Oct./Nov. 2012, pp. 1–5.

[9] S. Alland, W. Stark, M. Ali, and M. Hegde, “Interference in automotive
radar systems: Characteristics, mitigation techniques, and current and
future research,” IEEE Signal Process. Mag., vol. 36, no. 5, pp. 45–59,
Sep. 2019.

[10] T.-N. Luo, C.-H.-E. Wu, and Y.-J.-E. Chen, “A 77-GHz CMOS auto-
motive radar transceiver with anti-interference function,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3247–3255, Dec. 2013.

[11] J. Bechter, C. Sippel, and C. Waldschmidt, “Bats-inspired frequency
hopping for mitigation of interference between automotive radars,” in
IEEE MTT-S Int. Microw. Symp. Dig., May 2016, pp. 1–4.

[12] L. Mu, T. Xiangqian, S. Ming, and Y. Jun, “Research on key tchnologies
for collision avoidance automotive radar,” in Proc. IEEE Intell. Vehicles
Symp., Jun. 2009, pp. 233–236.

[13] C. Aydogdu, N. Garcia, L. Hammarstrand, and H. Wymeersch, “Radar
communications for combating mutual interference of FMCW radars,”
in Proc. IEEE Radar Conf. (RadarConf), Apr. 2019, pp. 1–6.

[14] C. Aydogdu et al., “Radar interference mitigation for automated driving:
Exploring proactive strategies,” IEEE Signal Process. Mag., vol. 37,
no. 4, pp. 72–84, Jul. 2020.

[15] J. Bechter, M. Rameez, and C. Waldschmidt, “Analytical and experimen-
tal investigations on mitigation of interference in a DBF MIMO radar,”
IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1727–1734,
May 2017.

[16] M. Rameez, M. Dahl, and M. I. Pettersson, “Adaptive digital beamform-
ing for interference suppression in automotive FMCW radars,” in Proc.
IEEE Radar Conf. (RadarConf), Apr. 2018, pp. 252–256.

[17] M. Rameez, M. Dahl, and M. I. Pettersson, “Experimental evaluation of
adaptive beamforming for automotive radar interference suppression,”
in Proc. IEEE Radio Wireless Symp. (RWS), Jan. 2020, pp. 183–186.

[18] G. M. Brooker, “Mutual interference of millimeter-wave radar sys-
tems,” IEEE Trans. Electromagn. Compat., vol. 49, no. 1, pp. 170–181,
Feb. 2007.

[19] M. Barjenbruch, D. Kellner, K. Dietmayer, J. Klappstein, and
J. Dickmann, “A method for interference cancellation in automotive
radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Apr. 2015, pp. 1–4.

[20] J. Jung, S. Lim, J. Kim, S.-C. Kim, and S. Lee, “Interference suppression
and signal restoration using Kalman filter in automotive radar systems,”
in Proc. IEEE Int. Radar Conf. (RADAR), Apr. 2020, pp. 726–731.

[21] F. Uysal and S. Sanka, “Mitigation of automotive radar interference,” in
Proc. IEEE Radar Conf. (RadarConf), Apr. 2018, pp. 405–410.

[22] F. Uysal, “Synchronous and asynchronous radar interference mitigation,”
IEEE Access, vol. 7, pp. 5846–5852, 2019.

[23] A. Correas-Serrano and M. A. Gonzalez-Huici, “Sparse reconstruction
of chirplets for automotive FMCW radar interference mitigation,” in
IEEE MTT-S Int. Microw. Symp. Dig., Apr. 2019, pp. 1–4.

[24] M. Wagner, F. Sulejmani, A. Melzer, P. Meissner, and M. Huemer,
“Threshold-free interference cancellation method for automotive FMCW
radar systems,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1–4.

[25] F. Jin and S. Cao, “Automotive radar interference mitigation using
adaptive noise canceller,” IEEE Trans. Veh. Technol., vol. 68, no. 4,
pp. 3747–3754, Apr. 2019.

[26] J. Rock, M. Toth, P. Meissner, and F. Pernkopf, “Deep interference
mitigation and denoising of real-world FMCW radar signals,” in Proc.
IEEE Int. Radar Conf. (RADAR), Apr. 2020, pp. 624–629.

[27] J. Mun, S. Ha, and J. Lee, “Automotive radar signal interference
mitigation using RNN with self attention,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 3802–3806.

[28] B.-E. Tullsson, “Topics in FMCW radar disturbance suppression,” in
Proc. Radar Syst. (RADAR), Oct. 1997, pp. 1–5.

[29] S. Neemat, O. Krasnov, and A. Yarovoy, “An interference mitigation
technique for FMCW radar using beat-frequencies interpolation in the
STFT domain,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 3,
pp. 1207–1220, Mar. 2019.

[30] Z. Liu, W. Lu, J. Wu, S. Yang, and G. Li, “A PELT-KCN algorithm for
FMCW radar interference suppression based on signal reconstruction,”
IEEE Access, vol. 8, pp. 45108–45118, 2020.

[31] S. Lim, S. Lee, J.-H. Choi, J. Yoon, and S.-C. Kim, “Mutual interference
suppression and signal restoration in automotive FMCW radar systems,”
IEICE Trans. Commun., vol. 102, no. 6, pp. 1198–1208, 2019.

[32] J. Bechter and C. Waldschmidt, “Automotive radar interference mitiga-
tion by reconstruction and cancellation of interference component,” in
IEEE MTT-S Int. Microw. Symp. Dig., Apr. 2015, pp. 1–4.

[33] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars:
A review of signal processing techniques,” IEEE Signal Process. Mag.,
vol. 34, no. 2, pp. 22–35, Mar. 2017.

[34] Y. Watanabe and K. Natsume, “Interference determination method and
FMCW radar using the same,” U.S. Patent 7 187 321, Mar. 6, 2007.

[35] C. Chatfield, The Analysis of Time Series: An Introduction, 6th ed. Boca
Raton, FL, USA: CRC Press, 2004.

[36] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” J. Amer. Stat. Assoc., vol. 74,
no. 366a, pp. 427–431, Jun. 1979.

[37] S. M. Kay and S. L. Marple, “Spectrum analysis—A modern perspec-
tive,” Proc. IEEE, vol. 69, no. 11, pp. 1380–1419, Nov. 1981.

[38] J. R. Dickie and A. K. Nandi, “A comparative study of AR order
selection methods,” Signal Process., vol. 40, nos. 2–3, pp. 239–255,
Nov. 1994.

[39] M. H. Hayes, Statistical Digital Signal Processing and Modeling.
Hoboken, NJ, USA: Wiley, 2009.

[40] M. J. L. de Hoon, T. H. J. J. van der Hagen, H. Schoonewelle, and
H. van Dam, “Why yule-walker should not be used for autoregres-
sive modelling,” Ann. Nucl. Energy, vol. 23, no. 15, pp. 1219–1228,
Oct. 1996.

[41] J. Ding, V. Tarokh, and Y. Yang, “Model selection techniques: An
overview,” IEEE Signal Process. Mag., vol. 35, no. 6, pp. 16–34,
Nov. 2018.

[42] H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Selected Papers of Hirotugu Akaike, E. Parzen,
K. Tanabe, and G. Kitagawa, Eds. New York, NY, USA: Springer, 1998,
pp. 199–213. [Online]. Available: https://doi.org/10.1007/978-1-4612-
1694-0_15, doi: 10.1007/978-1-4612-1694-0_15.

[43] K. P. Burnham, D. R. Anderson, and K. P. Huyvaert, “AIC model selec-
tion and multimodel inference in behavioral ecology: Some background,
observations, and comparisons,” Behav. Ecol. Sociobiol., vol. 65, no. 1,
pp. 23–35, Jan. 2011.

http://dx.doi.org/10.1007/978-1-4612-1694-0_15


6586 IEEE SENSORS JOURNAL, VOL. 21, NO. 5, MARCH 1, 2021

Muhammad Rameez (Student Member, IEEE)
received the B.E. degree in electrical engineering
from the National University of Sciences and
Technology, Islamabad, Pakistan, in 2010, and
the M.Sc. degree in communications technol-
ogy from the University of Ulm, Ulm, Germany,
in 2016. He is currently pursuing the Ph.D.
degree in systems engineering with the Blekinge
Institute of Technology, Karlshamn, Sweden. His
research interests include radar signal process-
ing and automotive radar interference mitigation
techniques.

Mattias Dahl (Member, IEEE) received the M.Sc.
degree in computer engineering from the Luleå
Institute of Technology in 1993, the Licenti-
ate in Engineering degree from Lund University
in 1997, and the Ph.D. degree in applied signal
processing from the Blekinge Institute of Tech-
nology (BTH) in 2000. Since 2005, he has been
with the Department of Mathematics and Natural
Sciences, BTH, where he is currently a Profes-
sor of Systems Engineering. He has authored
over 100 scientific publications and patents, and

received several awards from the Sweden’s Innovation Agency and the
Swedish Foundation of Technology Transfer.

Mats I. Pettersson (Member, IEEE) received the
M.Sc. degree in engineering physics, the Licen-
tiate degree in radio and space science, and
the Ph.D. degree in signal processing from the
Chalmers University of Technology, Gothenburg,
Sweden, in 1993, 1995, and 2000, respectively.
For some years, he worked with mobile commu-
nication research at Ericsson and for ten years,
he was employed at Swedish Defence Research
Agency (FOI). At FOI, he focused on ultrawide
band low frequency SAR systems. Since 2005,

he has been with the Blekinge Institute of Technology (BTH), where he
is a Full Professor. His research is related to remote sensing, and his
main interests include SAR processing, space time adaptive processing
(STAP), high resolution SAR change detection, automotive radar, radio
occultation, and computer vision.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


