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Data Processing Approaches on SPAD-Based
d-TOF LiDAR Systems: A Review

Gongbo Chen, Christian Wiede, and Rainer Kokozinski

Abstract—With the rise of advanced driver assistance
systems (ADAS), range sensors and their data processing
methods are becoming more and more important. Light detec-
tion and ranging (LiDAR) sensors are attracting attention
due to their unique advantages in terms of radial distance
resolution and detection range. However, the study of LiDAR
data processing is usually divorced from the LiDAR sen-
sor measurement process itself. This leads to critical mea-
surement information being overlooked. This paper seeks a
breakthrough to improve the performance of single-photon-
avalanche-diode-based direct time-of-flight LiDAR systems
by reviewing the data processing stages and corresponding
processing approaches for LiDAR measurements, starting
from photon incidence and ending with high-level feature recognition. Firstly, we propose a LiDAR system model based
on data generation and transfer. The data forms in such a LiDAR system are mainly classified into timestamps, time-
correlated histograms, point cloud data, and high-level properties. Subsequently, data processing methods applied to
each of these data forms are analyzed. A number of hardware solutions closely related to data transmission and control
are also included in the discussion. The principles, limitations, and challenges of these methods are discussed in detail
and the criteria for evaluation of time-correlated histograms in ADAS are proposed. Finally, the research gaps in data
processing are summarized, and future directions for research development are presented.

Index Terms— ADAS, data processing, LiDAR, point cloud, time of flight, time-correlated histograms.

I. INTRODUCTION

TRAFFIC safety has always been a topic of great concern.
In 2016, it is reported that 1,099,032 traffic accidents

took place, resulting in 25,651 fatalities and more than
1.4 million injured people in Europe [1]. According to the
report, accidents caused by distraction, drugs, alcohol, fatigue
and over-speed driving, account for a large proportion.
Mukhtar et al. discuss different types of distraction, fatigue,
and immature driving behavior and point out that the human
behavior is the main cause of accidents [2]. In order to reduce
the safety hazards caused by human errors, advanced driver
assistance systems (ADAS) is gaining traction as a solution
to assist the driving behavior. Therein, depth information
for environmental interaction is one of the most important
sectors [3], which involves several range sensors and data
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processing technologies. The development of distance
testing has lasted more than 20 years [4]. Common ranging
technologies used in ADAS are radar, camera, ultrasonic,
and light detection and ranging (LiDAR) [2]. An intuitive
comparison among radar, camera and LiDAR is given in [5].
Since these ranging technologies have their own strengths and
weaknesses, sensor fusion in automotive receives increasing
interest to achieve performance beyond any single sensor
technology. Among these technologies, LiDAR provides high
range resolution and long depth range [5]–[7]. As applied
in [8], the precise range information it provides will be
indispensable for the safety in ADAS.

Since the first introduction of LiDAR technology, it has
evolved into a number of different development branches,
e.g. detectors, scanning mechanisms, and measuring modes.
For the selection of the detector, a thorough comparison
among avalanche photodiodes (APD), single photon avalanche
diode (SPAD), and silicon photomultipliers is given in [9].
Depending on the sensor type, LiDAR technology can imple-
ment digital or analog readout. According to the scanning
mechanism, LiDAR can be divided into flash, mechanical,
MEMs, and optical phased arrays (OPA) [10]. According to the
measuring mode, it can be categorized into direct time-of-flight
(d-TOF) or indirect time-of-flight (i-TOF) mode. Basic prin-
ciples of both modes are introduced and their advantages and
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Fig. 1. LiDAR system structure for data transfer.

limitations are discussed in [3] and [11]. Modern outdoor
LiDAR systems employ mostly d-TOF mode [10]. Although
LiDAR technology have not been deployed in production auto-
mobiles to date [5], many LiDAR-based product prototypes
are build both in the commercial sector [12]–[15] and for
research uses [16]–[23]. Besides, several sensors are used
for on-road testing and analysis as well. Waymo’s fully self-
driving technology, along with the LiDAR system developed
by themselves, has driven over 20 million miles on real-world
roads since 2009 [24]. Several LiDAR sensors are imple-
mented and tested on road with different weather conditions in
[25]. LiDAR’s rich selection of components generate different
data types. In addition to the hardware, research on LiDAR
data processing is equally important. However, no research
is found in reviewing the complete workflow of LiDAR data
processing. In the following sections, we focus on SPAD-based
d-TOF LiDAR systems and review different LiDAR data
processing approaches.

The main contributions of this work are: 1) to provide an
overview of the current state of development by sorting out
existing approaches on the LiDAR data processing workflow,
2) to point out weaknesses or areas that have not been
covered by research, 3) to discuss future research directions
and advance the development of data processing.

Towards this end, the review is structured as follows:
in section II, a data-transfer-based LiDAR system model
is proposed. Then, the overall operating principles of the
LiDAR system are presented and the terms used in this
work are defined to facilitate the understanding of subse-
quent approaches. In section III, the existing data processing
approaches in different stages of the processing workflow are
discussed individually. A summary is provided, setting out
the practical problems addressed by the existing approaches
in tabular form. In section IV, the remaining problems and
challenges are discussed. In section V, the final conclusion is
given and an outlook is suggested.

II. SYSTEM STRUCTURE AND MEASUREMENT PROCESS

One of the main goals of ADAS is to analyze the environ-
mental information collected through sensors and ultimately
obtain comprehensible high-level properties and decisions.
To illustrate all stages of development in this process, a system
structure is necessary. A generic architecture for simula-
tion of ADAS sensors is proposed in [26]. Based on this,
a LiDAR-specific system structure is introduced for object

detection in [27]. However, the former focuses on common-
ality among multiple sensors for ADAS, while the latter
places more emphasis on object detection by LiDAR sensors.
Neither involve different stages in the LiDAR data processing.
Therefore, we present a LiDAR system model based on data
transfer in Fig. 1 in order to investigate the characteristics
of different data forms and the hierarchy of corresponding
analysis approaches.

As shown in Fig. 1, the LiDAR structure is divided into
2 parts: the LiDAR front-end and the data processing unit.
The former includes hardware related units and the correlated
embedded system for data pre-processing, while the latter
focuses on stages of data processing. The overall working
principle of such a LiDAR system can be categorized into
the single photon round-trip measurement, the measurement
accumulation and the data pre-processing, and the data main
processing.

1) Single Photon Round-Trip Measurement: An active laser
source is used in the LiDAR front-end, which emits laser
pulses periodically. The time period between two consecutive
pulses is referred as one measurement cycle. The detector array
consists of multiple SPADs. SPAD is a special avalanche pho-
ton diode that is biased beyond the breakdown voltage. In this
case, the avalanche effect can be triggered by a single photon
and the diode will be broken down. Therefore, the SPADs
theoretically has the ability to detect a single photon. This
operating mode is often referred as Geiger mode [3], [28].
After the activation by a photon, the SPAD is insensitive for a
period of time and loses its functionality and is unable to detect
the next incident photons. This insensitive period is referred as
dead time [29]. In practice, a quenching circuit is necessary
for the SPADs to be able to detect a next photon after the
breakdown in time. Firstly, the quenching circuit reduces the
voltage and afterwards increase it again to the desired level
by external circuits in order to reset the SPAD to the initial
state. The signals ε are sent from the embedded system to
control the operation of the laser, the quenching circuit and
the readout.

The TOF will be calculated according to the laser round-
trip time. After that, the TOF will be converted to a digital
timestamp (TS) by a time-to-digital converter, which is the
first accessible data in the LiDAR system, shown in Fig. 1.
In the case of a fixed detection range, the digit number of the
timestamp determine the distance resolution of the sensor.
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Fig. 2. Examples of TC-HISTs. a) is the ideal probability density function
of the first arrived photon. b), c), and d) are simulated TC-HISTs with
different number of measurements. Parameter settings are: background
photon rate is 1MHz, received laser photon rate is 10 MHz, sensor
resolution is 312.5 ps, laser pulse width is 5 ns, and TOF is 250 ns.

2) Measurement Accumulation and Data Pre-Processing:
Although the SPAD has high sensitivity, it cannot distinguish
between laser photons and ambient photons. Therefore, a sin-
gle measurement is often unreliable. Time correlated single
photon counting (TCSPC) technique [30], [31] is typically
used to cope with this problem. It aggregates multiple con-
secutive TSs on a time-correlated histogram (TC-HIST). The
time period of collecting and completing TC-HISTs from all
SPADs is called a frame. In the flash LiDAR system, one
frame is equal to the completion time for one TC-HIST.
However, it is equal to the sum of completion time for all
TC-HISTs in the scanning LiDAR system due to asynchrony.
Therefore, the measurement number in a TC-HIST of the
scanning LiDAR system is less than that of the flash LiDAR
system in the same frame duration. Photon arrival times at a
detector follows the Poisson process [32]. TCSPC processes
can be divided into synchronized and asynchronized mode,
which corresponds to the clock-driven architecture and event-
driven architecture respectively [34]. Most TCSPC methods
operate on the first photon counting mode, which follows

the clock-driven architecture. An example of a clock-driven
TC-HIST is shown in Fig. 2. In the TC-HIST, the y-axis
represents the count number. The x-axis represents the time.
TSs with the same value will accumulate on the same bin.
The bin width on the x-axis can be equal or less than the TS
resolution. As shown in Fig. 2, with the increasing number
of collected TSs in a frame, the distance information and
the noise floor become more and more intuitive. However,
the required time to complete one frame increases as well.

A TC-HIST contains typically the noise feature, the sen-
sor feature, the statistical feature, and the distance informa-
tion (D-Info). After completing one frame, TC-HISTs are
processed by certain algorithms on the embedded systems,
e.g. peak detection, digital filters, and maximum likelihood
estimation, aiming at acquiring D-Info. These algorithms will
be introduced in Section III.

3) Data Main Processing: Finally, the set of all single-point
D-Info inferred from TC-HISTs in one frame will form the
point cloud data (PCD) by data alignment and mapping.
Evidently, the PCD does not retain the information other than
D-Info from the TC-HISTs. However, it contains information
of the object spatial correlation [33]. Thus, by applying task-
specific algorithms, high-level properties (HLP), e.g. object
position, size, movement, and category, can be recovered from
the PCD. Furthermore, our review shows that the PCD is
the most commonly used LiDAR data in sensor fusion (SF)
applications. However, the analyses on PCD are complex [33]
and require powerful processing units, e.g. CPUs and GPUs.

III. DATA PROCESSING METHODS ON LIDAR SYSTEMS

In section III A - F, different data processing approaches
are divided into six categories and explained focusing on their
similarities in their working principles. Section III G included
approaches with special uses or in the early research and devel-
opment phase. In Section III H, the aforementioned approaches
are summarized and discussed with the focus of their appli-
cations according to the applied data processing stages.

A. Optical Bandpass Filters
Due to the dead time, SPADs suffer from a saturation effect

in the outdoor scenario [9]. Laser sources in LiDAR systems
generate laser pulses in a specific wavelength, typically from
800 nm to 1550 nm [10], while the solar irradiance covers the
full wavelength range. Therefore, optical bandpass filters can
be used to remove irradiance at unwanted wavelengths [35].
In practical, the bandwidth cannot be smaller than 40 nm,
due to the fluctuations in the laser wavelength produced by
a Fabry-Perot laser source [36]. The use of more complex
laser sources can further reduce the bandwidth, but will
increase the product price. Nevertheless, since solar irradiance
is highly significant in the wavelength range used in LiDAR
systems [37], Süss et al. point out that the remaining ambient
light can still saturate a SPAD, even when a 50 nm optical
bandpass filter is used [38]. Therefore, additional methods
must be carried out in order to reduce the probability of
generating background-induced TSs.

B. Coincidence Counting
Coincidence counting, which originates in [39], is an effec-

tive measurement approach to further suppress the background
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light. It involves several SPADs. These SPADs work in par-
allel. By predefining a coincidence level (CL), which consists
of coincidence time interval tc and a minimum photon number
Np , an output signal is generated only when more than Np

photons are detected during tc. As long as no output signal is
generated during the measurement cycle, the activated SPAD
will be put back into operation after a short reboot time.
This approach mitigates the saturation effect of SPADs and
improves signal-to-background ratio [38]. LiDAR systems that
use this method can operate normally in strong background
light [11], [19], [40], [41]. Since this approach has a stronger
inhibitory effect on triggering events below CL in comparison
with the case of the triggering events above CL, the selection
of a coincidence level is crucial. However, a proper CL
strongly depends on ambient light intensity, received target
light pulse intensity, target reflection, and target distance,
which are always varying in practice. Beer et al. present
an adaptive coincidence counting method, which enables the
coincidence level adjustment in real-time [16].

Essentially, the approach uses pre-defined thresholds to
reduce the overall generation rate of the output events. This
means, it suppresses the false-triggering rate caused by the
background light, as well as the triggering rate of the laser
pulse. Therefore, the coincidence counting is effective when
laser intensity is significantly higher than the background
light intensity [38]. Otherwise, it yields little improvements
and even deteriorates the measurement accuracy. Furthermore,
SPADs in coincidence counting mode need to be triggered and
rebooted more frequently than it is in the first photon counting
mode. This results in some degree of statistical distortion e.g.
missed counts and the after-pulsing effect. While shortening
the rebooting time reduces the missed count rate, it exacerbates
the after-pulsing effect [16]. Besides, the coincidence counting
requires a set of SPADs implemented in a single pixel. This
will lead to complex readout circuits and a sparse distribution
of sensor measurement points in space.

C. Time-Gating
In a d-TOF LiDAR system, the emitted laser is a pulsed

beam. The incident photon rate is the superposition of the
laser pulse and background light during the arriving moment
of the laser pulse [t1, t2], and is equal to ambient photon rate in
the rest of the time. In this case, the wanted signal is present
only within [t1, t2]. This means the SPAD can only detect
ambient photons during the most of the time, and therefore
the effective triggering rate is low, when sufficient background
light is present. In order to improve this situation, the time-
gating technique is introduced [42]. The technique increases
the effective detection rate by shortening the sensitive period
of the SPAD. An example is shown in Fig. 2. In ideal case,
by activating the SPADs right before the arrival moment,
the risk of SPAD being triggered prematurely can be avoided.
Kostamovaara et al. demonstrate the effectiveness of the
technique in their experiment by applying different gate win-
dows [36]. The technique can be implemented by combining
SPAD’s quenching circuits and gating schemes. The quenching
circuits are responsible for the activation and rebooting of the
SPADs [42]. Advanced SPAD imagers with gating features are

Fig. 3. Probability density function of first received photon. Parameter
settings are: background photon rate is 5 MHz, received laser photon
rate is 10 MHz, sensor resolution is 312.5 ps, laser pulse width is 5 ns,
TOF is 250 ns. Activation moment of the SPAD: a) 0 ns, b) 250 ns.

designed and manufactured in [20], [41]. The gating scheme
determines the practical application. For example, Apple Inc.
designs a gating scheme to enable coarse and fine scanning to
improve memory occupancy and measurement quality [43] .

Although the benefit of the time gating technique is sig-
nificant, its limitation is quite obvious. A well-defined time
period is inevitable if the technique is applied. However, it is
very difficult to determine such a period. In [43], the effort of
inferring a proper gating window is several times greater than
that of inferring the exact D-Info.

D. Data Compression
Due to the high precision and wide range of LiDAR

measurements, there are usually several thousands of bins
in a TC-HIST. Considering that one measurement period is
extremely short and that the detection array contains at least
hundreds of SPADS, a LiDAR system can generate large
amounts of data each second. An estimated data amount
according to the size of the SPAD array and the sensor
resolution is given in [44]. However, the data throughput
and the storage capacity are restricted in ADAS. In order to
transmit and process these data efficiently, data compression
technology is necessary. Hornung et al. present Octomap,
which is an open-source framework for three-dimensional
mapping [45]. The framework is based on octrees and uses
probabilistic occupancy estimation and synthesizes probabilis-
tic representation, modeling of unmapped areas, and efficiency
with respect to runtime and memory usage. Although it acts
more as a mapping structure than a compression algorithm, it
substantially improves memory efficiency. Golla et al. argue
that the real-time performance of compression methods is nec-
essary in many applications, e.g. robotics [46]. They introduce
a real-time compression approach supporting incrementally
acquired data and local decompression. The compression
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approach is particularly remarkable in terms of its real-
time performance. It can compress 1.5 million points per
second.

In addition to the compression methods targeting the 3D
PCD, the compression of data before the formation of the
PCD is also of concern. A short review of low-level LiDAR
data acquisition and compression can be found in [47].
Besides, histogram compression is another way to reduce data
amount. Partial histogram readout is implemented in [21]. The
approach includes several measurement stages. Measurements
in the first stage starts with low range resolution and full detec-
tion range. Subsequently, a sub-detection-range is selected
based on the result of the last stage, and the range resolution
will increase. After several rounds of repetition, the method
ultimately applies the maximum resolution only in a small
sub-range. However, as reported, this method leads to reduced
frame rate and noise tolerance.

E. Peak Detection and Digital Filters
In addition to filtering and optimizing the measurement data

for the data generation, digital processing plays an important
role in data denoising and data analysis as well.

Peak detection [21] is the simplest method obtaining
distance information from TC-HISTs. By assuming the prob-
ability of receiving more than one photon within one mea-
surement period is small enough to be negligible, i.e. under a
low background photon rate, the background count follows
the uniform distribution. The laser arrival moment can be
easily caught by peak detection, during which the photon
rate is the superposition of background photons and laser
echo. However, peak detection only compares the count value
in the individual bins and does not consider the effect of
pulse waveform, resulting in low precision and robustness.
Hence, the method requires a noise-free environment and
a large number of measurement periods to obtain sufficient
counts.

At the basis of peak detection, various of algorithms can
be performed to improve TOF precision, such as Gaussian
curve fitting and continuous wavelet transform [48]. In addi-
tion, digital filters are applied on TC-HISTs as well. For
example, mean filter calculates the average of counts over
the laser pulse width, allowing peak detection to be per-
formed with sparse counts. Matched filter [49] maximizes the
signal-to-noise ratio (SNR) of the laser pulse by weighting the
count values individually. Center-of-mass filter [50] improves
range precision by calculating the center-of-mass of the laser
pulse. Since the background photon rate is relatively easy to
obtain, the estimated noise floor is usually removed when the
background light is significant. However, these filters need to
process the complete TC-HIST and choose small sliding steps
to ensure the precision. Therefore, they are demanding in terms
of computational cost.

Kalman filter [51] is a recursive solution to the discrete-
data linear filtering problem. Based on that, a non-linear
version called extended Kalman filter is presented in [52].
In LiDAR systems, the Kalman filters are used for tracking
and estimating the motion of identified objects e.g. lane
prediction [53] [54].

F. Machine Learning
Machine learning (ML) is known as an empirical method,

which can complete a specific task without programming the
functions explicitly. In recent years, ML has been proved to
be outperformed the classical methods with respect to the
flexibility and capability in many fields [55]. One of the most
important tasks of ML is inferring the interconnection of
things by the observation of the presentative results, e.g.
training samples. This coincides with the purpose of sensor
data processing. Therefore, it receives increasing attention in
sensor data processing areas, including LiDAR sensors. The
design of a ML algorithm in ADAS follows the procedure
of a pattern recognition system [56]: 1) data acquisition
and pre-processing, 2) data representation, and 3) decision
making. To this end, the encoder-decoder-based framework
originated from machine translation [57], which modularizes
the algorithm structure, becomes more and more predominant.

The objectives of ML algorithms are mainly twofold:
1) depth information optimization, e.g. depth-completion, cal-
ibration, and denoising. 2) HLP inference, e.g. object classifi-
cation, allocation, and segmentation.

1) Depth Information Optimization: Due to the high radial
resolution, the range information from LiDAR sensors is more
precise than other range sensors. However, the LiDAR data are
not noise-free, especially in the outdoor detection scenarios.
Known problems include insufficient number of incoming
photons due to low reflectivity, sparse spatial resolution, and
large amounts of noise due to high background light intensity.
These drawbacks can significantly degrade the performance of
the post-processing [58].

Different approaches are proposed to cope with these prob-
lems. Altmann et al. proposes a new Bayesian reflectivity and
depth models when the incoming photon flux is very low [59].
The model establishes Markovian dependencies according to
the spatial correlations with neighboring pixels. Subsequently,
an adaptive Markov chain Monte Carlo algorithm is applied
to compute the Bayesian estimates of interest and perform
Bayesian inference. In [60], an up-sampling method based on
a convolutional neural network (CNN) is presented dealing
with the limited spatial resolution of LiDAR data. Cheng et al.
introduces a feedback loop to automatically clean the noise
data in the PCD [58]. In addition, LiDAR data are used as
a complement to range information in many sensor fusion
applications. The most common example is the fusion between
the LiDAR data and the stereo images [58], [61]–[63]. The use
of images to guide the reconstruction of depth information is
collectively known as depth completion. The so-called “depth
images” generated from depth completion often inherit the
resolution from stereo images and range information from
LiDAR data.

2) High-Level Property Inference: Other approaches are
aimed at deriving HLPs. Gargoum et al. divide possible fea-
tures for pattern recognition in LiDAR data into on-road infor-
mation, roadside information, and in conducting assessment
of highway [64]. The property inference involved in ADAS
can be categorized into 1) vehicle and pedestrian detection,
2) driver’s state, behavior and identification, 3) traffic sign
recognition, and 4) road detection and scene understand-
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ing [65]. A machine vision based traffic sign detection methods
are reviewed in [66].

Due to the powerful ability in image property inference [67],
the CNN is the most applied method among all algorithms.
Li et al. generates 3D bounding box from LiDAR data using
a 2D fully convolutional network (FCN) [68]. In their further
work, while retaining the original idea of the 2D FCN, a 3D
FCN is proposed [69].

PointNet [70] is one of the pioneers on processing PCD
based on the recursive neural network. Instead of transforming
the PCD to 3D voxel grids or images, the method directly uses
point data as inputs and outputs classification results or single-
point based segmentation. Afterwards, PointNet++ [71] is
presented as an upgraded version. It captures fine-granted
patterns by applying the PointNet recursively on a nested
partitioning of the input point set. Frustum PointNet [72] is
the integrator of all PointNet versions, which takes RGB-D
data as input for 3D object detection.

The complementarity between LiDAR data and stereo image
has inspired researchers to investigate the joint solution on
RGB-D data and has received satisfactory results [73]–[76].
In [75], the LiDAR front-view data is firstly up-sampled
and then is aligned to the stereo image. A deep CNN is
used to the reconfigured data. Instead of classical sliding
windows [77] or the selective search [78], Zhao et al. employ
LiDAR front-view data to generate region proposals [76].
The proposals are further mapped to the stereo image for
the region of interest. This method achieves good results in
terms of the inferring speed and accuracy. In addition to the
stereo image and the LiDAR front-view data, the LiDAR bird-
view data is used to apply additional features in [74]. Recent
evidence shows that a simple network suffers from relative
low accuracy [79] and the performance can be improved
by adding additional layers [80]. However, it also makes
the training challenging due to a large number of parame-
ters and complex network structures. The residual network
(ResNet) [81] is proposed to ease problems on a very deep
neural network. Examples of applying ResNet on LiDAR
data can be found in [61], [82]. Despite the network size,
a modern machine learning algorithm considers generally only
one specific task. Several tasks, such as plane estimation,
inferring 3D bounding box, and object detection, are processed
by individual algorithm blocks [73]. Through the concept
of transfer learning [83], [84], the encoder-decoder network
structure in [85], which shares an encoder while designs indi-
vidual decoders for different tasks, can reduce the repetitive
operations arising from simple combinations of algorithms.
However, as reported in [58], even a small, five-layer network
contains 25,000 parameters. Ren et al. argue that the real-
time performance in autonomous driving is as important as
the inference accuracy and proposed their SBNet to speed up
the training and the calculation in CNN [82].

G. Further Approaches
BM3D is an image denoising strategy based on sparse

3-D transform-domain collaborative filtering [86]. The strategy
first builds blocks by searching for proximity pixels with
similar features, which is referred as grouping. After that,

collaborative filtering by shrinkage in transform domain is
applied to remove noise. Finally, the image is recovered by
reverse transformation. The strategy is implemented on LiDAR
data in [87].

Maximum likelihood estimation (MLE) is another method
applied in imaging to determine the optimal parameters of the
correlated model for the given data. In [50], the likelihood
ratio test is used on the shape of the laser pulse. However,
the experiment for the proposed approach is only carried out
within 2 m. To the best of our knowledge, increasing the
detection range can lead to an exorbitant computational cost.
To simplify the computation of the MLE, an approximation,
i.e. the log-matched filter [87], can be applied. However, for
single pixel estimation, the efficiency of the MLE strongly
depends on the SNR and data amount [88]. When the SNR is
low or the data amount is small, the MLE gives inaccurate esti-
mates. Kirmani et al. present a technique to obtain the single-
pixel distance information based on the spatial correlations of
neighboring pixels [89]. This work is extended in [87] and a
better RMSE is reported in terms of depth recovery compared
to the case using the BM3D and the log-matched filter.

The pile-up effect, which is an aberration existed in the
SPAD-based system, is studied and the corresponding post-
processing approach is proposed on the synchronized TCSPC
process [90]. Besides, Rapp et al. focus their research on
the asynchronized TCSPC process and proposes two Markov-
chain-based methods for the histogram modelling and detector
dead time compensation [91]. They demonstrate the positive
effect of the presence of dead time as well.

H. Summary
In this section, the different approaches are divided into

three categories in order to provide an overview of the state-
of-the-art in different data processing stages:

1) Optimization Approaches for TC-HISTs: The first stage of
data reception represents the process from photon incidence,
triggering detector, to the generation of the triggering event.
The approaches in this stage (shown in Table I) are mainly
employed to mitigate the negative effects of background noise
and hardware-induced data distortion. Since their working
principles are closely related to the physical laws and hard-
ware parameters, a new concept always requires a dedicated
hardware implementation, resulting in a long research cycle.
Nevertheless, the limitations of these methods make reliable
measurements in outdoor scenarios still challenging. A holistic
approach that combining hardware adjustment strategies and
software processing algorithms may open up new possibilities.

2) Inference Approaches on TC-HISTs: The approaches
applied in this stage (shown in Table II) are dedicated to
inferring distance information in the TC-HIST. Converting the
TC-HIST to the D-Info should be performed on embedded
systems as much as possible to mitigate the data transmission
overload. As a result, the performance of these methods is
often limited by the resources available on the embedded
system.

Unlike applications in odometry, LiDAR systems in ADAS
typically requires a TC-HIST to be completed in a short
period of time. This results in sparse counts in the TC-HIST.
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TABLE I
OPTIMIZATION APPROACHES FOR TC-HISTS

TABLE II
INFERENCE APPROACHES ON TC-HISTS

Direct use of the probability distribution of photon arrivals
for distance prediction can result in large errors. Therefore,
methods based on peak detection [21], [48], the best SNR [49],
and center-of-mass [50] are proposed to obtain precise dis-
tance information. Maximum likelihood estimation and its
approximation algorithm show effectiveness in inferring pre-
cise distance as well, but their large computational cost brings
challenges to applications in ADAS [47].

3) Approaches on LiDAR Point Clouds: Approaches in this
stage consider the PCD as raw data and do not involve
features of measurement procedure and sensor front-ends.
We divide the point-cloud-based approaches reviewed in this
paper into five categories according to their tasks, shown in
Table III. Except for PCD compression, other tasks exploit
the rich spatial correlation of PCD. Therein, compare to the
depth completion, approaches for denoising and correlation
assumes that the PCD are defective and attempts to filter and
restore the information on the sparse PCD. In contrast, depth
completion considers the PCD to be noise-free and is more
focused on inferring and complementing uncaptured pixels
by the sparse PCD. The fusion of LiDAR and stereo image
takes the advantage of their good complementarity, which
guides LiDAR data to accomplish depth completion by the
fine graphical information provided by the stereo image. The
HLP extraction tasks in ADAS mainly include object detection

TABLE III
DATA PROCESSING APPROACHES ON PCD

(pedestrian, cyclists and trucks) and road estimation, which are
usually achieved through deep ML networks.

Due to the diversity of design concepts and implemen-
tations, a fair comparison between different approaches is
difficult. To address this problem, the KITTI benchmark is
proposed [102]. By using the same training dataset and the
same evaluation criteria, up-to-date comparisons in depth
completion, object detection, tracking and road detection can
be found in [103]. It can be observed that a large portion of
the leading algorithms utilize the LiDAR data in all tasks.

IV. DISCUSSIONS

Although the development of LiDAR technology is driving
the evolution of ADAS, it still faces challenges from different
sectors. In this section, we divide a LiDAR system into data
pre-processing stage (the TC-HIST-based processing) and the
main processing stage (the PCD-based processing) and discuss
them separately.

A. Discussion on TC-HISTs
The data pre-processing outputs D-Info from individual

pixels. In ADAS, the four important criteria used to measure
the capability of the data pre-processing are memory occu-
pancy, information update rate, measurement robustness and
precision.

1) Memory Occupancy: The memory occupancy in a d-TOF
LiDAR system does not depend on the number of measure-
ments in a frame, but increases with detection range, range
resolution, and field of view (FOV). State-of-the-art LiDAR
systems have a relative long detection range, high range
resolution, and wide FOV, thus placing a great deal of strain
on data storage and transmission.
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2) Information Update Rate: The information update rate
decreases with the increase of measurements number per frame
and information derivation time and data transfer volume.
In applications, where real-time performance is not critical,
the precision and robustness of LiDAR’s measurement are
superior. However, the timeliness in ADAS is salient. This
makes long-time single-frame detections or distance inference
meaningless. Therefore, the information update rate should
be as high as possible in order to guarantee the real-time
availability.

3) Measurement Robustness: LiDAR systems need to
counteract both environment-induced and system-induced
interference. The environment-induced interference in the out-
door scenario is complex, which mainly includes illumination
conditions, object surface reflectance and weather. Among
the system-induced disturbances, the SPAD dead time [29],
the pile-up effect [90], and the after-pulsing effect [16] are of
concern as well.

4) Measurement Precision: The hardware measurement pre-
cision depends on the resolution of the timer and the TDCs.
The precision of distance inference depends on the hardware
measurement precision, the performance of the applied algo-
rithm, and the data quality in the TC-HIST. Therein, the data
quality is the most important factor, which increases with the
measurement number per frame. This results in a trade-off
between the precision and the information update rate. The
measurement precision is certainly one of the most important
metrics. However, we argue that compared to the information
update rate and the measurement robustness, the measurement
precision is less critical. In a fast-changing environment,
obtaining information within a defined margin of error in
a short time is more valuable for timely decision making
than striving for maximum precision. Therefore, a reasonable
reduction in precision is desirable in order to improve infor-
mation update rate and robustness.

A TC-HIST-based solution should focus on these four
criteria. The optical bandpass filter [35] is a universal approach
to improve the robustness against the ambient light. But that
alone is not sufficient. Coincident counting [39] suppresses
both ambient light and the echo, which makes it only suitable
for strong illumination conditions and high echo intensity.
However, due to the complex scenarios of surface reflectance
and the angle of reflection, as well as eye-safety restrictions on
the laser power [104], high echo intensity is difficult to guaran-
tee. Recently proposed adaptive coincidence counting [16] can
adjust the coincidence level to the illumination conditions, but
still much relies on the echo intensity. By an appropriate gating
scheme [43], the detection range can be reduced in a frame
without sacrificing the total detection range of the system.
In this way, the SPAD saturation due to the Poisson procedure
is mitigated. Thus, both measurement robustness and precision
can be improved and the memory occupancy can be reduced.
However, using the gating scheme means that multiple frames
are required for a single distance determination and thus results
in a significant drop in the information update rate. Partial
histogram readout [21] reduces the memory occupancy while
reducing the robustness to the background illumination and
information update rate.

The existing approaches for distance inference on the
TC-HIST focuses themselves on improving precision while
overlooking the robustness of the applied algorithms to inter-
ference. The reliability of these approaches is significantly
reduced when the background light is strong or measurement
number per frame is small. Therefore, it is necessary to
develop an approach that focuses on robustness of the distance
inference and information update rate.

B. Discussion on PCD
Most of the analysis approaches on PCD employ ML

algorithms, especially the CNN with the encoder-decoder
structure. They are computationally intensive and therefore
require the support of powerful computational units. Cur-
rently, these algorithms are based on personal computers
equipped with powerful CPUs and GPUs [103] and a mobile
implementation on an embedded system remains challenging.
Besides, the supervised ML approach is the most common
variant. It requires large amount of correctly labeled training
data with diversity. These data are difficult to obtain. The
KITTI benchmark is one of the most popular datasets in
this sector. However, there is a variety of LiDAR front-ends,
the PCD they generate can vary widely among them in terms
of sparsity, precision, and accuracy. Therefore, algorithms that
have been proven effective on KITTI dataset alone may not
be generalizable to other datasets. Researchers propose semi-
supervised [61] or unsupervised [58] approaches to mitigate
this problem. Besides, the development of the target simula-
tors or complete virtual measurement environments can be an
interesting topic.

In addition to using classical image processing net-
works after transforming PCD into images [69], [68], [82],
researchers design various approaches to assist the dis-
tance inference and HLP recognition and report pos-
itive results, for example direct processing of point
series [70]–[72], fusing PCD with images at different process-
ing stages [58], [74]–[76], [93], [95], deriving ground nor-
mal as the intermediate information [73], [96], and inferring
measurement confidence level [96] or neighbor-pixel depen-
dence [59], [94]. In fact, some features, which are well-
recorded in TC-HISTs, can be used to accelerate derivation.
However, in previous researches, the main processing is
loosely coupled to the pre-processing. On the one hand,
most LiDAR front-ends discard useful information, such as
the features of interference, sensor characteristics, and the
confidence level of the measurement, in the process of con-
verting TC-HISTs to the PCD. Only the distance information
is inherited into PCD. On the other hand, the main processing
considers the sensor front-end as a black-box [105] and does
not concern the information before the PCD. The information
loss leads to underutilization of LiDAR’s measurement data.

Finally, the ultimate goal of analyzing data in ADAS is
to aid decision making. Therefore, the relation between deep
completion and HLP recognition (e.g. object detection and
tracking) should be sequential. However, they seem to be
parallel in the current study. On the one hand, the current
benchmark for depth completion is the mean error. No study is
found where the performance of HLP recognition is upgraded
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by the data from depth completion approaches. On the other
hand, the HLP recognition typically employs deep neural net-
works, but no study specifically indicated whether a part of the
deep neural network performs the function of deep completion.

Although numerous works are carried out, there exists
research gaps in the LiDAR data processing workflow. More
research and development are needed to further improve the
performance of LiDAR systems.

V. CONCLUSION & OUTLOOK
In this paper, we firstly introduced a SPAD-based d-TOF

LiDAR system model based on the data flow. Afterwards,
data processing approaches in different stages presented in the
model is reviewed. The evaluation criteria for the TC-HIST
especially for ADAS are proposed and illustrated. Hence,
we discussed the state-of-the-art and the challenges of LiDAR
data analysis. Research gaps are summarized as follows:

1) LiDAR benchmark: the large number of configurable
parameters makes the LiDAR front-end quite versatile.
However, there is a lack of a widely accepted standard
to evaluate and guide these variants uniformly.

2) Data analysis on TC-HIST: data analysis on TC-HISTs
is unitary. Except measurement precision, sparse works
are carried out in terms of memory occupancy, informa-
tion update rate, and measurement robustness.

3) Holistic approaches on the LiDAR system: there are
numerous point-cloud-based data optimization and high-
level feature inference approaches. However, there exists
information loss when converting low-level data to PCD.
These approaches consider the sensor front-end is a
black-box, few of them involve low-level data analysis
to obtain useful information other than PCD.

4) Traceability and interpretability of ML approaches: the
functionality of each part of the deep learning algorithm
applied on LiDAR data remains unclear.

5) Generation of training data: large amount of correctly
labeled training data with diversity is indispensable for
the supervised ML approaches. However, these data
are hard to obtain. Few works involve data acquisition
methods with labeling or unsupervised ML approaches.

6) Excessive data amount: reducing data amount is imper-
ative for a mobile implementation of LiDAR systems.
Few works are carried out here. No data storage opti-
mization method has been tested in outdoor scenarios
and is reported to be lossless (or low-loss) in terms of
data quality.

Therefore, we suggest that future works could be conducted
in the following aspects:

1) Edge intelligence: TC-HISTs are distributed on the
embedded systems and contain useful information other
than depth and reflection. ML approaches can be applied
on TC-HISTs associated with hardware adjustment strat-
egy to increase the utilization of information and the sys-
tem performance. For example, noise features and sensor
characteristics can be learned by ML algorithms to
improve the robustness of distance inference and infer-
ring other potential properties. The inferred properties at
this stage have good timeliness. Using these results as

feedback may further improve the stability and reliability
of measurements.

2) Investigation and analysis between data pre-processing
and main processing: the key idea is enabling a seamless
system by taking a holistic approach and maximizing
the efficiency of the information exchange. On the one
hand, the computational cost of deriving different low-
level data features on the pre-processing stage can be
investigated. The impact of low-level features on main
processing in terms of system robustness, precision and
information update rate can be compared. The groups
of features with the highest overall benefit can be
eventually implemented in one system. On the other
hand, the results from the main processing can benefit
the sensor front-end as well. For example, the high-level
features can be used to guide the control signal gener-
ation of gating scheme and coincidence levels allowing
the system to operate more efficiently and effectively.

3) Joint analysis between depth completion and high-level
feature recognition: more research has to be carried out
for the importance of the depth completion in ADAS
by comparing the performance differences between
algorithms that use depth completion data and those
that directly take the original data.

4) Target simulator/virtual sensors and environment: direct
road testing to collect measurement data with labels is
inefficient and expensive. Research on a hardware-based
target simulator can keep the testing within a laboratory.
In this case, most of the environmental parameters are
configurable, facilitating the construction of desired
scenarios. In addition, by simulating target scenarios
and virtual sensors, the entire testing process can take
place in a virtual environment. The combination of
simulated and real data will accelerate the development
of data processing approaches.

5) Data compression: a variety of excellent compression
algorithms exist in other application fields. The
theoretical compatibility of these algorithms with
LiDAR data can be analyzed and eventually evaluated
on a LiDAR system in runtime.

The different research directions mentioned above will open
up new possibilities for the development of LiDAR systems.
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