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Abstract—This paper presents a Chitosan-Graphene Oxide
(CS-GO)-based array of ultra-thin biosensors with gold (Au)-
based microgap (60um) electrode. The cross-linked GO is
shown to improve the stability of chitosan substrate in aque-
ous medium and compatibility with microfabrication steps.
The sensor patch has been evaluated for label-free monitor-
ing by immobilizing the CS-GO surface with human dermal
fibroblast (HDF) cells. The cyclic voltammetry (CV) of HDF
cellimmobilized CS-GO surface show quasi-reversible nature
with a characteristic cathodic peak at +300 mV and anodic
peak at —300 mV. Both peaks are stable and repeatable up to
50-scan cycle without any potential shift. The device shows a
steady-state peak enhancement (1.923-11.195nA) during the
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DHF cell growth period (0-96h). The redox peak enhancement correlates with the cell proliferation rates over time,

indicating that it could be employed for investigation of the

cyto-physiological state against any endo and exogenous

stimulation. In addition, the developed sensor-patch was used to detect a wide range of glucose from 1M to 20mM in vitro
with a sensitivity of 0.17xA/mM. Considering these, the presented sensor-patch has a great potential for the detection of
glucose level, cell-health proliferation rate at the wound site, and diabetic wound monitoring applications.

Index Terms— Chitosan, graphene oxide, HDF cell, cyclic voltammetry, linear swift voltammetry, wound monitoring.

|. INTRODUCTION

ITH increasing number of diabetic patients worldwide,
Wthe monitoring of non-healing chronic wounds, such as
diabetic foot ulcers has attracted significant attention in recent
years [1]. In current clinical practice, the chronic wounds are
treated with moisture-absorbing or moisture-retentive dress-
ings, which require frequent replacement [2], causing unnec-
essary pain and hampering the healing process [3]. The passive
(i.e. without any sensors to monitor) nature of currently used
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dressings make it difficult to monitor the progress of wound
healing [4]. For this reason, there is a growing demand for the
development wearable systems that can monitor the healing
of wound and sense the analytes in the wound fluid. While
the wearability of such system demands ultra-flexibility and
biocompatibility. Thus, flexible and biocompatible functional
materials such as Pu/PVDF scaffold and ZnO nanorods com-
posite etc. [5], [6] have been used in active wound dressing to
accelerate the healing process through electrical stimulation of
wound. Recently, biodegradable piezoelectric glycine has also
been proposed for the fabrication of a flexible self-powered
stress sensor for continuous monitoring of applied stress
around the wound site under compression bandages [7].
Chitosan (CS) is another material which holds significant
promise as besides being biocompatible, it is biodegradable
and exhibits antimicrobial properties [8]. It is already being
utilized as drug carrier in wound dressings, as scaffolds for
tissue engineering etc. [9]. Recently, CS based biosensors have
also been reported for measurement of a wide range of ana-
Iytes from biological [10], chemical [11] and environmental
sources [12]. However, the degradability of CS in aqueous
medium limits the use of CS-based biosensors to in-vitro
measurements. Further, CS as substrate is incompatible with
some of the microfabrication steps (e.g. metallization).

If there is a way to prevent the degradability of CS in
aqueous medium, for example by tuning the surface properties,

For more information, see https://creativecommons.org/licenses/by/4.0/
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it could be attractive for in-vivo conditions also.For exam-
ple, using CS-based sensors to monitor the proliferation of
cells in vivo tissue engineering applications are attracting
much interest [9]. In this regard, recent studies show that
by adding Graphene Oxide (GO) in the CS matrix, it is
possible to improve the mechanical properties (both in wet
and dry condition) and the thermal stability of CS [13]. This is
owing to the crosslinking between amine (-NH3) and hydroxyl
(—-OH) groups of CS and the carboxyl (-COOH) group of
GO. Further, the easy metallization of CS-GO surface makes
it possible to develop electrodes to measure the cellular redox.
The metallization of CS-GO also opens interesting avenues
to develop biosensors to understand cell-health by correlating
the endogenous and exogenous influences [14], [15]. The
CS-GO substrate can also be made ultra-flexible, which is
helpful for the development of sensors that conform to soft
and curvy surfaces of tissues. In the regard, recent advances
in flexible and stretchable electronics technology could be
used [16]-[19].

Taking advantage of the above features, herein we present
the CS-GO based ultra-thin (2.8 #m) and highly conformable
array of biosensors made from gold (Au) based electrodes.
The micro-gap of 60um between the electrodes is bridged
with cells. The sensors-patch has been used to demonstrate
the label free monitoring of human dermal fibroblast (HDF).
Further, the HDF immobilized sensor-patch has been used
to investigate the in vitro glucose sensing performance. This
paper extends the initial results presented at IEEE Sensors
2018 conference [20]. Herein, RGD assisted adhesion process
has been demonstrated where RGD nanostructured electrode
was achieved with self-assembly of cysteine terminates RGD
adhesion motif [21], [22]. The cells firmly adhered on RGD
nanostructured electrode were employed for monitoring cell
proliferation and glucose sensing in real-time.

This paper is organized as follows: The detailed discus-
sion about the fabrication and characterization of CS-GO
based biosensor is given in the experimental Section II.
Various experiments and the analysis of results are presented
in Section III. Finally, the key results are summarized in
Section IV.

Il. EXPERIMENTAL
A. Fabrication of CS-GO Film

The ultra-thin CS-GO film was prepared on cellulose acetate
butyrate (CAB) film which acts as the sacrificial layer and
prevents mechanical damage of CS-GO during fabrication
peel off from the substrate. CS-GO solution was prepared
by dissolving 2ml of aqueous solution of GO (ultra-high
concentrated single-layer GO solution, Graphene Supermarket,
6.2 g/1) and 0.5 g of CS (high molecular weight, Sigma Aldrich
Co., 3050, USA) in 50 ml of distilled water followed by 4.5 ml
of 2% acetic acid. The solution was mixed using a magnetic
stirrer at 1300 rpm for 12 hours at 40°C until the GO is well
dispersed in dissolved CS. The prepared CS-GO solution was
spin coated at 1000 rpm for 30 s on pre-coated CAB on Si
substrate. A 5 wt.% CAB dissolved in ethyl-L-lactate which
was used for pre-coating Si wafer was used as the sacrificial
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Fig. 1. (a) Schematics of CS-GO based sensor fabrication process,
(b) as fabricated micro-gap (60um) on CS-GO, and (c) profilometer
map of CS-GO film on planar substrate where line profile showing the
thickness (um) of the film.

layer. The spin-coated CS-GO on CAB/Si was dried overnight
before metallization. Subsequently, a thin layer of gold (Ti/Au)
of thickness 10/30 nm was evaporated on the CS-GO substrate
using a hard mask for the realization of the micro-electrodes.
The CAB carrier substrate was dissolved by immersing the
peeled sample in acetone for 30 min leaving the CS-GO
substrate floating in the liquid. The floating CS-GO substrate
bearing the array of micro-sensors was transferred to Si-wafer
and subsequently rinsed with DI water, dried and prepared for
cell culture. However, the ultrathin as-fabricated sensor array
can also be transferred to substrates with a radius of curvature
r> 500 um for in vivo investigations as shown in Fig. 1d&e.
The electrochemical investigations were performed on devices
which were transferred on Si wafer. An illustration of the
fabrication process steps is shown in figure 1.

B. Fabrication of Au Microgap Electrode

The microgap electrodes were fabricated on CS-GO sub-
strate using nickel hard mask (Ossila Ltd). The Au for
micro-gap electrode array was deposited on the CS substrate
using an electron-beam evaporator. The fabrication process is
illustrated in Fig. la and the optical image of the realized
microgap electrodes with their thickness characteristics are
shown in Fig. 1b, c. The dimensions of the deposited elec-
trodes on the CS-GO film is Imm? with a separation gap
of 60um. The micro-gap electrode modified substrate showed
sufficient stability to cell culture. The fabricated chitosan
substrate is thin (2.8 um) enough to conform to different
shapes, allowing their use in in-vivo application.
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C. RGD Functionalization of CS-GO Film

Establishment of cell on an artificial surface is a challenging
step during the fabrication of a cell-based sensor [21]. Sig-
nificant work is needed at cell-electrode interface to ensure
firm adhesion during washing steps during analysis [22], [23].
To this end, several adhesion molecules of extracellular
matrix (ECM) proteins such as collagen, fibronectin, and their
peptide derivatives like poly L-lysine, RGD peptide etc. have
been explored [24]. Though collagen and fibronectin offer
good adhesion properties and create in vivo like environment
on the artificial surface, their inhibitory roles in electron
exchange phenomena at cell-electrode interface makes them
unsuitable for application on electrode surfaces [25], [26].
On the other hand, it has been observed that RGD enriched
portion of the ECM proteins is actively involved in the cell
adhesion process [27]. Thus, RGD peptides have been utilized
as nanoscale patterns at cell-electrode interface to enhance
the cell adhesion and proliferation [21], [28]. Herein we have
utilized cysteine terminated RGD peptide sequences for firm
attachment of dermal cell on CS-GO based Au microgap
electrode. The functionalization with RGD peptide is discussed
elsewhere [21], [23], [28]. The cysteine terminated RGD
peptide (Peptron, Daejeon-305-340, South Korea) was diluted
in PBS (pH 7.4) and drop casted on a freshly prepared
CS-GO based Au microgap electrode and allowed for self-
assembling. After overnight incubation at 4°C the CS-GO
platform was washed in fresh PBS and dried for morphological
investigation.

D. Morphological Characterization

The surface morphology and thickness of fabricated
CS-GO substrate was analyzed with Scanning Electron
Microscopy (SEM) and stylus profilometer respectively. For
SEM investigation the substrate was placed on silicon wafer
and a thin layer of Au was sputtered on it prior to imaging.
Images were obtained with field emission scanning elec-
tron microscope (Hitachi S-4700) at an accelerated voltage
of 10KV and 10mA current. The profilometric analysis was
performed using Bruker Dektak XT height profiler. For optical
imaging the CS-GO was placed on glass slide and images were
obtained from Nikon Eclipse LV100ND microscope connected
with Leica MC170HD camera.

E. Cell Culture and Maintenances

The human dermal fibroblast (HDF) cells were purchased
from GIBCO® and seeded at a density of 5x10° cell/cm? in
DMEM supplemented with 10% foetal bovine serum and 1%
antibiotic and antimycotic and kept at 37°C in a standard cell
culture incubator providing 5% CO> and 70% humidity. The
cell was fed twice in a week and subculture performed when
100% confluences were attained. Cell from 3rd passage was
employed for all experiments in this research.

F. Electrophysiological Investigation

For electrophysiological investigation, the Au microgap
patterned electrodes on CS-GO substrate was seeded with

HDF cell at a concentration of 1.5x10* cell per device and
kept at 37°C in a humidified atmosphere with 5% CO»for
48h. Then the device was washed with phosphate buffer saline
(PBS, pH 7.4) and CV investigations were carried out with
a standard potentiostat (Metrohm Autolab). All experiments
were performed in triplicate using freshly prepared device at
an identical condition.

G. Cell Proliferation Assay

Viability of HDF cells attached on to microgap electrode
was determined by studying the redox peak intensities. To this
end, the cells were seeded on the batches of device and
allowed to grow for 0, 24, 48, 72 and 96h. Electrochemical
investigation was performed on representative samples from
each time point. All the measurements were repeated at
least three times and the error bars have been shown in the
figure 6b and 8b.

H. Glucose Sensing

For glucose sensing application, batches of HDF immobi-
lized sensor-patch were subjected to various doses of glucose
and linear swipe voltammetry (LSV) measurements were
performed after 24h post treatment. Glucose sensing perfor-
mance was evaluated by analyzing and quantifying LSV peak
intensities per doses of treated glucose concentrations. All the
measurements were performed thrice at identical condition.

I11. RESULTS AND DISCUSSION
A. Ultra-Thin CS-GO Substrate

The ultra-thin CS-GO layer was fabricated on silicon wafer
by drop casting method (Fig. 1a). The fabricated CS-GO layer
attains stability to ordinary solvent. This was achieved by
crosslinking of chitosan monomer through interaction between
its amine groups (-NH) and carboxyl (-COOH) group of
GO [13]. This cross-linked CS-GO substrate allows successful
metallization to fabricate Au microgap electrodes (Fig. 1b).
The micro-gap electrode modified substrate showed enough
stability for cell culture. The fabricated chitosan substrate is
thin (2.8 #m) enough to conform to any shape, allowing their
use in in-vivo application (Fig. le). In addition, the developed
CS-GO based Au microgap electrode employs biocompatible
materials and eco-friendly fabrication processes and hence is
compatible to living cells or tissues. To prove this, the HDF
cells were immobilized on the CS-GO substrate and main-
tained for electrochemical investigation.

B. RGD Assisted Enhancement of Cell Adhesion

Prior to the HDF cell immobilization, the CS-GO substrate
was functionalized with cysteine terminated RGD peptide to
enhance the adhesion (Fig. 2a). The RGD nanodot immo-
bilized CS-GO platform, shown in Fig. 2b, offer sufficient
adhesion motif for cell anchoring. In this adhesion process,
at one end thiol group of cysteine molecule is involved with
thiol-gold coupling mediated adhesion with Au electrode.
At other end is the RGD-integrin mediated adhesion with cell
surface [29]. Thus, numerous adhesion motifs were shown
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Fig. 2. RGD assisted cell immobilization: (a) lllustration of Cys-RGD
assisted cell adhesion on Au-microgap electrode, (b) SEM image of
self-assembled RGD nano-dots on electrode, (c) Focal adhesion for-
mation on RGD fictionalized sensor-patch, and (d) SEM image of
immobilized cell on non RGD functionalized sensor-patch.

on the cell immobilized sensor-patch (Fig. 2c). Whereas
such adhesion motifs were absent when SEM images were
obtained from non RGD functionalized sensor-patch (Fig. 2d).
The HDF cell firmly adhered to RGD functionalized CS-GO
substrate showed well spreading morphology and overcame
dissociation with several washing steps during the fixation
process prior to the SEM imaging [16], [30]. In the absence of
RGD, the cells did not withstand such washing force and were
dissociated from the electrode, as evident from SEM images
shown in Fig. 2d. The Cys-RGD functionalized microgap elec-
trode bridged 60um gap with HDF cell is shown in the inset of
Fig. 3. This is critical for voltammetric analysis in this study.
The nano scale RGD assisted cell adhesion and proliferation
are established in the literature elsewhere [21], [22]. Besides
this adhesion enhancement, the nanoscale RGD modified metal
electrode platform has also showed the enhancement in the
electrochemical readout signals [31]. Hence, the presented
RGD modified bioplatform holds the promise for better elec-
trochemical read out signals. To prove this hypothesis the
electrochemical measurement was also performed.

C. Electrochemical Characterization of HDF Immobilized
Substrate

The living cells possess distinct electrochemical redox at the
cell membrane, which shows the cell line and cell cycle stage
specificity [32]. This cell specific signal has been employed
in several sensing applications such as environmental moni-
toring, toxicity analysis, drug effect study etc. [22], [23], [32].
Recently the cell cycle stage specific signals were also utilized
to monitor the potential environmental toxicant in vitro [33].
Considering these background studies, we have hypothesized
that this potential analytical method could be utilized to moni-
tor the cell proliferation rates during wound healing process as
well as to monitor the analytes in the wound fluid. In view of
this, the HDF cell immobilized CS-GO substrate was subjected
to electrochemical investigation using a potentiostat controlled

Fig. 3. Optical image of cell immobilized microgap electrode (5x) and
paraformaldehyde fixed dehydrated sample in the inset (20x).
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Fig. 4. Redox behavior of HDF cell immobilized CS-GO substrate.
CV measured using PBS (0.01 M, pH 7.4) as electrolyte at a scan rate
of 50 mVs—1. All experiments were conducted at room temperature and
repeated three times under identical condition.

with Auto lab software. A standard two electrode setup was
employed for cyclic voltammetric (CV) measurement of cell
that bridges the microgap electrode on the CS-GO platform to
determine the redox potentials. The CV measurements were
performed at scan rate of 50mV/s with a potential window
of +500mV to —500mV. The cell-immobilized platform was
washed thrice with PBS and measurements were performed
in PBS (PBS, pH 7.4) at room temperature. The CV obtained
from cell cultured CS-GO substrate showed a quasi-reversible
redox peak with cathodic peak (/) at +300mV and anodic
peak (Ip,) at —300mV (Fig. 4). Absence of such peak from
a device without cell confirms that redox is originated from
the immobilized HDF. The quasi-reversibility was confirmed
with the peak potential difference >100mV between I, - I,
and the current ratio Ip./Ip, is >1 [34], [35]. The stability of
this potential peaks is an essential feature of an ideal sensor.
Therefore, a freshly prepared sensor-patch was subjected to
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Fig. 5. CV of HDF immobilized CS-GO substrate at various scan cycle.
CV was measured using PBS (0.01 M, pH 7.4) as an electrolyte at a scan
rate of 50 mVs~1.

run for 50 scan cycles at similar potential windows and scan
rate to verify the stability. The redox peak showed stability to
scan rates and scan cycle. There was no significant difference
in the current peak up to 50-scan cycles (Fig. 5), indicating
stability and repeatability of the electrical signals.

D. Electrical Read-Out to Monitor Cell Proliferation

Considering the potential specificity, stability and repeata-
bility, the eletrochemical redox signal of HDF cell was
employed to monitor the proliferation in-vitro. For this, several
batches of freshly prepared HDF immobilized CS-GO plat-
form were employed for CV measurement at 24h interval and
the cell proliferation was monitored over the growth period
up to 96h. The CV peak intensities became prominent with
increased cell growth period (Fig. 6a). Both I,. and I,
peak showed similar trend of enhancement without any peak
shift. Hence, both peak values obtained from voltammogram
could be considered as sensing values. Herein, a concen-
tration dependent linear plot (R2 = 0.981) was obtained
between the current intensities /. and post seeding periods
(Fig. 6a&b). The peak enhancement is due to the redox of
increased cell number bridging the microgap electrode [31].
The cell immobilized platform was also evaluated with another
analytical method namely LSV utilizing a wider potential
window ranging from 0 to 3V at a scan rate of 50mV/s.
This cell growth period dependent peak enhancement was also
confirmed with LSV signals measured daily up to 5 days post
seeding (Fig. 7). It is well known that living cells have distinct
cell line and cell cycle stage specific redox property [15], [36].
Here, the peak is derived from the healthy cell that remained
attached with electrode since dead cells are not able to bridge
the gap [37]. Hence, the measured redox reflects the viable cell
population only. The changes in the peak intensity reflect the
state of cell health to any exogenous or endogenous influences
on the cell viability. In the wound healing process, many
critical steps such as bleeding, inflammation, proliferation and
remodeling are also interrupted with many endogenous and
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1.04 —— 24h post seeding
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Fig. 6. (a) CV of HDF immobilized CS-GO substrate at various period
post seeding. CV was measured using PBS (0.01 M, pH 7.4) as an
electrolyte at a scan rate of 50 mVs—1. (b) Changes in redox peak inten-
sities corresponding to periods of cell growth on the CS-GO substrate.
The linear increases in current peaks (Ipc) in a concentration-dependent
manner (R2 = 0.989). Data are the mean =+ standard deviation of three
different experiments.

exogenous influences [38]. Monitoring of such influences is
critically required to predict the prognosis of a wound partic-
ularly when a healing patch or bandage is applied. The redox
monitoring ability of the presented device could be employed
for such purposes. The developed sensor-patch is capable of
monitoring healing rate by analyzing and quantifying redox
peaks obtained from cells of a proliferative and remodeling
stage of a wound. Thus, the developed sensor-patch holds
promise for assisting wound healing as well as monitoring
healing progress on real-time.

E. Glucose Sensing Performances

The physiological levels of glucose in healthy individual
are ranging from 3.0 to 6.0 mM [39]. The cells respond to
any change in the glucose level beyond this limit. In par-
ticular, the excess blood glucose level of a hyperglycaemic
patient interfere the wound healing process and can result into
chronic wounds [40]. With this background, the developed
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Fig. 7. LSV of HDF immobilized Chi-GO substrate at various peroid

after cell seeding. LSV was measured using PBS (0.01 M, pH 7.4) as an
electrolyte at a scan rate of 50 mVs~!. The experiment was repeated
three times with identical condition.

HDF immobilized sensor-patch was validated with various
concentrations of glucose and electrochemical measurements
were performed for the in-vitro diabetic condition. For this,
LSV was employed to monitor the influence of various doses
of glucose ranging from 1M to 20mM on freshly prepared
batches of HDF immobilized sensors and the results are shown
in Fig. 8a. The LSV signals from hypoglycaemic (0.001 to
0.01 mM) treated HDF cell immobilized sensor-patch showed
no significant difference (with respect to non-treated). The
concentration <1mM of glucose was utilized by the HDF cell
and hence it did not influence the LSV signals. Whereas, the
hyperglycaemic concentration (10-20mM) showed significant
changes in LSV signals, particularly when the glucose con-
centration saturated the cellular demand and remained in
the medium to produce the additional peak. This additional
peak noticed from glucose concentration > 1mM, was further
enhanced with increased concentrations. This additional peak
enhancement showed linear relation (R2 = 0.995) with the
increasing concentrations of glucose as shown in Fig. 8b. The
cellular LSV peaks were also increased with the glucose con-
centration up to 10mM. However, the peak suddenly shifted
without any enhancement at a concentration >10mM. This
was obvious response from the cells with hyperglycaemic
condition [41]. Such potential shift could be used for mon-
itoring of any adverse effects of hyperglycaemic condition of
a patient. Thus, the HDF immobilized sensor-patch proved to
be useful for monitoring diabetic condition of a patient.

V. CONCLUSION AND FUTURE WORK

A CS-GO based ultra-thin bio-platform is presented here
for cell-health monitoring using a label free electrochemi-
cal method. To this end, an array of micro-gap electrodes
was fabricated by depositing Au on CS-GO substrate and
HDF cell was immobilized on the microgap. The CV of the
cell-immobilized sensor shows a quasi-reversible redox with
characteristic cathodic peak (/) and anodic peak (/p,) at
+300mV, and —300mV, respectively. The intensities of both
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0 5 10 15 20
Glucose (mM)
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Fig. 8. (a) LSV of HDF immobilized CS-GO substrate treated
with various concentration of Glucose at a scan rate of 50 mVs~L.
LSV were measured 24h post glucose treatment. The experiment
was repeated three times with identical condition. (b) Changes in
LSV peak intensities corresponding to glucose concentration on HDF
immobilized sensor-patch. The linear increases in current peaks at
a concentration-dependent manner (R2 =0.995 for 3-points & R2=
0.924 for 4-point). Data are the mean + standard deviation of three
different experiments.

redox peaks were enhanced (1.923-11.195nA) with the growth
period of HDF cell without potential shift. The changes in peak
intensities reflect the numbers of healthy cell attached on the
electrode (0-96h). A linear plot (R = 0.981) derived from
Ipc vales with post seeding period shows that the device is
capable of monitoring cell health by analyzing and quantifying
the redox peak intensities. Likewise, the linear plot derived
from LSV values of hyperglycaemic condition (R? = 0.995 for
3-points & R? = 0.924 for 4-point) proved the glucose sensing
performances of the sensor-patch. In addition, analysis and
quantification of the potential shift in LSV signals could be uti-
lized for monitoring cellular malfunctions at hyperglycaemic
condition. Thus, the developed electrochemical sensor holds
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promise for forecasting wound healing progress as well as
monitoring diabetic condition on real time.
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