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Machine Learning-Based Zero-Velocity
Detection for Inertial Pedestrian Navigation
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Abstract—Zero velocity update is a common and efficient
approach to bound the accumulated error growth for foot-
mounted inertial navigation system. Thus a robust zero veloc-
ity detector (ZVD) for all kinds of locomotion is needed for
high accuracy pedestrian navigation systems. In this paper,
we investigate two machine learning-based ZVDs: Histogram-
based Gradient Boosting (HGB) and Random Forest (RF),
aiming at adapting to different motion types while reduc-
ing the computation costs compared to the deep learning-
based detectors. A complete data pre-processing procedure,
including a feature engineering study and data augmentation
techniques, is proposed. A motion classifier based on HGB
is used to distinguish “single support” and “double float”
motions. This concept is different from the traditional locomotion classification (walking, running, stair climbing) since
it merges similar motions into the same class. The proposed ZVDs are evaluated with inertial data collected by two
subjects over a 1.8 km indoor/outdoor path with different motions and speeds. The results show that without huge training
dataset, these two machine learning-based ZVDs achieve better performances (55 cm positioning accuracy) and lower
computational costs than the two deep learning-based Long Short-Term Memory methods (1.21 m positioning accuracy).

Index Terms— Pedestrian navigation, inertial sensors, IMU, machine learning, zero-velocity detection.

I. INTRODUCTION

FOR more than 15 years, research in pedestrian navigation
has focused on solutions based on inertial signals to

provide accurate and continuous indoor/outdoor positioning
solutions. The advantage of inertial measurements is that they
are possible in all environments including indoor spaces and
they do not rise privacy problems as it is the case with
radiotelecom based technologies [1]. However, the drift of
the inertial sensors very quickly introduces large positioning
errors that must be mitigated [2]. The use of walking phases
derived from biomechanical knowledge [3], [4] was quickly
adopted to replace the lack of GNSS (Global Navigation
Satellite System) measurements in buildings. They are used
to periodically bound the propagation of the inertial errors in
the positioning algorithms [5]. The most used gait period is
the single support mid-stance phase during which the speed
of the inertial measurement unit (IMU) mounted on the foot
equals zero. As walking is cyclic by nature, this observation,
called ZUPT (Zero velocity UPdaTe), is applied regularly to
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ensure a good positioning accuracy [6]–[8]. The technique of
ZUPT is also proved to be efficient in many other application
domains such as robotic positioning [9].

Existing IMU based ZUPT detectors identify these periods
using statistical features. They often depend on thresholds
that must be calibrated to account for the different motions.
Indeed, even if the use of ZUPT has a long history in
pedestrian navigation, its implementation remains complex
due to the large variations of human dynamics. When the
foot movement is slow, e.g. when walking at comfortable
speed, ZUPT detectors work well. But when the human
dynamic increases, e.g. running, the performance of existing
detectors tends to decrease [5], [6], resulting in false or missed
detected ZUPT. More recently, a threshold-less approach [10]
and methods based on artificial intelligence (AI) have been
proposed to meet the challenge of adapting the ZUPT detec-
tors to the diversity of human dynamics [11], [12]. They
alleviate the need for threshold tuning. The most advanced
approaches rely on deep leaning techniques that are some-
times combined with parallel motion classification methods.
They provide more robust ZUPT detection performances [13]
but rise questions about the need for large training data-
bases and even heavy computation costs, preventing real
time applications.

This work aims at achieving robust ZUPT detection for
walking, running and stairs climbing/descending at different
speeds using machine learning-based methods to reduce the
computation cost. Real-time implementation of pedestrian
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positioning filter for complex motions is targeted. An inno-
vation is to make no distinction between walking and stair
climbing/descending for classification thanks to two new
classes inspired by biomechanics. The performance is assessed
with a 1.8 km indoor/outdoor test scenario combining all
4 types of motions ran by 2 persons in a 3-floor building.
Performance is also assessed with the positioning error com-
puted for these scenarios and compared with two LSTM
approaches. A features engineering study completes the paper
to identify the best parameters for zero-velocity detection with
didactic parts. It is also found that these features enable robust
detection of ZUPT even with rapidly changing movements.
This is less true for LSTM trained on globally small databases,
since LSTM does not allow random segmentation of the
learning database at the sample level to prevent the risk of
breaking temporal correlations.

II. STATE OF THE ART

A. Existing Classic Zero-Velocity Detection Methods
Zero-velocity detectors (ZVDs) find the instants that the

IMU sensors are static corresponding to the stance phase of a
walking gait. By detecting the ZUPT, the accumulated errors of
foot-mounted inertial sensors can efficiently be bounded. In the
current literature, most ZVDs use signal energy (e.g. from
acceleration and angular rate) and their variances to distinguish
the zero velocity instants. These kinds of detectors include:

• Acceleration or Angular Rate Moving Variance [14] or
Moving Average [15] Detector;

• Acceleration Magnitude Detector [16];
• Angular Rate Energy Detector [17];
• The Stance Hypothesis Optimal Detector (SHOE) [6]: this

detector is derived within a General Likelihood Ratio Test
(GLRT) framework, in which a test statistic is compared
with a predefined threshold to make the decision.

Among the above detectors, the moving variance detector
can be combined with the magnitude or energy detector to
obtain a better performance [18]. However, the limitation
of these traditional detectors is their dependence on fixed
thresholds. These thresholds vary significantly according to
motion types (e.g. walking, running, climbing stairs, etc) as
well as individuals. It is not possible to find a universal
threshold value for all kinds of motions neither all the subjects.
Therefore much research work about adaptive zero-velocity
detection methods and some threshold-less ZVD emerged in
the past years.

Usually, the adaptive ZVD is realized by establishing the
relationship between the user motion and the optimal thresh-
old. These approaches need abundant data collection as well
as high computational cost. Based on the traditional SHOE
detector, [19] proposed an adaptive ZVD by combining a pres-
sure sensor with accelerometer and gyroscope. It introduced a
new test statistic to add pressure sensor records. By enlarging
the difference of the test statistics between motion instants
and zero velocity instants, it can effectively mitigate the false
alarm detection. Then, by using the angular rate magnitude,
motion classifications are realized. Finally, two threshold func-
tions for walking/running and ascending/descending stairs are

established based on second-order polynomial fitting. These
functions are applied according to the motion classification
results. A limitation of this adaptive method is its dependency
on extra sensors (pressure sensor). Although this sensor could
help improve the detection accuracy performance, at the same
time, it increases the complexity, the cost and the sensitivity
of the complete system. This would make the system less
ubiquitous, which limits the user case in some extreme envi-
ronments such as fire-fighters. Another limitation is linked
to the adaptive function established that is specific for one
subject. Thus the computation cost will increase when applied
to several subjects.

Reference [5] proposed an adaptive ZVD solely based on
inertial signals. It distinguishes the swing and the stance
phases of a gait cycle with a clustering algorithm. It partitions
the potential gait phases into true and false cluster thereby
yielding an efficient elimination of the false gait phase. The
threshold is adapted to these different recognized gait cycle
stages but the corresponding parameters for each gait phase
still need to be tuned.

Different from the previous ZVDs which depend on prede-
fined thresholds, [10] proposes a threshold-less ZVD. Based
on the shape of the simplified sensor signals through signal
processing procedures, it fixes first the most likely zero
velocity interval by detecting consecutive two positive pics
of angular rates. Then, the zero velocity instants are fixed
within the previous interval by using a synthesized signal
constructed from the accelerometer signals. It is shown that
this algorithm can effectively detect the zero velocity moments
for different pedestrians but only the motion types of walking,
side-walking and backward walking at different speed are
tested and validated in [10]. Its performance and robustness
for other motion types are still unknown.

B. Artificial Intelligence (AI)-Based Zero Velocity
Detection Methods

A promising way to solve the ZVD problem for different
motion types is using Artificial Intelligence (AI)-based meth-
ods. Some research work has already been conducted on ZVD
using AI approaches showing encouraging results. Generally,
AI-based approaches need a variety of data collected from dif-
ferent subjects and different motion types. These data should
be labeled to train the model in a supervised way. Existing
research work performs the data labelling with extra sensors
(e.g., pressure sensor [6]), manual annotation according to
certain criteria [20], or with the help of a high accuracy
motion capture system [13]. Then the training and validation
procedures is done either by machine learning or deep learning
approach. Most existing IA-based ZVDs can be divided into
two parts: a motion classification module and a stance phase
detection module. They can be both or partly realized by
IA methods.

Reference [21] proposed a ZVD by Support Vector Machine
(SVM) using inertial sensor signals. The motion classification
is firstly realized by SVM, where 24 motion types are involved
and the classification can reach an accuracy of 98.27%.
Knowing the motion type, the stance phase detection is done
again with SVM and an additional glitch removal technique is
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performed to delete the false positive detection. This proposed
algorithm is tested for one subject with different motion types.
A 99% accuracy is obtained for ZVD. Its robustness, however,
needs to be further validated for various subjects and tested in
the navigation algorithm.

As a series of research work concerning the IA-based
ZVD, [22] trained an SVM classifier using foot mounted
IMU to classify six motion types: walking, jogging, running,
sprinting, crouch-walking and ladder-climbing. The mean test
classification accuracy is 90% on a dataset with five differ-
ent subjects. Then, according to the predicted motion type,
the traditional SHOE detector is associated at the next step
by using the pre-fixed optimal thresholds for each motion.
The entire dataset consisted of 30000 training and 30000 test
samples in six motion classes collected from five subjects.
The complete algorithm is only tested for walking, running
and a combined walking/running test. Then, [12] trained a
long short term memory (LSTM) neural network to directly
detect the stance phase of a gait cycle without prior motion
classification and the threshold tuning.

Reference [13] synthesizes the previous two research work
and expands the motion types to a stair-climbing case. It also
provides a quantitative comparison between the previous two
approaches and several classic detectors. Training and test
data are collected from five subjects and each subject traveled
approximately 110 m for each motion type. Every subject
repeated each motion type three times, which results in a total
of 45 motion trials covering approximately 6.6 km. The test
results show that both the proposed two approaches outperform
the existing threshold-dependent ZVD. But the computational
cost was not reported here and the deep learning methods are
generally computationally expensive.

III. DESCRIPTION OF THE TRAINING DATASET

A. Inertial Signals Collected in a Large Motion
Laboratory

1) Experimental Equipment: The hardware used to collect
data for building the training dataset has been designed by
GEOLOC laboratory [23]. It is the PERSY unit (PEdestrian
Reference System) that is used as a positioning reference sys-
tem for pedestrian navigation research. Mounted on the foot,
it outputs location estimates relative to a starting position with
a 0.3 % positioning mean error of the traveled distance [14].
These performances depend on the good recognition of quasi-
static phases of the acceleration and the magnetic field records
that are used to mitigate the impact of inertial sensor errors
in the positioning algorithm. Outdoors and in light indoor
spaces, GNSS phase measurements are added to the strapdown
Extended Kalman Filter to improve the positioning accuracy.
PERSY comprises a tri-axis accelerometer, a tri-axis gyro-
scope, a tri-axis magnetometer and a single-frequency, dual-
constellation GNSS receiver. All data are synchronized with
GPS time and recorded at a 160 Hz sampling frequency.

The training database was collected with PERSY mounted
on the foot in a large motion laboratory facility. The cluster
of markers, needed by the motion laboratory tracking system,
was also fixed on PERSY (Fig. 1a). It is used by the motion
capture system to estimate the position and the orientation

Fig. 1. Illustrations of the motion laboratory experiment.

of the cluster’s center at 250 Hz with a millimeter level
accuracy. These estimates are used as ground truth in this
research. As shown in Fig. 1b, the motion capture system is
installed in a large gymnasium (30 × 20 m) with two force
plates (120 × 60 cm) in its centre allowing realistic human
motion analysis.

2) Description of the Scenarios: 7 test subjects of variable
size, weight and age participated in the data collection. Among
them were 4 women and 3 men who performed running,
walking and sidestepping motions during the experiment as
shown in Fig. 1c and Fig. 1d. The motions were performed
at different speeds using a headset with different beats-per-
minute (bpm) rates. The data were recorded for 9 different
bpm: 100, 115, 130, 145, 160, 175, 190, 205, 220. In total,
the database comprises signals for 63 runs, which corresponds
to 9 tracks per person at the different bpm.

3) Two Classes to Describe the Recorded Human Gaits:
The walking, running and sidestepping motions were clas-
sified in two classes, which are the “single support” and
“double float” classes. The single support class corresponds to
human gait where at least one foot touches the ground during
motion. It is inspired by the biomechanics definition [24] of
walking but includes more motions such as standing, stairs
climbing/descending and sidestepping at low and comfortable
speeds. The class double float corresponds to movements with
an aerial phase: a period when both feet are off the ground.
Running belongs to this class. Globally, the double float class
corresponds to short contact times of the feet on the ground,
whereas the single support class corresponds to longer contact
times.

B. Pre-Processing of the Inertial Data
Data preprocessing is the first step in machine learning.

It transforms and structures the data into a state more appro-
priate for the learning phase that eases the interpretation of
the data characteristics. Our preprocessing process comprises
the three following steps:



12346 IEEE SENSORS JOURNAL, VOL. 20, NO. 20, OCTOBER 15, 2020

• Synchronization of the data
• Labeling of the data
• Calibration of the data
1) Data Synchronization: Our two data sources are recorded

at different sampling frequencies. The IMU data is recorded
at 160 Hz while the motion capture data is recorded at
250 Hz. Data must first be time-synchronized before being
segmented and used for identifying the ZUPT instants. Let’s
note that these instants vary according to the individuals and
the motion dynamics. The more segmented data there is,
the more accurate will be the estimated ZUPT instants at
higher dynamics. The synchronization was done manually for
each subject and bpm. This step is even more important for
high-speed movements, such as those belonging to the “double
float” class defined in section V.

2) Labeling: is a critical step in machine learning as it
supports the learning phase to avoid false positives and true
negatives. To be as close as possible to the final positioning
estimation process and to ensure good labeling, we used the
PERSY algorithm suite [14] to identify the true ZUPT instants
in the inertial signals. The reference positions of the foot-
mounted IMU, provided by the motion laboratory, were used
for comparison with the positions estimated by the PERSY
Extended Kalman Filter. This was done manually and repeated
for each test subject using the associated reference data set
from the motion laboratory. Globally, the ZUPT labeling was
done using two statistics for single support and three for
double float. For single support, they are the norm of the
accelerations and its variance for a 0.25 s sliding window.
For the double float, the norm of the gyroscope is added to
the two previous statistics for 10 samples or 0.0625 s sliding
window.

3) Data Calibration: The IMU embedded in PERSY is
affected by noise and must be properly calibrated. It was
calibrated for misalignment and bias terms using a 3D rotating
platform whose horizontality is guaranteed by a spherical level
in its middle. The main idea of this calibration is to consider
that a perfect accelerometer only measures the gravity force
while being static. Two parameters are calculated by this
calibration:

• a rotation matrix for misalignment and scale factor
• and a bias vector.

1-minute static observation files were recorded along each
axis of the body frame of PERSY in both up and down
directions. This 6 positions calibration procedure is based on
least-squares estimation. Misalignment and bias estimates are
used to calibrate all raw inertial data collected with PERSY
in this study.

IV. FEATURE ENGINEERING FOR DETECTING ZERO

VELOCITY FOOT MOTION PERIODS

Machine learning algorithm can be fed either by raw
data or processed data using feature engineering methods.
These methods transform raw data into features to better rep-
resent the problem underlying predictive models and improve
the accuracy of the model on new data. It aims at producing
features as representative as possible for a given problem and
consists in the following tasks (Fig. 2):

Fig. 2. Feature engineering process.

• generating new features,
• selecting among the set of these features the most relevant

for our model,
• increasing the data by adding reduced centered white

Gaussian noise on a part of the data,
• finally in normalizing the data.

A. Construction of the Features Based Learning
Database

The construction of the learning database is essential for
machine learning methods since it significantly impacts the
performance. The use of raw data may improve the results
while other times they degrade the performance of the model.
We adopted a features engineering strategy to derive the most
explanatory features of our model. The database (section III)
dedicated to learning the ZUPT instants with inertial signals
is divided into two sub-dataset linked to the classes single
support and double float. Each sub-dataset includes 13 fea-
tures. The sizes of the sub-bases are respectively, 30MB with
77193 observations of which 21% are ZUPT instant for single
support and 9MB with 83571 observations corresponding to
25% of ZUPT instant in double float.

B. Selection of the Best Features for ZUPT Detection
1) Features Generation: The most interesting statistics are

those highly correlated with the variable of interest: ZUPT
times. Here is a list of the selected features that were estimated
over a 0.03125 s manually tuned sliding window, correspond-
ing to 5 steps.

The mean value y of the signal y over the N samples sliding
window is given by

y =
∑N

i=1 yi

N
(1)

The variance measures the dispersion of the signal and is
given by

V ar(y) =
∑N

i=1(yi − y)2

N
(2)

The Root Mean Squared Error (RMSE) of the signal is
given by

RM SE =
√∑N

i=1(yi − y)

N − 1
(3)

The Mean of Absolute Error (MAE) is the average of the
absolute values of the residuals.

M AE =
∑N

i=1 |yi − y|
N

(4)
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Fig. 3. PCA-based correlation circle.

The inter-axis correlation or correlation coefficient mea-
sures the statistical relationship between two variables (y, x).
Reference [25] used it to differentiate running from cycling
with good results.

r �X , �Y = N(
∑N

i=1 xi yi )−(
∑N

i=1 xi )(
∑N

i=1 yi )√
[N

∑N
i=1 x2

i −(
∑N

i=1 xi )2][N
∑N

i=1 y2
i −(

∑N
i=1 yi )2]

(5)

The third quartile (Q3) splits off the highest 25% of the
data from the lowest 75%.

Except for the inter-axis correlation that uses all three
axes of the linear acceleration, other features were estimated
using either the norm of the acceleration or the norm of the
gyroscope signals.

2) Features Selection: This task selects the most informative
features for the ZUPT detection in a set of statistics. It is
important since the use of many non-informative variables
often results in over-fitting and unnecessary large computing
costs. Many features selection techniques exist: the correlation
coefficient, RF, Principal Component Analysis (PCA), Logis-
tic Regression, RFE (Recursive Feature Extraction without
Cross-validation) or RFECV (Recursive Feature Extraction
with Cross-validation) and Independence Test (Chi-square).
Reference [26] details the theory of feature generation and
selection.

a) Correlation index: The correlation coefficient quanti-
fies the degree of relationship between features. The ZUPT
variable is considered as the probability that the velocity at
time t equals zero. Being considered as a discrete quantita-
tive variable, the use of the correlation coefficient becomes
possible. The PCA can be used to reduce the dimensions.
Fig. 3 illustrated the PCA-based correlation circle used to
visually assess the degree of relationship between different
variables along the factorial axes. The cosine of the angle
separating the various variables illustrates its influence. Fig. 3
shows the highest correlation for the ZUPT detection.

We observed that the most correlated variable with ZUPT
is ray,az , which is the inter-axis correlation between the
accelerations along the Y and Z axis respectively (with a
correlation coefficient < 30%). Although this link is linear,
it is too weak to properly model our phenomenon. Other
variables are needed to increase the percentage of the total
variance for ZUPT phenomenon.

b) Logistic regression: This supervised learning technique
was adopted to identify more relevant statistics. It studies the
link between a qualitative variable Y and a set of explanatory
variables X j , j = 1, . . . , n. The variables whose p-value
is lower than 1‰, i.e. very significant, are considered as
influential for the binary ZUPT variable {0, 1}. The logistic
regression analysis identified the following variables:

• the norm of the acceleration ||a||
• the norm of the gyroscope ||w||
• M AE||a||, M AE||w|| and RM SE||a||
• Q3||a|| and Q3||w||
• V ar(||a||) and V ar(||w||)
• ray,az : the correlation coefficient between ay and az

• rax ,az : the correlation coefficient between ax and az

3) Data Augmentation: Data augmentation was applied to
enrich the database using rotations and additive noises.
It increases robustness to new data sets that have not been
used to train the algorithm [27]. It was only applied to subset
of the database.

4) Data Normalisation: Normalisation is used to mitigate
the impact of the variation between training and testing and
maintain good prediction. Its use for real-time implementation
is sometimes difficult. Furthermore, although quite good in
practice, this technique is less effective for database whose
variation is small, as is the case for high-frequency acceler-
ation data. Standard normalization and Z-score are common
normalization techniques in machine learning. Our data being
recorded every 0.00625s, which gives a rather small variation
between two records, we did not apply normalization.

C. Partitioning of the Data
Efficient learning requires adopting a good data partitioning

strategy. Indeed, a too large training database can lead the
algorithm to over-fitting [28], [29]. In this case, the algorithm
produces very good results on the training data but the
prediction error on new data is quite high. Also, a weak
database is a source of under-fitting [29] where the prediction
error strongly varies from one set of data to another. The
balance between under-fitting and over-fitting is the optimum
for data partitioning. Another source of problem is the non-
representative aspect, in the statistical sense, between training
and testing data. Several techniques based on cross-validation
exist to mitigate this. Considering the size of our database,
we considered 70% of the data for learning and 30% for
testing. We also used the k-fold cross-validation method [30]
to counteract the effect of non-representative data. This non-
exhaustive method divides the base into k classes of equal size.
One class serves as a test and the k-1 other classes as a data
training. This process is repeated k times. We used the root
mean square error (RMSE) as the loss function associated for
validation.
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Fig. 4. Architecture of the LSTM based ZUPT detection method.

V. MODEL CONSTRUCTION FOR ZUPT DETECTION

Machine learning and deep learning are the most widely
used methods in artificial intelligence (AI). They aim at
predicting observations on new data sets that have not been
used to train the algorithm. But their computation cost dif-
fers depending on the type of method used. In this section,
we present two machine learning algorithms whose perfor-
mance approaches or surpasses that of deep learning (LSTM)
with a lower computational cost. The search for reduced
computation costs is essential for real-time implementation on
smart-devices. Let’s note that the training of these two models
was done with the same dataset previously mentioned.

To better detect ZUPT instants, the process is divided into
two main steps. The first step classifies the human dynamics
into the two classes: “single support” and “double float”.
Knowing the motion class, the second step predicts the ZUPT
instants using AI-based techniques. This process is applied
to all three algorithms: Random Forest (RF), Histogram-
based Gradient Boosting (HGB) and Long short-term memory
network (LSTM). Fig. 4 shows this process to predict ZUPT
with the LSTM deep learning algorithm.

A. Machine Learning Based Approach
1) Random Forest Classifier Training: Random Forest [31]

classifier is a classification algorithm that reduces the variance
of forecasts in a decision tree. To improve the performance,
it combines many decision trees in a bagging approach.
Multiple randomly constructed decision trees are trained on
different subsets of data. Concretely, each tree of the RF is
trained on a random subset of data according to the bagging
principle, with a random subset of features according to the
“random projection” principle. The predictions are then used
to make a vote. We implemented the RF with the Scikit-learn
package whose parameters are given in Table I.

2) Histogram-Based Gradient Boosting Training: The gra-
dient boosting classifier is a supervised machine learning
technique based on two parts: gradient descent and boosting.
Its loss function is the logarithm of the mean squared
error (MSE). It is a variant of light GBM, which is inspired
by the Gradient Boosting classifier. These histogram-based
estimators are faster than Gradient Boosting Classifier when
the number of samples is greater than ten of thousands of
samples, as in our case. Similarly to light GBM, HGB can
handle large amount of data and requires less memory to run.
Also, it emphasizes the accuracy of the results. We chose
this algorithm because of its good performance on machine
learning competition platforms such as Kaggle. It is an asset
in terms of memory usage and speed of execution, which gives

TABLE I
PARAMETERS FOR SINGLE SUPPORT(WALKING)/

DOUBLE FLOAT(RUNNING)

a real advantage for real-time implementation [32]. Like for
the RF, the Scikit-learn package has been used.

B. Deep Learning Based Approach
The Recurrent Neural Network (RNN) is a generalization

of the feed-forward neural network that has internal memory.
The RNN is recurrent by nature because it fulfills the same
function for each data input while the output of the current
input depends on the last calculation. After producing the
output, it is copied and returned to the recurrent network.
To make a decision, it considers the current input and the
output, learned from the previous input. Although it has a
memory, this network is rather limited in practice. Indeed,
it faces the explosion or disappearance of gradients and it is
difficult to form.

Long Short Term Memory (LSTM) networks are RNN
capable of learning long term dependencies. Remembering
information for long periods is done by default using back-
propagation method to train the model. The prediction of
ZUPT faces the same long-term dependency phenomenon.
This explains the growth of recent research targeting pedes-
trian inertial navigation for this deep learning approach [33].
We trained an LSTM to compare the performance of our
machine learning based methods with the later.

Python Keras was used to train the LSTM models for both
single support and double float classes. Cross-entropy was
used in both types of movement as a loss function and Adam
as an optimizer. The different models converged for both
classes, respectively, after 50 and 5 epochs with a batch size
of 100 for each.

C. Hyperparametrization of Models
The model parameters are used to link the input data to the

desired results. They are learned during model training. These
hyperparameters determine the overall structure of our model.
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Fig. 5. Architecture of LSTM from [36].

The settings of the machine learning models are linked to
cost functions. Thus hypermediatization consists in running a
statistical optimization. Based on a set of hyperparameters,
this task searches for the best combination of their values
to find either the minimum (e.g. the loss) or the maximum
(e.g. the precision) of a function [34]. Several hypermediati-
zation techniques exist in machine learning as well as in deep
learning. The most common ones for machine learning are
RandomSearch and GridSearch. For deep learning, they are
Adam, Adagrad, momentum, RMSProp.

The hyperparameters estimated with RandomSearch and
deep learning Adam as optimizers for our ZUPT detection
problem are summarized Table I. RandomSearch was chosen
because of its rapid execution speed and convergence time.
Adam optimizer was found to be the best for our model.

D. Computation Cost Estimation
LSTM performance strongly depends on its construction.

The more hidden layers a network has, the better its prediction
capability will be. However, the more layers we add, the more
complex the network becomes. this implies a many parameters
to estimate which has a considerable impact on the computa-
tion cost. Let’s consider the case of the simple LSTM network
(Fig. 5a) proposed by [35]. The main part has three main
gates (Fig. 5b). They are the input, the forget and the output
gates that are regulating the flow of information. For each
gate, we have at least one linear combination, two parameters
to estimate, element by element products or addition and a
tangent or sigmoid calculations. Computation is repeated as
many times as there is hidden layers.

Boosting is a clustering technique that consists of aggre-
gating classifiers (models) developed sequentially on a learn-
ing sample whose individual weights are corrected as they
are learned. The classifiers are weighted according to their
performance. As for the descent of the gradient, it is an

TABLE II
TRAINING COMPUTATION COST IN SECONDS

iterative technique close to an optimization problem. Gradient
Boosting Tree Classifier is a technique that combines the
notions of boosting, gradient descent and regression tree to
minimize the error between the true value and the predicted
value [37].

The construction of a Gradient Boosting requires sorting
the samples at each node and for each variable. Sorting
is necessary to calculate efficiently the potential gain of a
separation point. At each node division, the complexity equals
θ(n f eatures ∗ nlog(n)), n being the number of samples at the
node. HGB, in contrast, doesn’t require sorting the feature
values. Instead, it uses a data-structure called a histogram,
where the samples are implicitly ordered. The complexity of
building a histogram is θ(n). The complexity of the node
splitting procedure is θ(n f eature ∗ n), which is much smaller
than the previous one. In addition, instead of considering split
points, we consider only max_bins (i.e. the number of bins
that the values will be grouped in) split points, which is much
smaller [38]. Also, to build histograms, the input data needs
to be binned into integer-value bins. This binning procedure
requires sorting the feature values, but it only happens once
at the very beginning of the boosting process and not at
each node, like in Gradient Boosting Classifier and Gradient
Boosting Regressor.

The parallelization of calculations is an inconstant asset
nowadays with very large amounts of data. Indeed, HGB uses
this very powerful calculation method to calculate its parame-
ters. Consequently, all following HGB tasks are parallelized.

• Mapping samples from real values to integer-valued bins
(finding the bin thresholds is however sequential).

• Building histograms is parallelized over features.
• Finding the best split point at a node is parallelized over

features.
• during the adjustement of parameters, mapping sam-

ples into the left and right children is parallelized over
samples.

• Gradient and hessians computations are parallelized over
samples.

• Predicting is parallelized over samples.
Table II gives the training time for each model. It corre-

sponds to the execution time of the code without including the
hyperparametrization time. Let’s note that these times are not
directly linked to real-time performances of the proposed algo-
rithms since training is computed on a computer different from
the final target (smartwatch/IoT/small integrated motherboard).

VI. PERFORMANCE EVALUATION ON INDOOR/
OUTDOOR PEDESTRIAN TRACKS

A. Description of the Experimental Scenarios
New data sets were collected by two new test subjects

of different sizes (2 m and 1.66 m height) to assess the
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Fig. 6. Test scenario.

Fig. 7. Indoor/outdoor 1.8 km experiment.

performance of our models. They consist in about 450 m long
indoor outdoor scenario in a 3 floor building located in the
campus of our university. The scenarios were repeated two
times by each person leading to a 1.8 km test. The complete
path is shown in Fig. 6. Each scenario comprises single
support (green in Fig. 6) and double float motions (orange
in Fig. 6). The test includes stair ascent/descent (Fig. 7c),
static phases, walking at comfortable speed (Fig. 7a), speed
walking and fast running. The experiment started outdoors
(Fig. 7b) and continued indoors from the 1st floor up to the
3rd floor alternating single support and double float motions.

B. Computation of Two Benchmarking Solutions
Two foot-mounted inertial navigation benchmarking solu-

tions are used to assess the performance of our approach. The
first one is the recently published AI based ZUPT detection
method in [13], labeled LSTM utiasSTARS in the rest of the
paper. The second solution is the Extended Kalman Filter
based software suite [14], labeled PERSY.

To run LSTM utiasSTARS on our evaluation dataset,
we used the model provided by [13] in the github. Since
all training parameters are not provided (e.g. learning rate),
the model was directly applied on this paper’s dataset. Training
with several learning rates was attempted without success
leading to overfitting. We transformed the evaluation dataset
into arrays following the instruction of the demo code. Finally,
we used the LSTM class to predict the ZUPT before exporting
them to estimate the coordinates of the scenarios. To run
PERSY algorithms, which is used as a reference trajectory

TABLE III
MOTION CLASSIFICATION ACCURACY

TABLE IV
STATISTICAL RESULTS OF THE HPE FOR THE FOUR IA-BASED

METHODS APPLIED TO THE 2 SUBJECTS

with a 0.3% accuracy on horizontal positioning error (HPE),
the ZUPT detector was manually tuned to minimize the loop
closure error.

C. Evaluation Criteria
The performance of the proposed ZUPT detectors is

evaluated according to the following criteria:

• the accuracy of the activity classification;
• the comparison of artificial intelligence based detected

ZUPT with PERSY’s labels;
• the HPE of the trajectories with IA-based ZUPT detector;
• and the computational cost.

D. Activity Classification Accuracy
HGB method is adopted for motion classification whose

performance is given in Table III. The lowest accuracy for
the two dataset is 98.68%, which highlights the efficiency
of this HGB based motion classifier. This result comforts the
definition of the two motion classes: single support and double
float, instead of the traditional walking and running classes,
since the stair-climbing case is treated as single support here
instead of creating a third class.

E. Horizontal Position Error (HPE)
Fig. 8 shows the estimated trajectories of the four IA-based

ZVDs as well as the reference trajectory estimated by PERSY
(Fig. 8a for the subject 1 and Fig. 8b for the subject 2. Fig. 9
plots the HPE of the trajectories aided by IA-based ZVDs
compared to PERSY reference trajectory. The statistical results
of the HPE are reported in Table IV.

We observe that the two machine learning-based ZVDs
(HGB and RF) have similar performances concerning trajec-
tory accuracy. The root mean square (RMS) HPE of the HGB
and RF are respectively 0.597 m and 0.534 m for the subject 1
and 0.508 m and 0.542 m for the subject 2.

Looking at the deep-learning-based methods, the accuracy
of the trajectories estimated by LSTM and LSTM utiasSTARS
are found to be lower than the previous one. LSTM and LSTM
utiasSTARS give an RMS HPE of 1.033 m and 1.705 m
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Fig. 8. Trajectories of PERSY and four IA-based ZUPT detectors.

Fig. 9. HPE of trajectories aided by four IA-based ZUPT detectors.

respectively for the subject 1 and 0.990 m and 1.122 m
for subject 2. Fig. 8 shows that the LSTM-based estimated
trajectory is biased especially during the double float part,

Fig. 10. Comparison of the detected zero velocity instants.

which indicates possible miss detections of the zero velocity
instants. This is further analyzed in the next subsection.

F. Comparison of Detected Zero Velocity Instants
Fig. 10 compares the zero velocity instants detected by the

four IA-based ZVDs as well as those detected by the manual
tuning of the PERSY detector. In each sub-figure, the upper
one represents the detected zero velocity instants for single
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TABLE V
COMPUTATION COSTS IN SECONDS FOR THE TEST DATASET

support and the lower one represents the detected zero velocity
instants for double float.

Similar performance are achieved by the four IA-based
detectors for the single support motion type. Although the
IA-based detectors detect in general more zero velocity
instants than the reference detector, it does not impact much
on the estimated trajectories (as shown in the single support
part of the trajectories in Fig. 8). However, when looking at
the detected zero velocity instants for the double float motion
type, all the four IA-based ZVDs suffer from miss-detection.
Among these four IA-based detectors, the LSTM-based meth-
ods are the most impacted leading to the propagation of more
unbounded errors in the estimated trajectory.

In the RNN family, LSTM is widely adopted for its memory
effect, i.e. its ability to learn a time dependency. However,
this capacity is very specific to the dataset since the chaining
of the sequences remains the same from the learning to the
application dataset. Therefore, while algorithms that were not
designed to include time dependence can be trained with a
random sampling of data samples, this is not possible for
LSTM. In the case of an LSTM, sampling must be performed
using sets of records that are arranged in a specific order.
This has a direct impact on the use of AI-based methods for
pedestrian navigation.

Since human gait can change rapidly but following spe-
cific sequencing dictated by physical and/or surrounding
constraints, when LSTM is trained with a specific motion
sequencing, it will produce fewer mistakes for the same type
of sequencing. Whereas, a sudden change in this sequencing
will affect the LSTM predictions. This can explain the reduced
detection success rate in our LSTM model. Contrary to LSTM,
machine learning algorithms are not designed to incorporate
this dependency. However, it can be added in the model thanks
to features. Consequently, machine learning-based methods
tend to be more robust to the specificity of inertial time-series
processing for pedestrian navigation including complex and
rapidly changing movements.

G. Computation Costs
The computation time was estimated with a HP-ZBook

computer with a 16 GB RAM and an intel i7 2.90 GHz proces-
sor on the two databases containing respectively 90950 rows,
96998 rows and 13 features. Table V gives the time for both
evaluation datasets. A significant difference between the four
learning methods is observed. HGB has the lowest computa-
tion time and is 3 times smaller than our LSTM model. LSTM
utiasSTARS has the highest computation time. HGB is found
to be suitable for real-time implementation.

VII. CONCLUSION

This paper presents two machine learning-based ZVDs,
i.e., Histogram-based Gradient Boosting (HGB) and Random
Forest (RF). A methodology of feature engineering procedures
is described to find the most explanatory features related to
zero velocity detector (ZVD). Then, the model is constructed
by combing a motion classifier and previously mentioned
machine learning methods. Novel human gait classification
classes for pedestrian navigation application is adopted. They
are the “single support” and the “double float” classes inspired
by biomechanics. This strategy avoids distinguishing walking
from stair climbing and improves the classification results.

The performances of the proposed machine learning-based
ZVDs are evaluated over a 1.8 km indoor/outdoor scenario
involving two subjects. The test includes walking, running and
stair climbing/descending in a 3-floor building. Detected zero
velocity instants are compared with those of two LSTM based
approaches for benchmarking. The accuracy of our motion
classification can achieve more than 98.68%. Pedestrian tra-
jectories are also estimated using the same Extended Kalman
Filter and the zero velocity instants detected by the HGB,
RF, the two LSTM methods. The two machine learning-based
ZVDs achieve similar positioning accuracy (55 cm RMS) and
a better one than LSTM based methods (1.21 m RMS) due to
a lower ZVDs success rate. Furthermore, HGB and RF-based
ZVDs have lower computational costs than the deep learning-
based LSTM ZVDs. Globally, with the lowest computational
cost and the best performances, HGB-based ZVD is found
promising to be implemented for real-time applications.
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