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Abstract—In this study, we developed an odor sensor sys-
tem using chemosensitive resistors, which outputted mul-
tichannel data. Mixtures of gas chromatography stationary
materials (GC materials) and carbon black were used as
the chemosensitive resistors. The interaction between the
chemosensitive resistors and gas species shifted the elec-
trical resistance of the resistors. Sixteen different chemosen-
sitive resistors were fabricated on an odor sensor chip. In
addition, a compact measurement instrument was fabricated.
Sixteen channel data were obtained from the measurements
of gas species using the instrument. The data were analyzed
using machine learning algorithms available on Weka soft-
ware. As a result, the sensor system successfully identified
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alcoholic beverages. Finally, we demonstrated the classification of restroom odor in a field test. The classification was

successful with an accuracy of 97.9%.

Index Terms— GC materials, carbon black, odor sensor,

discrimination, Weka.

artificial olfaction, chemical sensor, sensor array, odor

I. INTRODUCTION
ENSORS artificially reproduce the senses of humans or
Sanimals. Among them, sensors corresponding to smell
and taste are chemical sensors. In particular, animals use
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smell to monitor their surroundings and to recognize each
other because volatile organic compounds (VOCs) in the
air can indicate the signature of creatures. Animals realize
monitoring and recognition using several hundred types of
receptors. Therefore, materials with wide diversity are needed
as receptors to recognize odors.

Many chemical sensors have been reported as elec-
tric nose (e-Nose) systems. These use various transducers
such as metal oxide semiconductor field-effect transistors
(MOSFETs), metal oxide semiconductors (MOSs), surface
acoustic wave (SAW) devices, quartz crystal microbalance
(QCM), conducting polymers, calorimetric, optical, carbon
black composites, and carbon nanotubes [1]-[8].

We had previously given attention to an odor sensor system
with 576 channel sensor [9], [14], [15]. Twenty four different
composites of polymers and carbon black (CB) were used for
the sensor system. The interaction with gas species and each
composite changed the electrical resistance of the composite.
576-channel data of resistance changes were obtained using
the sensor system when a gas was allowed to flow. The
discrimination of three different gas species was realized by
the principal component analysis (PCA) of the multichannel
data. The gas species were 200 ppm of ethyl acetate, SO0 ppm
of acetone, and 100 ppm of ethanol.

In this study, an odor sensor system was fabricated using
multichannel chemosensitive resistors and machine learning.

For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE |
GC MATERIALS AND THEIR PROVIDERS

CH | GC materials Provider
1 Tetrahydrohyethylenediamine (THEED) | GL Science
2 N,N- Bis (2-cyanoethyl) formamide | TCI

(BCEF)
3 LAC-3R-728 GL Science
4 Diethylene Glycol Succinate (DEGS) Sigma Aldrich
5 Poly(ethylene succinate) (PES) Sigma Aldrich
6 UCON 75-HB-90000 SCI
7 1,2,3- Tris (2-cyanoethoxy) propane | Sigma Aldrich

(TCEP)
8 SP-2330 Sigma Aldrich
9 SP-2340 Sigma Aldrich
10 Diglycerol TCI
11 Reoplex 400 GL Science
12 Poly [di (ethylene glycol) adipate] | Sigma Aldrich

(PDEGA)
13 Poly (ethylene glycol) 4000 (PEG4000) | Sigma Aldrich
14 Poly (ethylene glycol) 20K (PEG20K) | USP

REFERENCE

15 Poly (ethylene glycol) 20M (PEG20M) | SCI
16 Free Fatty Acid Phase (FFAP) Sigma Aldrich

TCI: Tokyo Chemical Industry co., Ltd.; SCI: Sinwa Chemical Industries Ltd.

Gas chromatography stationary materials (GC materials) and
CB were mixed to make the chemosensitive resistors. The GC
materials are appropriate for gas sensing because they have
excellent gas sorption ability and wide diversity (246 species
are known). Sixteen materials were selected for aldehyde gas
sensing on the basis of their McReynolds constant [10]. The
reason why aldehydes were chosen was that they are often
contained in human-derived VOCs [16]. One of our goals
is to use our sensor system used for diagnostics using the
smell of humans. The 16 materials used are shown in Table I.
A complex of a GC material and CB interacts with gas species
allowed to flow over the complex. The interaction can change
the electrical resistance of the complex. CB particles have
a string like structure and exist in GC materials, and they
are entangled with each other to form a conductive path.
When the GC materials interact with the gas, they expand and
the CB conductive path changes. This is the mechanism by
which the electrical resistance changes [11]. Sixteen different
chemosensitive resistors were fabricated on a silicon chip with
electrodes. Moreover, the multichannel data obtained from
the 16 chemosensitive resistors were analyzed using machine
learning. The classifier models evaluated in this study were
obtained as Weka free software (Waikato Environment for
Knowledge Analysis), which is data mining software with
many machine learning algorithms. We successfully identified
alcoholic beverages by sensing their odor using the sensor
system. Finally, we demonstrated the classification of restroom
odor in a field test.

[I. MATERIALS AND METHODS

Table I [12] shows the names and providers of the
GC materials. CB was obtained from Sigma Aldrich (St.
Louis, MO, USA) and TOKAI CARBON (Tokyo, Japan).
2-phenethylamine (PHE), pyrrole (PYR), benzaldehyde
(BZAL), and nonanal (NAL) were purchased from Wako Pure
Chemical Industries (Osaka, Japan) as model gases.

4 mm

W140mmXD142mmXH150mm

i

Fig. 2. Compact measurement instrument.

The fabrication process of the chemosensitive resistors was
as follows. First, the GC materials and CB were separately
dissolved in dimethylformamide. Next, solutions of one of GC
materials and CB were mixed with a ratio of 1:1. After that,
each mixed solution was added dropwise to a silicon chip with
separated electrodes. The silicon chip was fabricated using a
photolithography process and had 16 pairs of electrodes that
were separated electrically. The 16 kinds of mixed solution
were added dropwise to the 16 pairs of electrodes using an
automatic spotting machine (customized machine, Musashi
Engineering, Inc., Tokyo, Japan) with a needle syringe. After
drying the solvent, an odor sensor chip with 16 channels was
obtained (Fig. 1).

Finally, the odor sensor chip was embedded in a laboratory-
built compact measurement instrument (Fig. 2). The mea-
surement instrument consisted of a pump, a flow cell, A/D
converters, a touch panel display, valves, and a computer unit.
The sampling rate of the A/D converter was 1 kHz. The gas
exposure profile was Nj:sample gas:Np =15 s:15 s:15 s. The
following experiments were carried out using this setup and
method.

I1l. RESULTS AND DISCUSSION

A. Evaluation of Machine-Learning Algorithms

First, we measured the responses to the four model gases
of PHE, PYR, BZAL, and NAL using the sensor system.
The results are shown in Fig. 3. The values in Fig. 3 were
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Fig. 3. Sensor responses to the four model gases.
TABLE Il
RANKING OF F-MEASURE OF CLASSIFIERS
1 metaRotationForest 0.9250 0.0250 0.9432 0.9250 0.9258  0.9933
2 lazy.IB1 0.9000 0.0333 0.9061 0.9000 0.8985 0.9333
2 lazy.IBk 0.9000 0.0333 0.9061 0.9000 0.8985 0.9333
4  lazy.KStar 0.89170.0361 0.90750.8917 0.8918  0.9856
5 meta.ClassificationViaRegression 0.8750 0.0417 0.8863 0.8750 0.8734 0.9686
6 trees.FT 0.8750 0.0417 0.8765 08750 0.8712 0.9639
7 functions.Logistic 0.8667 0.0444 09077 0.8667 0.8648  0.9800
8 functions.MultilayerPerceptron 0.8417 0.0528 0.9067 0.8417 0.8384 0.9819
9 functions.SimpleLogistic 0.8333 0.0556 0.8470 0.8333 0.8350 0.9764
10 treesLMT 0.83330.0556 0.8470 0.8333  0.8350 0.9764
11 meta.logitBoost 0.8333 0.0556 0.8392 0.8333 0.8333  0.9583
12 trees.RandomForest 0.8333 0.0556 0.8480 0.8333  0.8311 09713
13 meta.MultiClassClassifier 0.8250 0.0583 0.8754 0.8250 0.8257 0.9622
14 meta.Decorate 08167 0.0611 0.8454 08167 0.8173 0.9583
15 meta.RandomCommittee 0.8083 0.0639 0.8439 0.8083 0.8102  0.9425
16 functions.RBFNetwork 0.8000 0.0667 0.8379 0.8000 0.7999  0.9294
17 trees.J48graft 0.7583 0.0806 0.77450.7583 0.7567  0.8357
18 meta.RandomSubSpace 0.7583 0.0806 0.7896 0.7583  0.7561 0.9535
19 metaEND 0.7500 0.0833 0.7764 0.7500  0.7494  0.9257
20 trees.J48 0.7500 0.0833 0.7644 0.7500 0.7492  0.8343
calculated using
R — Ry
AR=—"" (1)
Ro

where R is the resistance when the sensor material reacts with
the sample gas and Ry is the resistance when the material
reacts with 100% nitrogen gas. The concentration of the
sample gas was 1 ppm. A different pattern of the response
to each model gas was obtained using the sensor system.
We carried out three experiments for each concentration of
1000, 750, 500, and 250 ppb. We thus acquired a dataset of
{4 gas species x 4 concentrations X 3 trials = 48} for machine
learning.

Next, about 40 classifiers that were useable on Weka
software were evaluated to identify the gas species. The
procedure was as follows. First, three different datasets were
acquired through experiments conducted on different day. Two
of these datasets were used for the learning process. The
other dataset was used to validate the results of machine
learning. We carried out tests using three different combi-
nations of the datasets for cross-validation. The classifiers
with the top 20 F-measures are shown in Table II, where the
F-measure is the harmonic average of the precision and recall.
The highest overall rank was obtained by meta.RotationForest.
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Fig. 5. Effect of annealing on noise magnitude (n=4).

Therefore, meta.RotationForest was selected as the machine
learning algorithm with the highest performance.

B. Effect of Annealing Process

We evaluated the annealing process to improve the sen-
sor sensitivity. The sensitivity is determined from the noise
level and response magnitude. The sensitivity increases with
decreasing noise level and increasing response magnitude.
We thought that the noise level would decrease if the CB
particles of the sensor materials could be aggregated by
an annealing process, because the dispersibility of the CB
we used was poor and aggregation may result in a stable
conduction path. Therefore, the fabricated sensor chips were
annealed in vacuum.

Figs. 4 and 5 respectively show the waveforms and noise
magnitudes of the sensor response before and after annealing.
The noise magnitude was decreased after annealing. The
variability rates were calculated from the mean and standard
deviation of the response to nitrogen gas to quantify the noise
level. The variability rate was 0.000103 before the process and
0.000015 after the process; thus, the noise level was decreased
more than fourfold.

In addition, the response speed increased. Fig. 6 shows
transmission electron microscope (TEM) images of a sensor
material before and after annealing. The particles of CB after
the process were aggregated compared with those before the
process. This result indicated the reason for the decreased
noise level. In addition, the network of CB particles became
porous. This indicated the reason for the increased response
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(a) Before annealing

(b) After annealing

Fig. 6. TEM images of a sensor material.
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Fig. 7. Sensor responses to benzaldehyde of 600 ppb when the type of
CB was changed.

speed, i.e., gas molecules were able to reach the sensor
materials in a shorter time owing to the larger surface area.
In conclusion, the annealing process reduced the noise level
of the sensor and increased the response speed.

C. Change in Response Characteristics With the Type of
Carbon Black

The GC materials were evaluated by a QCM sensor
before forming the chemosensitive resistors in our previous
study [12]. In the study, we choose 21 types of GC materials
on the basis of the McReynolds constant [10]. Then, 16 of
the GC materials were determined from the results of experi-
ments using a QCM sensor. However, for some GC materials,
the responses of the QCM sensor did not match those of
the chemosensitive resistors. Therefore, we investigated the
change in the response characteristics with the type of CB.

We prepared three types of CB: Sigma, Aqua Black, and
Black Pearl. For Aqua Black and Black Pearl, we evaluated
the annealing effect. Fig. 7 shows the results. The graph shows
the response to 600 ppb of benzaldehyde. Even with the same
GC material, the response characteristics changed when the
type of CB was changed. This means that not only the type of
GC material but also the type of CB will change the response
characteristics of chemosensitive resistors to gases. This is
highly advantageous for a gas sensor for identifying gases.
This is because the recognition ability is improved since there
are many sensors having various response characteristics to a
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Fig. 8. Results of the effect of humidity on the sensor response. The
humidity of the dry condition was below 4%. That of the wet condition
was about 40%. “LP” means DSPE-PEG. “EC” means ETHOCEL. “NON”
means that LP/EC was not added. “-A” means that the mixed materials
were annealed.

certain gas. However, the mechanism behind the change in the
characteristics of chemosensitive resistors with the type of CB
is not clear, but we hope to clarify in our future work.

D. Effects of Sensor Response on Humidity and Mixing
of Hydrophilic and Hydrophobic Polymers

Many chemical sensors are known to be affected by humid-
ity. Many experiments are generally performed in a laboratory
with low humidity, in practice, sensors are used indoors and
outdoors, where the humidity may be high.

Therefore, the effect of humidity on the sensor response
was examined. In addition, to lessen this effect, a hydrophilic
polymer and a hydrophobic polymer were mixed with the
GC materials, and experiments were performed to determine
which was more advantageous. 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]
(DSPE-PEG) was used as the hydrophilic polymer, and
ETHOCEL (ethyl cellulose) was used as the hydrophobic
polymer. The ratio of the polymer and the GC materials was
1:9. Experiments were carried out using the four model gases,
and the results for the NAL gas are shown in Fig. 8.

First, the responses of almost all sensors were reduced
at the higher humidity. Second, the LP-mixed GC materi-
als showed the same responses as nonmixed GC materials.
Finally, although the EC-mixed GC materials showed the same
responses before annealing, the responses greatly increased
after the annealing. In conclusion, the highest responses were
obtained under humidity of about 40% using GC materials
mixed with the hydrophobic polymer after the annealing
process.

E. Discrimination of Alcoholic Food Beverages

We evaluated the sensor system using reagents as gas
species. However, evaluations using gases containing various
volatile compounds are required to demonstrate the use of the
system for real applications. For this purpose, we demonstrated
the discrimination of different types of alcoholic beverages.
A dataset of 40 trials for one beverage was acquired for
learning. Eight tests were carried out to evaluate a beverage.
The sensor materials used were made from a mixture of CB
and GC materials (without the hydrophobic polymer). The
materials were annealed. The accuracy was 100%. However,
different types of alcoholic beverages have different con-
centrations of ethanol, the discrimination might have been
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Fig. 10. Results of discrimination of four brands of Awamori.

based solely on the concentration of ethanol vapor. Therefore,
we demonstrated the use of the sensor to distinguish alcoholic
beverages with the same alcohol percentage. We used two
kinds of alcoholic beverage, beer and Awamori, where the
latter is a distilled alcoholic beverage mainly produced in the
Okinawa region of Japan. The alcohol percentages of beer and
Awamori were adjusted to 5% and 30%, respectively.

First, we discriminated four brands of beer; Yebisu (Sap-
poro), Lager (Kirin), Super Dry (Asahi), and MALT’S (Sun-
tory). Fig. 9 shows the results for beer, where the gases
were sampled from the headspace. The accuracy rate was
above 90%.

Next, the discrimination of four Awamori brands was carried
out under different conditions; the gases were sampled from
the headspace of the bottle while changing the distance from
the liquid level to. 5, 20, and 35 mm. The results are shown in
Fig. 10. The accuracy rate (F- measure) was almost 100% for
the distance of 5 mm. However, the accuracy rate decreased
with increasing distance.

F. Field Test for Judging Odor of Restroom

In the above experiments, we evaluated our sensor system
in a laboratory environment with a low level of disturbance.
However, the sensor system must be able to perform robust
measurements to enable actual applications. We carried out a
field test using the sensor system to evaluate its robustness.
As a field test, the sensor system was used to judge the odor
in a restroom.

There are many buildings in cities in Japan. These build-
ings may have a huge number of restrooms. Currently, the
restrooms are cleaned regularly as part of the maintenance of

Fig. 11. Field test in a restroom. The sensor materials used were made
from mixture of CB and GC materials (without the hydrophobic polymer).
The materials were annealed.
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Fig. 12. Comfort map of the four classes.

each building. However, this is a growing problem owing to a
shortage of labor in Japan. If the frequency of maintenance can
be reduced without sacrificing comfort, it will be possible to
solve this problem. If the odor in a restroom is monitored using
the sensor system, the restroom needs to be cleaned only when
the odor makes users uncomfortable, thus the frequency of
maintenance can be reduced. We demonstrated the judgement
of odor in a restroom using the sensor system in a field test.

First, odor samples were obtained from four different loca-
tions in two different restrooms (the total number of locations
was eight). Fig. 11 shows the experimental setup. The air was
measured by the sensor system via gas samples obtained using
a Tedlar gas bag. The experiments were carried out across
multiple days. The number of samples taken at each location
was about 70 to 100 and the total number of samples was 580.

Next, the obtained gas samples were divided into four
classes by two persons trained as sniffers. The classes were
“Uncomfortable”, “A little uncomfortable”, “Not bad”, and
“Comfortable”. The results are shown in Table III. The data
obtained by the sensor system were classified using the results
of the discrimination by humans.

The intensity and comfort/discomfort index of each class
were evaluated by a six-step odor intensity display method and
a nine-step odor discomfort display method [13]. The inten-
sity display method discriminates odors as 0O: none odor, 1:
threshold odor, 2: identifiable odor, 3: easily identifiable odor,
4: strong odor, and 5: very strong odor. The discomfort dis-
play method discriminates odor as -4: extreme discomfort,
-3: strong discomfort. -2: discomfort, -1: slight discomfort,
0: normal, +1: slight comfort, +2: comfort, +3: strong
comfort, and +4: extreme comfort. However, +3 and +4
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TABLE IlI
NUMBER OF SAMPLES IN EACH ODOR CLASS DISCRIMINATED BY
HUMAN SNIFFERS

Odor class Number of samples
A Uncomfortable 154
B A little uncomfortable 160
C Not bad 157
D Comfortable 109
TOTAL 580
TABLE IV

RESULTS OF THE PREDICTION OF THE CLASSIFICATION USING
MACHINE LEARNING

Accuracy rate Prediction by
97.9% machine learning
A B C D
Classification | A | 147 0 6 1
by human B 1 160 0 0
sniffers C 2 0 143 | 1
D| O 0 1 98

are rare. Fig. 12 shows the results. The two data points
in each class were obtained by the two different sniffers.
An important point is that the “Uncomfortable” class and the
“Comfortable” class had similar intensities despite their very
different comfort/discomfort indexes.

Finally, the prediction of the classification was performed by
machine learning. First, the classified data were divided into
10 datasets with the same proportion of the total number of
samples in each class. The datasets were used for the learning
process and test process, with the datasets used for the learning
process not being used for the test process. The accuracy of
machine learning was cross-validated using the datasets. The
results are shown in Table IV. The accuracy rate was 97.9%.
We thus succeeded in prediction with a high accuracy rate in
a real environment using the odor sensor.

IV. CONCLUSION

We developed an odor sensor system with 16 different
chemosensitive resistors made from composites of GC mate-
rials and CB. The responses of these chemosensitive resistors
to each gas species were different each other. The odor
sensor system outputted four different datasets of the response
of 16 channels when the gases of PHE, PYR, BZAL, and NAL
gases with concentration of 1000, 750, 500, and 250 ppb were
allowed to flow over the sensor. We evaluated 20 classifiers
that were available on Weka software using the obtained
data, and the best classifier for our sensor system was found
to be meta. RotationForest. The discrimination of alcoholic
beverages was successful using our system, and we obtained
a high accuracy rate. Finally, a demonstration of classifying the
air in a restroom was carried out as a field test, and an accuracy
rate of 97.9% was achieved. In our future work, we will
increase the number of channels to improve the recognition
capability. In addition, we will investigate other applications
such as those in healthcare and security.
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