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Abstract—The 2019 coronavirus disease (COVID-19)
pandemic has contaminated millions of people, resulting in
high fatality rates. Recently emerging artificial intelligence
technologies like the convolutional neural network (CNN)
are strengthening the power of imaging tools and can help
medical specialists. CNN combined with other sensors
creates a new solution to fight COVID-19 transmission.
This paper presents a novel method to detect coughs (an
important symptom of COVID-19) using a K-band continuous-
wave Doppler radar with most popular CNNs architectures:
AlexNet, VGG-19, and GoogLeNet. The proposed method has
cough detection test accuracy of 88.0% using AlexNet CNN
with people 1 m away from the microwave radar sensor, test
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accuracy of 80.0% with people 3 m away from the radar sensor, and test accuracy of 86.5% with a single mixed dataset
with people 1 m and 3 m away from the radar sensor. The K-band radar sensor is inexpensive, completely camera-free and
collects no personally-identifying information, allaying privacy concerns while still providing in-depth public health data
on individual, local, and national levels. Additionally, the measurements are conducted without human contact, making
the process proposed in this work safe for the investigation of contagious diseases such as COVID-19. The proposed
cough detection system using microwave radar sensor has environmental robustness and dark/light-independence,
unlike traditional cameras. The proposed microwave radar sensor can be used alone or in group with other sensors in a
fusion sensor system to create a robust system to detect cough and other movements, mainly if using CNNs.

Index Terms— Sensor, cough, COVID-19, radar, neural network.

|. INTRODUCTION

ORONAVIRUS disease 2019 (COVID-19), caused by
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is present worldwide, infecting millions of people and
resulting in high fatality rates. Due to its highly contagious
nature, lack of vaccines, and appropriate drug treatments,
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the only effective method to prevent further spreading is
social distancing, quarantine, and isolation. However, quickly
identifying people with COVID-19 allows for the adoption of
measures that can flatten the curve for proper allocation of
limited medical resources.

The main symptoms of COVID-19 are a fever, a dry
cough, and shortness of breath [1]. Detection of a fever at a
distance can be made using thermographic cameras or infrared
thermometers [2]. Cough can be detect with sound [3]-[6],
videos [7] or air flow [8], but the sound has a limitation of
distance.

Artificial intelligence based technologies are playing a sig-
nificant role in the COVID-19 pandemic response [9]-[13] to
study the virus, test potential treatments, diagnose individuals,
and analyze public health impact.

In the last few years, a new generation of microwave sensors
has made it possible for non-contact heart and respiration rate
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Fig. 1. Block diagram of the proposed cough detection system.

measurements through clothing with a microwave Doppler
sensor [14]-[18]. However, this type of sensor offers a number
of challenges of radar monitoring such as the removal of
motion and respiration artifacts of the patient [19], the back-
ground [20], and the development of rate detection methods
for heart rate variability analysis [21]-[23].

Sensors and artificial intelligence are complementary in the
development of new technologies. Among the most varied
uses, artificial intelligence has been applied to sensors to inves-
tigate the integrity of physical structures [24], to detect defects
in wheels [25], and to detect cardiac abnormalities [26].

This paper presents a system to detect coughs using a
microwave Doppler sensor to capture data of the unique time-
varying characteristics of the different body motions that occur
during coughing and apply these data to a CNN. This paper
introduces a machine learning approach to uncover a cough
waveform using Doppler radar.

The microwave radar sensor used in this work is a low-
cost K-band motion sensor and is completely camera-free.
Therefore, the proposed method collects no personally-
identifying information, allaying privacy concerns. The sensor
proposed in this article can serve as a trigger to start the
identification process of the sick person, that is, the image
of the person that coughed thus protecting privacy not only of
the person, but of everyone near of coughing person.

Additionally, the measurements can be made without human
contact, making the process proposed in this work safe for the
investigation of contagious diseases such as COVID-19. The
proposed cough detection system using microwave radar sen-
sor has environmental robustness and dark/light-independence,
unlike traditional cameras.

How cough is an important symptom of COVID-19 and,
together with the measurement of fever made by thermal cam-
eras, together they can perform a screening before referring the
patient to other types of diagnoses.

Il. METHODS

The proposed work can be divided into two major activi-
ties: signal acquisition through the microwave Doppler sensor
and the recognition of the cough signal pattern through the
machine learning technique. Fig. 1 shows a block diagram of
the proposed cough detection system where the microwave
radar sensor generate a signal with person’s movements that
are digitalized by the oscilloscope and sent to computer. In the
computer the Matlab application generate pseudocolor images
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Fig. 2. Diagram of the continuous-wave radar (CW) [27].

from acquired signals and this images are used to training and
validating the CNNs.

A. Doppler Radar

Continuous-wave (CW) radar uses a voltage-controlled
oscillator to continuously transmit a signal. The receiver is
always on to detect the echo signal. The CW radar is a simple
radar and is easier to integrate into mobile devices. Fig. 2
shows a diagram of the CW radar [27].

This work proposes the use of CW Doppler effect that
changes the frequency of a wave in relation to an observer
who is moving relative to the wave source.

If the target is in motion, R (distance from the radar to
target) and the phase ¢ (angular excursion) are continually
changing. A change in ¢ with respect to time is equal to a
frequency. Therefore, the Doppler angular frequency w is [28]:

) d¢ 4m dR 4mo, !
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where f; = doppler frequency shift and v, = relative velocity
of target with respect to radar. The Doppler frequency shift is:
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where fo = transmitted frequency and ¢ = velocity of

propagation (~3 x 103 m/s).
Therefore, for CW Doppler radar, an unmodulated transmit-
ted signal is given by:

s(t) = Acos[wot + ¢o] 3

where A is the amplitude of the signal, wg is the nominal
carrier angular frequency, ¢ is the time elapsed, and ¢q is the
phase of the signal.

The received signal is:

s(1) = aAcos[(wo + wp)(t — 1p) + ¢o] “

where a is the attenuation factor, wp is the Doppler angular
frequency shift and 7p is the time delayed.

Microwave radar sensors and millimeter waves are common
and the simplest models, such as CW, are inexpensive.

The microwave radar sensor used in this work is the CW
mono transceiver IPM 165 from InnoSent [29], [30] that is a
universal low-cost K-band transceiver for motion detection in
various applications. Although simple, the sensor impresses by
outstanding sensitivity. A human being can easily be seen in a
range up to 15 m or even beyond. Fig. 3 shows the microwave
radar sensor used.
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Fig. 3. Low-cost K-band CW radar sensor [29].
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Fig. 4. Circuit schematic of LF amplifier used.

The microwave radar sensor IPM 165 works at frequency
range 24.00 - 24.25 GHz (K-band) with a typical output
power of 16 dBm. More details about the radar microwave
sensor, including its radiation pattern, can be found in the
datasheet [30].

The signal available at the unit output is sinusodial for a
monotonously moving object and will provide very low signal
amplitude and therefore it must be amplified immediately
with high input impedance and lowest noise contribution. The
Fig. 4 show the circuit schematic of LF amplifier used in this
work.

B. Data Transform

The data acquired on the oscilloscope were transferred to
the computer and imported into MATLAB where they were
transformed in an image with a pseudocolor plot [31] using
the captured values (pseudocolor plot displays matrix data as
an array of colored cells linearly mapped to an index into the
color map matrix).

A pseudocolor plot displays matrix data as an array of
colored cells (known as faces). Pseudocolor creates this plot
as a flat surface in the x-y plane. The surface is defined by a
grid of x-coordinates and y-coordinates that correspond to the
corners (or vertices) of the faces. A matrix specifies the colors
at the vertices. The color of each face depends on the color
at one of its four surrounding vertices. Of the four vertices,
the one that comes first in the x-y grid determines the color
of the face.

Therefore, the acquisitions grayscale intensities are mapped
into a colormap, and each intensity generates a unique color.
The colormap array used is the Parula found in Matlab [32].
Thus, the vector of data (grayscale image) was transformed
into a vector of RGB values to be used in AlexNet that requires

Image with
Parula

colormap

Fig. 5. Transforming image of acquisitions into a pseudocolor image.
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Fig. 6. Oscilloscope image transformed into a pseudocolor image.
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Fig. 7. Typical CNN architecture.

RGB images. Fig. 5 shows an illustration of the pseudocolor
process.

During the indexing of colors using the pseudocolor func-
tion the range of color indexes are changed to overload the
colors at the limits, thus allowing greater contrast in the
generated image.

Fig. 6 shows the image of the acquired data from the
oscilloscope and the transformed image using a pseudocolor
plot with colormap limits changed to increase the contrast.

C. Convolutional Neural Network

Convolutional neural network (ConvNets or CNNSs) is a
type of Deep Learning being one of the main types to do
images recognition and image classifications. Therefore, object
detections, recognize faces, etc., are some of the areas where
CNNs are widely used. CNNs are typically comprised of
convolutional layers that create feature mappings which serve
to explain the input in different ways, while the pooling layers
compress the spatial dimensions, reducing the number of
parameters needed to extract features in the following layers.
Fig. 7 shows an example of typical CNN architecture.

To evaluate the effectiveness of the proposed system,
three popular CNNs were tested: AlexNet, VGG-19, and
GooglLeNet.

Of the various CNN models, a pre-trained AlexNet model
obtained better accuracy. The architecture of AlexNet neural
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Fig. 8. Measurement setup used to capture the signals from the 24 GHz
CW radar sensor.

network, which has 60 million parameters and 650,000 neu-
rons, consists of five convolutional layers, some of which are
followed by max-pooling layers, and three fully-connected lay-
ers with a final 1000-way softmax. More detailed information
about the architecture was previously published [33].

Another popular CNN tested was the VGG-19 [34], which
is a 19-layer-deep CNN. This network is characterized by its
simplicity, using only 3 x 3 convolutional layers stacked on
top of each other in increasing depth. Reducing volume size
is handled by max pooling. Two fully-connected layers, each
with 4,096 nodes are then followed by a softmax classifier.

The GoogLeNet CNN [35] was also tested with good
results. The GoogLeNet proposes inception modules, which
introduce skip connections in the network, forming a mini-
module that is repeated throughout the network. The overall
GoogLeNet architecture is 22 layers deep. The GoogLeNet
was designed to keep computational efficiency in mind. The
idea behind that the architecture can be run on individual
devices even with low computational resources. The architec-
ture also contains two auxiliary classifier layers connected to
the output of the Inceptions layers.

I1l. EXPERIMENTAL METHODS
A. Measurement Setup

To capture data for training and validation, the experimental
measurement setup was mounted with a K-band CW radar
sensor, a signal generator Tektronix AFG2021 to generate the
trigger pulse, a Tektronix DPO2002B oscilloscope to capture
the signal from the radar sensor and an Amrel LPS-305 power
supply to power the radar sensor.

The oscilloscope was connected to a computer by a USB to
record 1,250,000 points of the captured signals with 8 bits res-
olution. Fig. 8 shows the measurement setup used to capture
the signals from radar.

The data were acquired in time intervals of 4 seconds and
voltage range at —5 V and 5V synchronized with start of
events by the trigger pulse from signal generator to oscillo-
scope.

B. Data Collection

To build and evaluate the proposed system, we created a
database of cough, stopping, moving arms, scratching head,

(a) stopped
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Fig. 9. Examples of acquired signals transformed in image with
pseudocolor Matlab function to use in CNNs.

and shaking head recordings from ten healthy volunteers, five
males and five females. Each volunteer produced four events
records to 1 m and 3 m away from the radar sensor. Therefore,
are 300 samples to people 1 m away from the radar sensor
and more 300 samples to people 3 m away from the radar
sensor forming a dataset with 600 samples records. To AlexNet
CNN were used images with size of 227 x 227 pixels and to
GoogLeNet and VGG-19 CNNs were used images with size
of 224 x 224 pixels. Fig. 9 shows examples of acquired signals
transformed in images with pseudocolor Matlab function.

IV. RESULTS
A. Experimental Results

The software used to test with the CNNs was Deep Network
Designer from MATLAB.

In training our CNNSs, we first split our database in 2 groups:
samples with people 1 m and samples with people 3 m
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TABLE |
RESULTS OBTAINED WITH PEOPLE 1 m AWAY FROM THE
MICROWAVE RADAR SENSOR USING PROPOSED CNNs

AlexNet VGG-19 GoogLeNet
Accuracy 95.0% 93.3% 93.3%
Loss 0.23 0.35 0.21
Convergence ~10 epochs ~10 epochs  ~15 epochs

away from microwave radar sensor. Each group was split in
three parts: 140 samples for building the model, and 60 for
validation, and 100 samples for testing. The training set
was used to train the CNNs. The trained model is then run
several times against the validation set to find optimal model
hyperparameters (e.g., learning rate and batch size). Once all
hyperparameters are found, the model is retrained and run
against the test set for the final evaluation.

The convolutional network is trained using a stochastic
gradient descent (SGD), with a learning rate of 0.0001 and
a batch size of four.

In the proposed system, the AlexNet, VGG-19 and
GoogleNet CNNs were tested, which are the most common
CNNs. Measurements were performed with people 1 m away
from the microwave radar sensor and 3 m from the microwave
radar sensor.

The Deep Network Designer from MATLAB give the accu-
racy and loss information. The loss function used in AlexNet,
VGG-19 and GoogleNet was cross entropy loss [36] using
the classification layer that computes the cross entropy loss
for multi-class classification problems with mutually exclusive
classes.

Table I presents the results summary obtained using the pro-
posed CNNs with people 1 m away from the microwave radar
sensor and total of 200 samples acquired, with 140 samples
to training CNN and 60 samples to validation CNN.

By results in Table I, the AlexNet show better accuracy per-
formance. Using AlexNet the training converges after roughly
20 epochs with a train accuracy of 95.0% and loss of 0.23.

We used the remaining 100 samples acquired (20 for
each gesture) with people 1 m away from the microwave
radar sensor to test CNNs. The confusion matrix of the
tested AlexNet trained is show in Fig. 10, including coughing
detection, moving arms detection, scratching arms detection,
spinning detection and stopped detection.

Just like Table I, Table II presents the results summary
obtained using the proposed CNNs but with people 3 m away
from the microwave radar sensor. The database have the same
total of 200 samples acquired, with 140 samples to training
CNN and 60 samples to validation CNN.

Again, by results in Table II, the AlexNet show better
accuracy performance. Using AlexNet the training converges
after roughly 30 epochs with a train accuracy of 86.6% and
loss of 0.85.

We also used the remaining 100 samples acquired (20 for
each gesture) with people 3 m away from microwave radar
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Fig. 10. Confusion matrix using AlexNet with people 1 m away from the
microwave radar sensor.

TABLE Il
RESULTS OBTAINED WITH PEOPLE 3 m AWAY FROM THE
MICROWAVE RADAR SENSOR USING PROPOSED CNNs

AlexNet VGG-19 GoogLeNet
Accuracy 86.6% 80.0% 76.6%
Loss 0.85 1.06 1.44
Convergence ~30 epochs ~40 epochs  ~20 epochs

sensor to test CNNs. The confusion matrix of the tested
AlexNet trained is show in Fig. 11, including coughing
detection, moving arms detection, scratching arms detection,
spinning detection and stopped detection.

When the values in Table I with people 1 m away from
the microwave radar sensor are compared with the values in
Table IT with people 3 m away from the radar sensor, it is
observed that there is a reduction in the efficiency of the tested
CNNEs.

Finally, the proposed CNNs were tested with a dataset
containing all the samples acquired together, in other words,
the samples acquired for people 1 m and 3 m away from the
radar sensor in a single mixed dataset containing 600 samples
records. Table III presents the results summary.

By results in Table III, the AlexNet show better accu-
racy performance. Using AlexNet the training converges after
roughly 30 epochs with a train accuracy of 81.6% and loss
of 1.55.

We also used the remaining 200 samples acquired (20 for
each gesture) with people 1 m and 3 m away from microwave
radar sensor to test CNNs. The confusion matrix of the tested
AlexNet trained is show in Fig. 12.
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Fig. 11. Confusion matrix using AlexNet with people 3 m away from the
microwave radar sensor.

TABLE Il
RESULTS OBTAINED WITH PEOPLE 1 m AND 3 m AWAY FROM THE
MICROWAVE RADAR SENSOR IN A SINGLE DATASET
USING PROPOSED CNNs

AlexNet VGG-19 GooglLeNet
Accuracy 81.6% 79.1% 79.1%
Loss 1.55 1.09 1.23
Convergence ~30 epochs ~25 epochs  ~20 epochs

Although the proposed cough detection system was tested
with a dataset of a few images for the training of the CNNs,
the system performed well and was able to identify individual
coughs with an accuracy of 95% in the proposed movements
group using AlexNet CNN and with people 1 m away from
the microwave radar sensor. With people 3 m away from
the microwave radar sensor the accuracy was 86.6% using
AlexNet CNN. Moreover, with people 1 m and 3 m away
from the microwave radar sensor in a single mixed dataset the
train accuracy was 81.6% using AlexNet CNN.

Both with people 1 m or 3 m away from the microwave
radar sensor, the CNN with the best accuracy performance was
AlexNet, with a test accuracy of 88% for 1 m, 80% for 3 m,
and 86.5% for a single dataset with 1 m and 3 m. However,
other CNNs, such as ResNet, and YOLO, [37] can also be
tested.

With a single set of mixed data, the test accuracy of the
cough detection performed well and was superior to other
gestures: moving the arms, scratching the head, and shaking
the head. The only classification better than cough detection
was standing in front of the radar sensor.
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Fig. 12. Confusion matrix using AlexNet with a single dataset containing
people 1 m and 3 m away from the microwave radar sensor.

TABLE IV
COMPARISON WITH OTHER WORKS FOR COUGH DETECTION

Ref Method Classifier Test accuracy

[8] Air flow ANN 91.0%

[3] Sound CNN LeNet-5 89.7%

[38] Accelerometer Random Forest 81.4%
This Microwave 86.5%
work radar CNN AlexNet for 1 m and 3 m

The proposed cough detection system using microwave
radar is compared with other works in Table IV and shows
a good performance.

B. Discussion

The proposed article is a novelty because it proposes the
use of radar sensors not only to capture hand gestures but the
person’s body gestures, including coughing that is a common
symptom of diseases.

However, the use of microwave radar sensors to acquire
gestures has already been used in recent studies to capture
hand gestures [39], [40] and heartbeat [41]. In Choi et al. [41]
a Doppler radar sensor was used to heartbeat detection show
maximum error rate of 14.3%. Therefore, for comparative
effect on the use of radar sensors to capture human move-
ments, it could be concluded that the proposed method has
good accuracy in detecting human gestures, in addition to
being able to classify them because of the use of CNNs.
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C. Limitations

This work did not consider an environment with more
people moving. It is also important to mention that the tests
were performed offline, that is, the tested data were acquired
and then processed to validate the efficiency of the use of
radar as a new possibility to “see” the movements in the
environment. The development of real-time identification is
expected in future work.

Another important issue is that the microwave radar sensor
used in this article has one channel only, therefore not is
possible to determine the direction of movement.

It is also important to mention that the coughing gestures
were captured from healthy patients imitating a cough without
a mask. At the time of writing this article, the healthcare
system is overwhelmed and focused on treating patients with
COVID-19. In the future, we hope to acquire cough data from
patients with COVID-19.

V. CONCLUSION

In this paper, a novel cough detection system is proposed
using a K-band continuous-wave Doppler radar sensor and
popular convolutional neural networks architectures: AlexNet,
VGG-19, and GoogLeNet. Tests were carried out with people
1 m and 3 m away from the microwave radar sensor.

The system has cough detection test accuracy of 88.0%
using AlexNet CNN with people 1 m away from the
microwave radar sensor, test accuracy of 80.0% with people
3 m away from the radar sensor, and accuracy of 86.5%
with a single mixed dataset with people 1 m and 3 m away
from the radar sensor. Our work here mainly focuses on the
cough classification task. In the future, we will focus on cough
detection of COVID-19 infected people and other respiratory
diseases.

The proposed system is completely camera-free and col-
lects no personally-identifying information. The measurements
are performed without human contact, making the process
proposed in this work safe for contagious diseases such as
COVID-19. The proposed cough detection system using this
microwave radar sensor has environmental robustness and
dark/light-independence, unlike traditional cameras.

The proposed microwave radar can be another sensor in a
fusion sensor system to create a robust system to detect cough
and other movements, mainly if using CNNs.
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