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Abstract—Rapid advancements in information processing
and embedded systems require high selective and fast sen-
sors. Conventional gas sensors are not suitable for the detec-
tion of isomers of organic compounds due to cross-sensitivity
and the response time being limited by slow chemical kinetics.
Amperometric gas sensors using conducting polymers mod-
ified with metal catalysts are a suitable and robust system
due to many tunable properties. In this paper, conducting
polymer polyaniline was electrochemically decorated with
clusters containing precisely defined number of gold atoms
to function as an electro-catalyst. The modified polymer com-
posite showed fast reaction rate for the electro-oxidation of
alcohols in both liquid and gas phases. The number of gold
atoms affected the catalytic activity. Cyclic voltammograms were measured and results showed discriminable patterns
between n-propanol and iso-propanol even at different gas concentrations. Thus, it was demonstrated that gas sensor
arrays can be realized by decorating different number of gold atoms on polyaniline electrodes, to yield defined and
different selectivity.

Index Terms— Amperometric gas sensor, atomic gold, conducting polymer, electro-catalyst, polyaniline, propanol.

I. INTRODUCTION

GAS sensors have a wide range of modern applications
such as their use in breath analysis to detect anomaly in
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a patient’s health, as security devices for monitoring gas leaks,
quality control in the food industry etc. [1]. Conventional gas
sensors, however, are known to face some common challenges
such as cross-sensitivity to humidity [2] and amperometric
gas sensors are electrochemical type of gas sensors that are
a more robust choice due to their several merits [3] in terms
of characteristics such as low power, ease of fabrication, and
the ability to perform in humid conditions. Although such
sensor characteristics are attractive, they come at a cost of
slow chemical kinetics when operating at room temperature,
and sensor microfabrication is often a complicated process [4].
In the past, our group studied a halitosis sensor based on
an electrochemical sensor array [5], however, more work
needs to be done to improve the selectivity, chemical kinetics
and sensitivity of that sensor as well. In late 20th century,
nanomaterials such as conducting polymers [6] became a
popular choice for sensors due to their electrical conductivity,
tunable properties and operation at room temperatures. One
such conducting polymer is polyaniline (PANI) which has been
popular due to its availability in several oxidation states, and
which offers a wide range of tunable properties [7], [8].

In 1980, Diaz et al. demonstrated the synthesis of elec-
troactive PANI films on electrodes by the electro-oxidation of
aniline on a platinum (Pt) electrode in an acidic medium [9].
Since then, there have been several studies of polyaniline based
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gas sensors such as using single-walled carbon nanotubes
and nanocomposites [10]. Although such sensors show good
sensor characteristics such as reproducibility and low detection
limit, there is cross-sensitivity across similar chemical species.
Furthermore, it becomes even more difficult for these sensors
to classify structural isomers of organic compounds.

Since structural isomers have same molecular formula,
we need to find suitable new materials that show different
reaction response to such isomeric compounds. One such
material is propanol that exists in two isomers viz. n-propanol
(nPrOH) and iso-propanol (iPrOH). While iPrOH is a common
solvent of choice in the printing industry and as a potential fuel
for direct alcohol fuel cells (DAFCs), nPrOH is a major con-
stituent in many kinds of cosmetics. In the past, metal oxide
based propanol gas sensors with its detection levels of few tens
of ppm in air have been reported [11]–[13]. Since they are sus-
ceptible to sensor drift and require high temperature operation
for higher sensitivity, they are not suitable for discrimination
between isomeric compounds at room temperature. While in
the past, research has been conducted to discriminate between
some isomeric compounds such xylene [14], no sensors to
discriminate between nPrOH and iPrOH have been reported.
In 1987, Haruta et al. [15] introduced the use of gold (Au)
as a catalyst for the oxidation of carbon monoxide. Later,
Hatchett et al. [16] further demonstrated that the growth of
Au clusters on PANI substrate by oxidizing the PANI and
forming a metal halide complex. The small size of Au showed
interesting properties and in the later years, the size of Au
cluster was further reduced to atomic size. PANI doped with
atomic Au showed enhanced electrocatalytic properties to
electrooxidation of alcohols [17]. By controlling the oxidation
potential of PANI, atom-by-atom cluster of gold could be
deposited on PANI [18]. It has also been shown that depending
on the number of Au atoms, the current response also shows
an odd-even pattern due to the HOMO-LUMO energy gap
of the Au clusters [19]. Such properties are important in the
fabrication of novel gas sensor arrays [20], [21].

In this paper, the method of decoration of atomic Au on
a conducting polymer to fabricate selective materials for gas
sensors is reported. Although PANI doped with atomic Au has
been used in the liquid phase, this is the first paper of its gas
sensing behavior. Then, it was applied to the classification of
nPrOH and iPrOH. Voltammograms of nPrOH and iPrOH at
various gaseous concentrations showed discriminable patterns
that were later classified using principal component analysis.

II. NOVEL SENSING MATERIALS

A. Method of Atomic Gold Deposition
It has been found that clusters of gold with precisely

defined number of metal atoms exhibit unique electrocatalytic
properties for oxidation of aliphatic alcohols [14]–[16]. In this
paper we demonstrate how such materials could be used
for construction of sensing arrays and multivariate chemical
sensing analysis. The general concept of preparation of such
materials is described in the following section.

Growing atom-by-atom gold clusters onto PANI is a cyclic
process [18]. PANI inside an acidic medium can be oxidized
to its imine form, which has the ability to form strong metal

Fig. 1. Cyclic process of atomic gold deposition (I) PANI is oxidized
by elevating the potential from − 0.2 V to + 0.8 V (II) Potential is held
at + 0.8 V. AuCl−4 ions are introduced in situ (III) One of the AuCl−4 ions
forms a PANI∗AuCl4 metal halide complex and excess AuCl−4 is rinsed
with HClO4 buffer solution (IV) Potential is swept from + 0.8 V to − 0.2 V
leading to the reduction of AuCl−4 to Au. Atomic Au is decorated onto
PANI. The process from I-IV can be repeated ‘N’ times for decorating ‘N’
atoms of Au (reproduced from [17]).

complex with halo-anions. According to Fig. 1, a Pt working
electrode is first polymerized with PANI and the potential is
swept from − 0.2 V to + 0.8 V at which PANI changes from
its emeraldine form to electrophilic pernigraniline form (I). If a
metal halide (e.g. tetrachloroaurate anion AuCl−4 ) is introduced
in situ, then PANI∗AuCl−4 complex is formed due to the high
electron affinity of PANI functional group in this state (II).
Excess AuCl−4 ions are rinsed out by acid buffer solution (III).
By linearly sweeping the potential back to − 0.2 V, Au3+
in AuCl−4 is reduced to atomic Au0 (IV). Since only a
single AuCl−4 anion is needed for each atomic Au deposition,
the deposition can be performed at very low concentrations of
AuCl−4 . The cyclic process (I-IV) can be repeated ‘N’ times
to grow ‘N’ atomic gold cluster onto PANI substrate, e.g. Au2
means two gold atoms.

B. Catalytic Activity of Different Gold Depositions
Atomic Au has an effect on the electrocatalytic ability

of PANI as experimentally demonstrated by Jonke et al.
and gold clusters made up of 2 and 6 atoms have shown
to possess the largest HOMO-LUMO gap and dissociation
energy [19]. They also reported the FTIR spectroscopy of
N-H stretching measured in the region of 3100-3500 cm−1

in 0.1 M HClO4. The dependency of N-H stretching could
be seen in the odd-even pattern obtained from the band areas
relative to the number of atoms in the cluster. Since the thus
formed Au atoms were expected to be close to the nitrogen
sites of PANI, the magnitude of N-H stretching vibration
therefore depended on the size and stability of those atomic
Au clusters in PANI. In this research, the ‘odd-even pattern’ of
PANI/AuN composites was experimentally examined by first
preparing atomic Au onto PANI and step-wise growing bigger
clusters through a cyclic pathway to form different PANI/AuN
composites (N = 0, 1, 2, 3 and 4). After the preparation of
composites, cyclic voltammogram scans were measured with
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Fig. 2. CV of PANI/AuN (N is the number of atomic gold decorated
onto PANI; N = 0, 1, 2, 3 and 4) in (a) normal-propanol or nPrOH &
(b) iso-propanol or iPrOH. Voltammograms show an odd-even pattern
due to the variation in the HOMO-LUMO gap energy of atomic gold
cluster (Scan Rate: 100 mV/sec).

each composite to perform the electrooxidation i.e. 0.5 M
nPrOH and 0.5 M iPrOH in 1M KOH alkaline medium.

Two current density peaks were observed due to the
oxidation of nPrOH and iPrOH to their intermediates provid-
ing evidence for selectivity. For electro catalytic oxidation of
alcohols on gold, the rate-determining step is the cleavage
of the C–H bond on the alcohol, which leads to the formation
of alkoxide ion. For primary alcohol (e.g. nPrOH) the alkoxide
is more active towards the electrochemical oxidation leading
to propionic aldehyde, which can be further oxidized, while
for the secondary alcohols (e.g. iPrOH) the final product is
the corresponding ketone (e.g. acetone) [22]. Composites with
odd number of gold atoms showed lower current density,
whereas composites with even number of gold atoms showed
a larger current density (Figs. 2 (a) and (b)). An additional
oxidation peak at + 0.2 V was also seen for composites
with even number of gold atoms. Furthermore, discriminable
patterns were obtained between nPrOH and iPrOH. Due to
the distinct change in the shape of CV and large current
density of PANI/Au2 composite, highly selective sensors are
expected for both gas classification [23] and gas mixture
quantification [5].

Fig. 3. Experimental setup (a) Flow cell for & (b) Atomic gold deposition
system. (WE: Au decorated PANI/Pt working electrode, RE: Ag/AgCl
reference electrode, CE: Pt thin film counter electrode connected with
Pt wire).

III. MATERIALS AND METHODS

A. Experimental Setup for Atomic Au Cluster Insertion
Since the atomic gold deposition required parameters such

as potential and electrolyte exposure time to be precisely
controlled, a special polycarbonate flow cell (diameter Ø =
60 mm, Fig. 3 (a)), fabricated by Ono denki, Japan was used.
Ag/AgCl in 3 M NaCl (BAS, Japan) and Pt thin film (Nilaco,
Japan) were used as reference electrode (RE) and counter
electrode (CE) respectively. The flow cell consisted of two
plates – a front plate and a back plate. The Pt thin film CE was
sealed between the two plates of the flow cell using an O-ring
and polydimethylsiloxane (PDMS) membrane. Pt film created
an exposure surface for the incoming electrolyte. PDMS was
used as an elastic membrane to seal the two plates to prevent
electrolyte leakage. Plastic washers were used negate the thrust
created when hinging the two plates of the flow cell together.

0.2 mM potassium tetrachloroaurate (KAuCl4) dissolved
in 0.1 M perchloric acid (HClO4) was used as gold solution for
the insertion of gold atoms. 0.1 M HClO4 was used as a buffer
solution for rinsing excess gold ions. After the oxidation of
PANI, a syringe pump (Legato 110, KD Scientific) was used to
drive KAuCl4 solution into the flow cell. HClO4 was then used
to rinse excess AuCl−4 anions in the system and its injection
was driven by a peristaltic pump (13-876-2, Fisher Scientific).
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Fig. 4. Timing Diagram of flow cell for atomic gold deposition process.
Y-AXIS shows the change in the working electrode potential while X-AXIS
shows the time taken for each process to complete. FLOW indicates
the different aqueous solutions entering the flow cell at each process.
Steps ‘A’, ‘B’ are a pretreatment process of rinsing with HClO4 buffer
solution and scanning the CV of PANI before atomic gold deposition.
At ‘C’, KAuCl4 is introduced and at ‘D’. RINSE FLOW indicates the
use of the aqueous solution for rinsing the flow cell. In this case,
HClO4 buffer solution is used to rinse away excess AuCl−4 ions for
a period of 800 seconds. NO FLOW indicates no further flow of the
respective aqueous solution into the flow cell. At this stage, the electrolyte
inside the flow cell is kept constant. ‘E’ is the reduction of Au3+ to Au0

followed by ‘F’ which is the cleaning the PANI/AuN composite by taking
several CV scans. From ‘G’, the entire process can be repeated for higher
atomic gold decorations.

A solenoid valve (EXAK-3, Takasago) was used to control
the switching between solutions. Flow connections between
apparatus were established using chemically inert tygon tubes
(LMT-55, Saint Gobain) (Fig. 3 (b)).

The working electrode potential was controlled by a
laboratory-fabricated potentiostat. A low-noise JFET oper-
ational amplifier (TL074, Texas Instruments) was used in
the design of the potentiostat. Along with the potentiostat
circuit, an Arduino was used to control the solenoid valves
and the peristaltic pump. All devices were controlled and all
measurements were taken using a Serial-USB protocol inside
a MATLAB script file (2017a, Mathworks).

B. Preparation of Polyaniline (PANI)
PANI was prepared on a platinum Pt working electrode or

WE (diameter Ø = 3 mm, BAS Japan) by electropolymer-
ization of 0.1 M aniline (C6H5NH2) in 2 M tetrafluoroboric
acid (HBF4) at constant potential using a three-electrode
electrochemical setup. Total polymerization time was for about
200 seconds at a total charge transfer limit of 13 mC.

C. Timing Diagram of Flow Control for Au Cluster
Insertion

The flow cell was first rinsed with 0.1 M HClO4 buffer
solution for 300 sec before inserting the PANI electrode into
the flow cell (see timing diagram in Fig. 4). This step ensured
that there were no air bubbles in the flow cell path. After
rinsing the flow cell, the PANI electrode was inserted and
potential was swept between − 0.2 V and + 0.8 V for three
CV scan cycles at a scan rate of 20 mV/sec. This step was
crucial for cleaning the surface of PANI.

Following this step, the potential was held at + 0.8 V
to maintain PANI in its oxidized imine state. 2 ml of
10−4 M KAuCl4 was injected into the flow cell for an exposure
time of 60 sec. At this stage, PANI formed PANI∗AuCl−4
metal complex surrounded by excess AuCl4anions. In order
to remove the excess AuCl−4 anions, the previous step was
followed by rinsing with HClO4 buffer solution for a period
of about 800 sec. After the long rinsing stage, the potential
was pulled down to − 0.2 V leading to the reduction of Au3+
to Au0. The Au atom formed a coordinate bond with the
nitrogen of PANI leading to the deposition of atomic size gold
or Au1. Following this, three CV scan cycles were taken to
clean the PANI/Pt electrode decorated with Au1. The process
was repeated one more time to decorate PANI/Pt electrode
with another atomic Au leading to the formation of PANI/Au2
composite.

D. Gas Delivery System
In order to measure the CV response in gaseous phase,

a gas delivery system was fabricated (Fig 5). The design is
similar to an odorant delivery system [23], with an output
channel flow rate of 200 ml/min. 1 ml of propanol sample
was inserted into the vial to create an odor headspace and
the gas was bubbled into a temperature controlled electro-
chemical cell. Two solenoid valves worked complementarily
with each other and the concentration of the blended odor
was controlled by switching the duty cycle of the solenoids.
The gas delivery system was calibrated with a photoionization
detector (ppbRAE 3000, RAE Systems) and vapors of nPrOH
and iPrOH were generated at 30%, 60 and 90% of full-scale
concentration of 1600 ppm of pure alcohol in air.

IV. RESULTS

Changes in the CV of PANI at each step of atomic gold
deposition are discussed. Characteristics of PANI/Au2 com-
posite and its CV response to propanol in liquid phase and
gas phase are reported. In case of multiple CV cycles, the last
cycle of CV is plotted unless mentioned otherwise.

A. Cyclic Voltammetry of Atomic Au Deposition
In Fig. 6, the dotted line or curve I shows the initial CV

scan of PANI in 0.1 M HClO4. Curve II shows the first
reduction of Au3+ to Au0. Curve III shows subsequent change
in the CV shape. Similarly, curve IV shows the second Au3+
reduction and curve V shows the final CV scan. At the end
of curve V, PANI/Au2 composite is ready to be used for
sensing experiments. From curves I-V, the backward scan
shows an upward negative shift to the negative potential with
each atomic gold decoration. This is due to the oxidative
degradation of PANI when being held for a prolonged time
at + 0.8 V [18].

B. CV Response to Propanol in Liquid Phase
PANI/Au2 composite was used to study the electrooxidation

of propanols. Scan rate for all measurements was 100 mV/sec
unless otherwise stated. Results showed that there was
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Fig. 5. Odorant delivery system and measurement system for CV in gaseous phase: Ambient air is pumped into an empty vial followed by two
vials – one containing sample and the other one empty. Solenoid valves are used to create a ‘blended vapor’ by switching alternatingly at 1 Hz.
By modifying the duty cycle, different concentrations are produced. The output for nPrOH and iPrOH sample at full-scale (100 %) concentration
calibrated with photoionization detector was 1600 ppm. The blended vapor was bubbled into a 3-electrode electrochemical cell and the CV was
measured using a potentiostat.

Fig. 6. CV of PANI in 0.1 M HClO4 at different stages of atomic gold
deposition, (I) Initial CV of PANI before deposition, (II) Reduction of
AuCl−4 to Au0, formation of PANI/Au1,(III) CV of PANI/Au1, (IV) Reduction
of AuCl−4 to Au0, formation of PANI/Au2, (V) CV of PANI/Au2 (Scan
Rate = 20 mV/sec).

significant difference between nPrOH and iPrOH based on
the current density of the two oxidation peaks.

For nPrOH, a higher oxidation peak was obtained at −
0.2 V while for iPrOH, the peak was at + 0.2 V (Fig. 7).
Since the CV pattern of nPrOH was different from that
of iPrOH, they were distinguishable. The difference can
be attributed to the fact that in the electrooxidation of
alcohols, the rate-determining step is the deprotonation of
the carbon-hydrogen bond [22]. For primary alcohols (e.g.
nPrOH), the electrooxidation is more likely to lead to the
formation of propionic aldehyde, which may be further oxi-
dized to acids. For secondary alcohols (e.g. iPrOH), the
electrooxidation is more likely to lead to ketone as the final
product.

Fig. 7. CV of aq. 0.5 M nPrOH in 1 M KOH (red) and aq. 0.5 M iPrOH
in 1 M KOH (blue) (Scan rate: 100 mV/sec).

C. Characteristics of PANI/Au2 Composite
1) Reproducibility Across Electrodes: The efficacy of the

method of growing atomic gold clusters was tested across
different Pt substrate and good reproducibility was seen from
the CV. However, experiments also showed that there was a
change in the current density. This change in density might be
due to the variable surface properties of different electrodes,
owing to a different amount of PANI polymerized on the
surface.

Fig. 8 (a) shows the reproducibility across four electrodes
coated with PANI films. Although there were some variations
in the current density, discriminable patterns between nPrOH
and iPrOH could be seen. In order to overcome the variation in
current density, the CV curves were normalized to fit a current
density range between 0 to 1. Fig. 8 (b) shows the normalized
CV of the four electrodes overlapped with each other. 10 data
points at discrete steps of 0.1V were taken from the forward
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Fig. 8. (a) Reproducibility of CV of PANI/Au2 composites for nPrOH (red)
and iPrOH (blue) across 4 electrodes, (b) Normalization of CV of nPrOH
and analysis of overlapping area under forward and backward scans
(Scan rate: 100 mV/sec).

scans and backward scans and plotted again. It can be seen
that the characteristic shape of PANI/Au2 still retained after
discretization.

In order to further analyze the reproducibility, area under
curve was calculated for the forward and backward scans
individually for each electrode. Table I shows the Z-score of
each electrode for the area under curve in the forward and
backward scans. Z-score shows that the statistical data was
well within ±1.96 or 95% confidence interval.

2) Limit of Detection: PANI/Au2 electrode showed a wide
detection range from 10−5 M to 10−2 M with a sensitivity
of 42.86 µAm−1cm−2 and 10.35 µAm−1cm−2 to the detection
of aqueous n-propanol and i-propanol, respectively.

3) Stability of Sensing Material: The stability of PANI/Au2
composite was also studied. 30 cycles of CV were taken on a
freshly fabricated PANI/Au2 composite in 0.5 M nPrOH/1M
KOH solution. The result showed an ‘activation’ of the
reaction sites on PANI. This phenomenon is common for

TABLE I
Z-SCORE OF AREA UNDER CURVE OF FORWARD AND BACKWARD

SCANS OF FOUR PANI/Au2 ELECTRODES

Fig. 9. Stability of PANI/Au2 composite. 30 continuous CV scans of 0.5 M
nPrOH in 1 M KOH showed that the composite reached stability after
about 20 scans (Scan rate: 100 mV/sec).

conducting polymers, since due to long polymeric chains,
not all reaction sites are available at the first CV scan [22].
However, after 30 cycles a saturation in the CV shape was
observed (Fig. 9).

4) CV Response to Propanols in Gaseous Phase: The
gaseous vapors were bubbled into the electrochemical cell
at a given concentration for a fixed period of 5 minutes and
CV response was measured. Fig. 10 (a) and (b) show the CV
response for nPrOH and iPrOH respectively after bubbling.
Discriminable rising peaks could be seen at −0.2 V and
+0.2 V for nPrOH, however the peak at −0.2 V was more
distinct. For iPrOH, both the oxidation peaks at − 0.2 V and
+0.2 V were strong discriminable features.

Figs. 11 (a) and (b) show the plot of standard error of the
oxidation peaks for five measurements. It can be seen from
the error plots that for nPrOH, the 1st peak grows more than
the 2nd peak, where as for iPrOH, the two oxidation peaks
grow together with the 2nd peak relatively higher than the
1st peak.

D. Data Analysis
Further classification could be made between the CV scans

obtained at different concentrations of 0%, 30%, 60% and
90% for both nPrOH and iPrOH. In order to analyze this
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Fig. 10. CV of (a) Gaseous vapors of nPrOH in KOH (b) Gaseous vapors
of iPrOH in KOH ([C] = % concentration of full scale 1600 ppm) (Scan
Rate = 100 mV/sec).

data obtained in Fig. 10, multidimensional data was gener-
ated by slicing the CV curve at steps of 0.1 V (Fig. 12).
A total of 20 features (10 features from the forward scan
and 10 features from the backward scan) were generated for
8 samples and the data separation was visualized on two
dimensions using principal component analysis (PCA).

Fig. 13 shows the PCA plot obtained using covariance
matrix. The variance at 1st and 2nd principal component were
77.43 % and 16.07% respectively. The separation between
nPrOH and iPrOH was obtained regardless of concentration.
The PCA plot also shows that the data converged from high
concentration region at 90 % of total concentration to low
concentration region at 0% of total concentration.

V. DISCUSSION

Gold clusters containing different number of atoms can be
and have been formed in PANI. They exhibit different selec-
tivity for nPrOH and iPrOH. The selective layer of PANI/Au2
has been selected in order to demonstrate the principle of
atomically based selectivity classification between nPrOH and
iPrOH in both liquid and gas phase. In this work, most of
the working materials and devices were laboratory fabricated.

Fig. 11. Plot of standard error of 1st peak recorded at −0.2 V (red) and
2nd peak recorded at + 0.2 V (blue) for (a) nPrOH and (b) iPrOH.

Fig. 12. Data slicing to obtain multidimensional data from CV pattern:
20 dimensions were obtained from the forward and backward scan of CV
at steps of 0.1 V. Total of eight samples (CV data at concentration 0%,
30%, 60% & 90% for nPrOH and iPrOH) were obtained for further
analysis.

PCA plot shows that values converge from high concentration
region to low concentration region; however, the values at
zero concentration point do not converge. This offset is due to
the background noise of the laboratory-fabricated potentiostat



12486 IEEE SENSORS JOURNAL, VOL. 20, NO. 21, NOVEMBER 1, 2020

Fig. 13. Principal component analysis (PCA) of multidimensional data
obtained from data slicing. PCA shows a good classification between
nPrOH and iPrOH and the respective concentrations diverge from low
concentration region to high concentration region.

and it needs to be addressed in the future by the use of
commercial and high-resolution potentiostat. The detection
limit has not yet been optimized. It is of the order of several
hundred ppm in air for both nPrOH and iPrOH. This detection
limit is still very large when compared with commercially
available sensors [12]–[24]. However, the fact that discrimi-
nation between two isomers of propanol is possible is most
promising. It is assumed that when a target gas is bubbled into
the electrochemical cell, gas is completely dissolved into the
electrolyte. Since there is always a variation in the dissolution
of gas bubbled into the electrolyte, further optimization needs
to be done to realize an amperometric gas sensor for real
applications.

VI. CONCLUSION

In this paper, PANI composite decorated with bi-atomic gold
(PANI/Au2) was used as the sensing material for classifying
between nPrOH and iPrOH vapors. The composite could be
successfully used in both liquid and gas phase and discrim-
inable cyclic voltammograms could be obtained at different
concentrations of nPrOH and iPrOH. Although this reported
work is the with design of amperometric gas sensors using a
two atomic gold cluster, higher gold clusters can be formed
on PANI to prepare differently modified electrodes to realize
a sensing array. There is promising evidence that an atomic
metal decorated on a conducting polymer can work as an
electro-catalyst. The future direction of this research is to
miniaturize the electrode and make the sensing possible at
low ppm concentrations. The detection limit may be improved
by using microelectrodes as the current density is expected
to increase. Then, the mixture quantification method based
on active sensing [25] instead of conventional regression
techniques will work even if interference gas exists. Moreover,
we are interested in studying the selectivity of atomic metal
catalysts for various aroma compounds such as geraniol, nerol
etc. and their electro-oxidation for the fabrication of smell
sensing arrays.
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