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Reference Free Incremental Deep Learning
Model Applied for Camera-Based

Respiration Monitoring
Péter Földesy , Ákos Zarándy, Member, IEEE, and Miklós Szabó

Abstract—The article describes a reference and training
set free incrementally trained deep learning algorithm for
camera-based respiration monitoring systems. The algorithm
uses a model based discriminator to find salient areas having
respiration like periodic motion. It stores the first principle
component of the found waveforms into two slowly growing
set along with negative, uncorrelated motion patterns. Using
these samples, it trains a deep neural network classifier incre-
mentally to recognize respiration from sudden and motion
intensive situations. The classifier had no forgetting mech-
anism and it is able to adapt quickly the changing respiration
patterns and conditions. The algorithm has been validated in
a total of 24 hours diverse recording captured in the neonatal
intensive care unit (NICU) of the Ist Dept. of Pediatrics and, II. Dept. of Obstetrics and Gynecology, Semmelweis University,
Budapest, Hungary and in the COHFACE publicly available dataset of adult subjects. The clinical data set evaluation
resulted in mean absolute error (MAE) 6.9 and root mean squared error (RMSE) of 9.8 breaths per minute, respectively,
the MAE was below 5 breaths per minute for over 50% of the time. The algorithm was assessed in the COHFACE dataset
of adult subjects as well with respiration estimation MAE and RMSE values of 0.95 and 1.7 breaths per minute.

Index Terms— Respiration monitoring, NICU, incubator, real-time, deep learning, incremental learning.

I. INTRODUCTION

IN CAMERA based remote vital sign and specifically
respiration monitoring algorithms several solutions have

been published in the recent decade [1], also in the special
field of newborn infant monitoring. Former methods used
classical techniques for segmentation and pulse/breath rates
extraction (e.g. blind source separation [2], [3], optical flow [4]
for respiration-signal and Fourier analysis for rate value esti-
mation [5], [6]). Recent studies relies on either mixed [7], [8]
or neural network solutions [9]–[11] for these tasks to increase
motion robustness and overall performance. Another interest-
ing approach is to exploit local motion magnification algo-
rithm [12], which in principle relies on regular, periodic
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motion enhancement and thus the very irregular respiration of
the newborn infants is hard to handle with. The estimation
of respiration by following the inspiratory and expiratory
movement of the chest and abdominal region is also a common
approach. In [13] a median optical flow signal is used to gather
respiratory signal after face and chest detection. An example
for fusing different techniques is presented in [14] for res-
piration monitoring. The computationally intensive algorithm
performs skin segmentation, which is achieved using a multi-
task convolutional neural network, than seeks the similarity
between the amplitude modulation by both classical PCA
and ICA methods. The involved network was trained by
manually annotated skin regions and reached mean absolute
error (MAE) 6.9-7.5 breaths per seconds in the collected data
set including motion active regions as well. The [15] and [16]
demonstrate a complex monitoring system based on a multiple
output convolutional neural network. The solution gives a
higher level detection capability such as intervention periods.
The presented results show low error rate (3.5-4.5 BPM
MAE over selected periods) however the data preparation,
annotation, augmentation efforts is significant and specific to
the observed environment, and the employed neural network
requires heavy GPU acceleration.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5974-064X


FÖLDESY et al.: REFERENCE FREE INCREMENTAL DEEP LEARNING MODEL 2347

Fig. 1. High level flow chart of the presented algorithm.

Our algorithm is a combination of optical flow based source
separation and a low complexity convolutional neural network
classifier. The main contribution is the addition of enabling self
learning. It takes advantage of the classical approach of optical
flow processing to the select region of interest whenever
possible, i.e. collects autonomously the training set, which
is used to train incrementally the neural network classifier
to handle ambiguous situations, when the classical solution
fails. The solution has lower computational effort than the
full convolutional networks require, and makes any manual
intervention or annotation unnecessary.

II. OPERATION PRINCIPLES

The architecture is a combination of a dense rate calcula-
tion source separation model and a neural network classifier.
It can be divided into three major components: a positive dis-
criminator of source separation to select respiration patterns,
a negative sample selection mechanism, and a neural network
classifier. The discriminator is used to handle motion artifact
free situations and provides training set for the classifier, which
is use to find these patterns in motion corrupted periods.

The assumption here is that the subject is cooperative, thus
non respiratory movement may be present, but not dominant
for short time periods. In order to determine whether a salient
area can be found or not, the algorithm uses a discriminator.

The flow chart of the algorithm is presented in Fig. 1. It first
collects a stack of optical flow amplitude and from this stack,
creates a dense respiration rate map. This histogram of the rate
map is then analyzed using a simple set of rules. The rules
constrains the signal amplitude, frequency band, spatial coher-
ence. The pixel-wise optical flow waveforms resulting a valid

respiration detection, is called hereby positive samples, and
motion affected, uncorrelated waveform patterns as negative
samples. If a significant signal is found, the corresponding
waveforms are combined by calculating their first principal
component and stored, and the calculated rate is displayed as
final result. Besides, portion of the negative samples are also
picked and stored. In addition, the neural network classifier is
trained incrementally with low iteration count using the stored
positive and negative samples.

In time intervals, when there is no dominant periodic motion
found, a neural network classifier is used to find areas and
patterns that resemble the trained respiration patterns. The
candidate waveforms are validated by the same selection rules.
In the presence of valid waveforms and rate, they are displayed
as valid results.

As the time elapses, the classifier performance becomes
better to find weak signal sources and due to the stored sets,
long term memorization is preserved and no overfitting occurs
due to the increasing and versatile training set.

III. DENSE RATE MAP ANALYSIS

This section describes the details of how the dense respira-
tion rate map and its histogram and the positive and negative
samples are generated.

A. Dense Rate Map
The rate calculation is based on optical flow calculation.

First, a dense optical flow is calculated using the Horn-
Schunck algorithm [17]. The output of the optical flow is
downscaled to a lower resolution, which resolution depends
on the viewing angle of the camera, distance of the targets,
generally only a low resolution image is necessary (reasoning
presented in the end of this section). The downscaled images
are collected in a stack, on which the pixel-wise rates are
calculated.

The rate of a waveform can be estimated multiple ways.
There are a few common solutions: Fourier analysis and peak
search, peak and zero crossing counting of the band pass
filtered signal [18]. The frequency domain and linear band
pass filtering rate estimation is not adequate solution for the
very irregularly and broken expiratory patterns of the newborn
infants [19]. Hence, we propose the rate estimation as follows:
first, linear detrending is done of the raw waveforms, than
nonlinear noise filtering, finally, crossing point counting at
a threshold level above the noise level. The nonlinear noise
filtering removes the high frequency components by first an
exponential smoothing of 0.5 filter factor, and a Savitzky-
Golay (polynomial) smoothing filter [20]. This filter has 2th

order and its window size is double of the shortest expected
inhale/exhale peak (i.e. 0.6 seconds for newborn infants). The
reason for the choice of nonlinear filtering is to preserve the
shape of the waveform without inserting false peaks, which
the linear bandpass filter that can cause with overshooting and
ringing (see Fig. 2). Threshold level crossing points are finally
counted and the rate is extrapolated to 1 minute period.

The evaluations had shown that the rate map size affects the
performance of the algorithm in two ways. First, the too dense
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Fig. 2. The rate calculation method. The top, green curve is the
detrended, nonlinear filtered optical flow signal with threshold cross-
ing points. The bottom, red curve is the linear bandpass filtered
(20-120 BPM, 6th-order Butterworth filter) signal with the crossing points
showing several false hits due to ringing and overshoots.

map, such as native resolution of the input frames, results
in noisy rate estimation and thus makes the histogram peaks
blurred. Secondly, the very low resolution rate map makes
the rate histogram too discrete to analyze it meaningfully and
provides inadequate samples for the training process. Between
the two limiting cases, the rate estimation performance did not
show significant variation. In practice, the sufficient resolution
is reached, when the number of rate estimated pixels of the
subjects manifesting respiration pattern exceeds approximately
50-100. Applying this simple rule of thumb to the presented
NICU and COHFACE experiments, considering the field of
view (see Fig. 7), at least 48×48 and 32×24 pixels rate map
resolutions are required and thus used.

B. Positive Sample Discriminator
The task of the positive discriminator is to find a single

dominant source that is reached by analysing the rate distribu-
tion across the image. The rate values of all waveforms of the
stack are determined providing a dense rate map and a rate
histogram constructed from its values using 2 BPM bin size.
A sample histogram can be seen in Fig. 5a.

The analysis of the histogram is done by a rule set, which
is a composition of simple algebraic relations. The detailed
selection rules are the followings:

1) Noise Level Constraint: The waveforms having standard
deviance below a limit (noise level) are removed from further
processing. The noise level is calculated on empty view record-
ings and consequent optical flow, downscaling and filtering
steps. Its value is fixed before on-site execution.

2) Single Dominant Peak: The largest peak is greater by
10-30% than the second largest bin in the histogram. Adjacent
peaks are handled as a single dominant peak.

3) Valid Frequency Range Constraint: Outlier frequency val-
ued waveforms are removed (e.g. smaller than 10 breaths per
minute (BPM) and larger than 90 BPM for newborn infants,
5-80 BPM for adults, etc.).

4) Area Constraint: The height of the highest peak must be
larger than 5-10% of number of the all pixels.

5) Geometrical Outlier Rejection: Though the pattern clas-
sification is done independently for the waveforms in each
pixel, for spatial filtering, it is remaped back to image form.
In this form, the individual, separated points are removed by

Fig. 3. Examples of a stored data sets: a) positive samples set,
b) negative samples set.

binary morphological operation enforcing spatially cohesive
distribution (see Fig. 6c). The operation is a short sequence
of binary erosion of 2 × 2 kernel and a reconstruction step.

6) Correlation Constraint: The first principal component is
calculated of the remaining waveforms. Those waveforms,
which have low component scores (score is defined here as
the dot product of the principal component vector and a
waveform), are removed from the positive hits.

If the above process resulted in valid outcome, the first
principal component, i.e. respiration waveform, is frequency
augmented and multiplied by +1/−1 and stored in the positive
data set. The peak rate is displayed as the estimated rate. The
data augmentation is crucial for improving the generalization
capability of the classifier. The augmentation contains new
frequency augmented waveforms generated by oversampling
resulting in 5, 10, 15% rate reduced versions (e.g. 80 BPM
rated waveform is oversampled in the time dimension, the data
that exceeds the original length is dropped, and the result is
76, 72, and 68 BPM signals). Overall, a positive outcome
generates eight new waveforms in the dataset.

C. Negative Sample Selection
The role of negative sample selection is to build up a set of

samples, where possibly no periodic, respiration like patterns
are present. The classifier is also inferred on the same stack
content beside the positive discriminator (Fig. 1), and wave-
forms from the false positive detection (difference between
the discriminator and the classifier output) are selected as
new patterns to be included in the negative set. If no false
positives found or there was no positive peak, the non-peak
region of the image is used for random selection. The picked
candidate waveforms are checked not to be correlated by
Pearson correlation: if a newly selected waveform is correlated
r > 0.4 with an existing selection from the same stack,
a new one is picked and checked. This way the diversity
of the samples is increased and the risk to include unwanted
periodic cases is minimized, and the contrastive capability of
the classifier is increased as well. The amount of negative
samples is maintained about the twice of the positive samples.
A sample of such sets after continuous operation can be see
in in Fig. 3.

IV. CLASSIFIER

The goal of this classifier is to distinguish the positive,
respiration alike, waveforms from the negative samples, so it
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Fig. 4. a) network architecture of the waveform classifier. b) composition
of the training batch for one incremental learning step.

is a two-class classification problem on wave patterns. The
selected solution is a binary output convolutional neural net-
work. Its input size is 200×1, it is composed of z-score input
normalization (scaling with the average and standard deviation
of one), 1D convolutions, batchnorm, relu activation function,
maxpooling, and a two fully connected layers before its output
layer. The architecture is illustrated in Fig. 4a. The architecture
was selected and tuned on multiple runs on the recorded video
datasets.

A. Incremental Training
The incremental training is a key feature of the concept.

No pretraining nor recorded annotated full training set is
required, instead it is collected during operation. The constant
learning rate training with a moving window [21] or with
forgetting mechanisms [22] are well known techniques. The
disadvantage of these methods could be that the size of the
window and forgetting factor is critical and an non optimal
choice could result in instability or undertraining. Another
broadly accepted method is to increase the network complexity
with structural adaptation [23].

The hereby chosen method is batch based training with
limited number of epochs per steps. Though the batch learning
paradigm has its limit compared to classic incremental or
online learning, namely it needs to handle the whole dataset
for training, the proposed method do not results in unmanage-
able data amount. Therefore, the incremental training (weight
update) is performed with batches and small number of
epochs. The training batches are composed of the collected
positive and negative sets that are concatenated with the
waveforms of the current time stack (see Fig. 4b). As the time
elapses, the positive and negative sets are increasing with a
moderate and decaying rate. E.g. only a few hundreds of new
uncorrelated waveforms per hour was collected in our clinical
test series. The consequence of using the whole training set
in each weight update is that there is no need for forgetting
mechanism and the training window is the gathered complete
dataset. The observation is that the generalization and stability
of the performance is better if the training is performed only
when respiration signal was found by the discriminator. This
way, the batches contained clear input samples in addition to

Fig. 5. a) A sample rate histogram of a 10 seconds period during running
the algorithm, b) result of the classifier combined with the discriminator,
c) red curve shows the associated waveforms: unprocessed average of
the optical flow amplitude of the whole period and the green curve shows
the resulting extracted waveform.

Fig. 6. (a) sample snapshot, at the moment, when baby moves, (b) the
optical flow amplitude, (c) the classifier output can be seen showing the
areas of the detected respiration like locations at the abdominal, rejecting
the upper body movement. The (d) figure compares the ECG contact
impedance pneumographic signal (red) and this algorithm generated
results (green).

the gathered sample sets. Practical details are disclosed in the
following subsections.

B. Inference
When the discriminator fails to find a significant peak,

the output of the classifier is used for select respiration
patterns. The candidate waveform set, using the correspond-
ing rate histogram, are validated and further filtered by the
positive discriminator. The rates of the approved waveforms
are averaged to provide the final rate estimation (see Fig. 5).
An example of an input snapshot and the results are shown
in Fig. 6.

C. Execution Time and Parameter Optimization
The execution time of algorithm, including both training and

processing, enabled real-time operation on an i3 powered com-
puter with no GPU acceleration and using a single execution
thread and no optimized code. In order to control and limit the
execution time of the training steps, only a fix length random
permutation of the sample sets are included after their size
exceeded a system dependent limit. Also, at regular intervals,
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the two data sets are purged by removing highly correlated
samples. In the experiments, training set size of 2000-5000,
batch size of 100-500 samples, 1-10 epochs, constant and
exponentially decreased learning rate, and Adam/Stochastic
Gradient Descent with Momentum (SGDM) weight update
methods was evaluated and compared to find optimal settings.
The question of the investigation was how the performance
changes with this technique compared to full length training.
It turned out, that the precision of the classifier slightly
depends on the size of the sample sets and on the batch size,
learning rate of the training steps, but in general, the per-
formances are very close and usually slightly better. The
presented experimental results has been reached with batch
size of 200 and two epoch per training steps, using SGDM
update, constant learning 0.001 rate, and 4096 training set size
limit.

D. Performance Stabilization Time
The question arose, that how long is the adaptation time

of the algorithm. This time strongly depends on the behavior
of the subjects. In case of newborn infants, the different
sleeping stages and awake periods follow each other with a
few hours periodicity. Adults change their respiration patterns
as well on daily bases and depending on their activity. The
algorithm training process contains the latest respiration wave-
forms overrepresented, consequently it immediately follows
the respiration pattern changes and capable of recognizing
the new pattern robustly afterwards. The long term pattern
changes learned as they first occur. In the experiments, infant
monitoring stabilized after 4-6 hours, while in case of the
COHFACE database, it took less than an hour of recordings.
This period was estimated by disabling the training process
and letting the inference alone to determine the respiration
rate.

V. EXPERIMENTAL RESULTS

Though the algorithm and its training do not rely on external
reference signals, comparisons are presented of its results
using a clinical trial and a publicly available dataset.

A. NICU Experiments
Recordings with reference data were collected in the NICU

of the Ist Dept. of Pediatrics and, II. Dept. of Obstetrics and
Gynecology, Semmelweis University, Budapest, Hungary. The
population demographics of the participants can be seen in
Table I.

The camera was a Basler acA2040-55uc model. The videos
had 500 × 500 pixels resolution and 20 frames per second
speed. Synchronized reference data for respiration had been
gathered from vital-sign monitoring systems, namely Philips
IntelliVue MP20/MP50 models. The videos were captured
from different camera-angles and with different optics under
ambient illumination (see Fig. 7).

The experiment was performed in two steps. First, the algo-
rithm had run on a 12 hours balanced set of the different sce-
narios including different infants, camera-angles, illumination
changes, periods of intensive motion, caring, and phototerapy

TABLE I
POPULATION DEMOGRAPHICS

Fig. 7. Snapshots of the clinical video set.

device lights collected from the 375 hours database. In the sec-
ond step, another independent 12 hours test is composed to
compare the rate estimate to a reference monitor. The second
run was a continuation of the first one by using and expanding
the collected sets and preserving the classifier weights. The
reason for the two test phases is that the motion activity and
respiration pattern varies in a broad range of the infants, and
the necessary samples collected by the algorithm helps in
analyzing new patterns. This way the long term, continuous
operation performance is assessed.

In the test collection, the infants slept for about 20% of
the time, otherwise had shown usual daylight motion activity.
The span of the respiration rate was 10-90 BPM with 46 BPM
mean value.

The time window of calculation was 10 seconds, which
is moved in 5 seconds steps. The size of the dense rate
map was 48 × 48 pixels downscaled from the optical flow
including the whole camera view. In 18% of the recordings,
no respiration pattern was found due to intensive motion,
caring, body twisting or rotation. The prediction over positive
peak found ratio was above 28%. The RMSE of rate estimation
for the test set was 9.8 BPM, and the MAE 6.9 BPM with
−1.55 BPM bias. The MAE was below 5 BPM for over
50% of observation time. The Bland-Altman analysis showed
−21.2 and 17.1 BPM at 95% limits of agreement. Samples
of rates comparison can be seen in Fig. 8. The Bland-Altman
plot is presented in Fig. 9.
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Fig. 8. Rate estimation (green) compared to the respiration rate signal
of the reference Philips IntelliVue MP50 monitor (red). The top curve is a
10 hours cut, the bottom curve is a part of it shown as a dashed rectangle
in the top figure.

Fig. 9. Bland-Altman plot and the histogram of the rate estimation and
the reference Philips IntelliVue MP20/MP50 monitor respiration rates.

The results are comparable to the findings of recent and
relevant publications, such as [9] presenting the limits of
agreement were −22 to 23.6 BPM on a smaller database. Two
methods (PCA and ICA blind separation techniques) have been
disclosed in [14] based on a similar database having MAE
6.9 BMP and 7.5 BPM values. The [16] describes an imple-
mentation of video-based non-contact technologiy to monitor
the vital signs of preterm infants. The used dataset is composed
of several patients and long recording time. The corresponding
respiration rate estimate had −15.1 to 10.9 limits of agreement
and 3.5-4.5 BPM MAE after discarding noisy periods (33.3%
of the complete recording time was considered valid).

B. COHFACE Dataset Evaluation
The publicly available COHFACE dataset is evaluated with

the algorithm as well [24] with adjusted model parameters.
Beside video recordings, breathing waveform, recorded by
respiration belt, have also been recorded in the dataset. The
dataset is meant for remote heart-rate monitoring, a part of the
chest and shoulder is visible of most of the subjects allowing
the video based respiration rate measurement. The set con-
tains 160 one-minute long RGB video sequences of 40 adult
subjects recorded in a real-world scenario (12 females and

Fig. 10. The COHFACE dataset test results (green) compared to
respiration belt based respiration rate (red).

Fig. 11. Bland-Altman plot and the histogram of the rate estimation error
for the COHFACE dataset.

28 males, in age 20-65 years). The video sequences have a
resolution of 640 × 480 pixels and the frame rate of 20 Hz.
The respiration rate varied between 5-25 BPM across the set.

The following model parameters have been modified to fit
the adult subjects: the frame rate of the original video has
been dropped to fit one minute window to the input width of
the classifier (3.3 frames per seconds); the rate map resolution
was 32 × 24 pixels; the noise level and the crossing point
thresholds were 0.005 and 0.002, respectively; the Savitzky-
Golay filter order had 2nd order and 2.5 seconds window size;
the histogram bin size was 1 BPM; the constraints of the
positive discriminator were: single dominant peak parameter
was 5%; valid range was set to 4-40 BPM; area constraint was
5%; and the PCA score limit was 0.2. The negative sample
selection process remained unchanged.

The algorithm has been executed twice on the dataset.
In the first run, the first half of the one-minute videos has
been involved in order to let the incremental classifier to
build its representation of the observed respiration behavior.
In the second run, the second half of the videos are processed.
10 trials was classified not to have respiration like pattern
(not visible or out of range). The rate estimate error values
were RMSE = 1.7 BPM, MAE = 0.95 BPM with −0.1 BPM
bias, and the limits of agreement were −3.2 to 3.2 BPM (as
shown in Fig. 10-11). This error rate is only slightly worse
compared to a sophisticated respiration model based solution
of [4] providing limits of agreement of −2.67 to 2.81 BPM
in a similar dataset.

VI. CONCLUSION

A reference and training set free deep learning model has
been described. A simple rule set applied by a discriminator on
dense rate histograms helps to incrementally train a classifier
that is capable to identify respiratory movements in motion
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corrupted videos. The transformation from the waveforms to
the scalars, i.e. rate calculation, is defined in general way and
can be easily reformulated to highlight different properties.
By changing it, other multichannel measurement sources can
be trained online and analyzed with the algorithm, whenever
there is no training set or difficult to gather such.
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