
IEEE SENSORS JOURNAL, VOL. 20, NO. 10, MAY 15, 2020 5465

Automated Development of Custom Fall
Detectors: Position, Model and Rate

Impact in Performance
Joana Silva , Diana Gomes, Inês Sousa , and Jaime S. Cardoso , Senior Member, IEEE

Abstract—The past years have witnessed a boost in fall
detection-related research works, disclosing an extensive
number of methodologies built upon similar principles but
addressing particular use-cases. These use-cases frequently
motivate algorithm fine-tuning, making the modelling stage
a time and effort consuming process. This work contributes
towards understanding the impact of several of the most
frequent requirements for wearable-based fall detection
solutions in their performance (usage positions, learning
model, rate). We introduce a new machine learning pipeline,
trained with a proprietary dataset, with a customisable
modelling stage which enabled the assessment of perfor-
mance over each combination of custom parameters. Finally,
we benchmark a model deployed by our framework using the UMAFall dataset, achieving state-of-the-art results with an
F1-score of 84.6% for the classificationof the entire dataset, which included an unseen usage position (ankle), considering
a sampling rate of 10 Hz and a Random Forest classifier.

Index Terms— Fall detection, inertial sensors, accelerometer, machine learning, deep learning.

I. INTRODUCTION

FALL detection systems have been a trend research topic
over the past years, motivated by the damaging impact

of fall events in the quality of life, especially of the elder,
and the importance of prompt assistance to minimize their
consequences. Among the variety of available solutions,
wearable-based systems, relying on ubiquitous equipment
(e.g. smartphone, smartwatch, fitness trackers) to enable
pervasive monitoring of users’ motion parameters, are some
of the most common. As such, there is a tendency to generate
multiple fall detection solutions adapted to each different
use case and shaped by each system’s hardware limitations.

Manuscript received January 6, 2020; revised January 30, 2020;
accepted January 30, 2020. Date of publication February 3, 2020;
date of current version April 16, 2020. This work was supported in
part by the Project Indoor Activity Notification for Vigilance Services,
funded under the AAL JP and co-funded by the European Commission
under Grant AAL-2018-5-116 and in part by the National Funding
Authorities of Portugal, Belgium, and Switzerland. The associate editor
coordinating the review of this article and approving it for publication was
Prof. Kea-Tiong Tang. (Corresponding author: Joana Silva.)

Joana Silva is with Fraunhofer Portugal AICOS, 4200-135 Porto,
Portugal, and also with the Faculty of Engineering, University of Porto,
4099-002 Porto, Portugal (e-mail: joana.silva@fraunhofer.pt).

Diana Gomes and Inês Sousa are with Fraunhofer Portugal
AICOS, 4200-135 Porto, Portugal (e-mail: diana.gomes@fraunhofer.pt;
ines.sousa@fraunhofer.pt).

Jaime S. Cardoso is with INESC TEC, 4200-465 Porto, Portugal, and
also with the Faculty of Engineering, University of Porto, 4099-002 Porto,
Portugal (e-mail: jaime.cardoso@inesctec.pt).

Digital Object Identifier 10.1109/JSEN.2020.2970994

This leads to an overflow of custom-made systems built upon
similar methodologies but fine-tuned to particular objectives,
constraints or even target populations.

Common examples of specific requirements and constrains
are related to the wearable design, such as the place of
usage, the way it can be attached to the body; the device’s
processing capability, memory and battery; or limitations
in the accelerometer sampling rate. Fall detection systems’
fine-tuning implies the collection of a significant amount of
data examples, in conditions as similar as possible to those of
the intended use, to train and test a new fall detection model.
Hardware specifications may also influence the choice of the
modelling approach and adaptations in the implementation of
the model may be required. In summary, adjusting multiple fall
detection solutions is a time and effort consuming process.

In this work, we introduce a new machine learning pipeline,
trained with data from a comprehensive proprietary dataset,
to model and deploy custom-made fall detection algorithms,
based on which we shall:

1) Study the cases in which customization is indeed
necessary

• Model complexity: Do models of higher complexity
outperform models of more modest complexity at
detecting falls?

• Sensor position generalization: Do models that were
not trained with data from sensors placed on a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6214-5868
https://orcid.org/0000-0002-3760-2473
https://orcid.org/0000-0002-8488-256X

5466 IEEE SENSORS JOURNAL, VOL. 20, NO. 10, MAY 15, 2020

certain body position maintain their performance
when evaluated with these data?

• Single vs. multiple training positions: Do models
solely trained with data from sensors placed on a
certain body position A perform better than models
trained with data acquired at multiple positions
when evaluated with data from A?

• Sampling rate: Does the accelerometer sampling
rate have an impact in fall detection performance?

2) Evaluate the performance of our framework against the
state-of-the-art

• External data generalization: Do models deployed
by our framework perform adequately at detecting
falls using datasets acquired under different
conditions?

• Positioning within state-of-the-art: Is the perfor-
mance of a model deployed by our framework
competitive within the state-of-the-art?

All in all, this study makes significant contributions
towards: i) understanding if customization is indeed necessary
for a specific use case, namely regarding usage position,
accelerometer sampling rate, and processing/performance
trade-off requirements; ii) the automated creation of mature
ready-to-go fall detection solutions adapted to several of the
most frequent customisation requirements for wearable-based
systems.

This manuscript is organised as follows: section II
presents related works; section III discloses our methodology;
section IV presents the obtained results; section V discusses
those results, comparing them with related state-of-the-art;
section VI closes the document, presenting its most relevant
conclusions.

II. RELATED WORK

According to a recent review of Ren et. al [1] of fall
detection systems, the taxonomy of these systems can be
divided into context-based and wearable-based systems.
Context-based systems can sense and process data from the
environment where the sensing device is integrated, instead of
using a device attached to the person. Examples of
context-based systems are pressure platforms, cameras,
acoustic and infrared sensors, as described by
Chaccour et. al [2]. Most wearable-based systems resort
to the analysis of inertial sensors to detect falls. However,
there are also systems that rely on sensor fusion, ranging from
the fusion of inertial sensors to a combination of these sensors
with barometer, microphone, heart rate sensors or cameras.
Wang et al. [3], for example, combined accelerometer and
barometric information in a fall detector with low-power
consumption.

Regardless of the data source, the most common data
analysis algorithms in the state-of-the-art can be divided
into three main groups: threshold-based algorithms, binary
or multiclass machine learning supervised algorithms, and
one class classification or novelty detection algorithms. The
threshold-based approaches are simple algorithms that trigger
a fall alarm when the sensor values exceed certain predefined
thresholds or a set of rules. Contrarily, machine learning

approaches based on pattern recognition are more complex
and sophisticated compared to threshold-based approaches.
In novelty detection algorithms only data from daily life
movements are used for training, and falls are detected as
outliers.

Fall detection systems are usually trained and evaluated in
simulated scenarios, given the difficulty of acquiring data from
real-world falls. There are also research studies that attempted
to collect data from real falls in uncontrolled settings; however,
fall events are very rare and its respective number of samples
is frequently insufficient to train robust supervised models,
as in the two datasets used in the work of Aziz et al. [4].
Most previous works have acquired data from simulated falls
and ADLs. Besides acquiring scripted samples in laboratory
conditions, other studies have focused on acquiring and eval-
uating the trained models in free-living scenarios, from a
continuous usage of the wearable devices, like Alves et al. [5].
Nevertheless, fall detection is usually an unbalanced problem,
with a higher percentage of non-falls compared to falls in most
datasets reported in prior works.

The system setup depends on several variables that could
influence fall detection performance, and there has been some
effort in previous studies towards understanding the impact of
the wearable device usage position and the sensors’ sampling
rate. Wearable position can influence the type of movements
that could be misinterpreted as a fall, e.g. trunk, waist and
pocket positions are expected to trigger fewer false alarms than
the wrist, given its higher number of degrees of freedom, as in
Ozdemir et al. [6] work. Santoyo-Ramón et al. [7] investigated
the impact of number and positions of wearable sensors in fall
detection. Their findings suggest that the best usage positions
for the wearable devices are the chest and/or waist. On the
other hand, sampling rate has an impact in computational
efficiency and battery life of the system. Liu et al. [8] studied
this topic and tested several models with lower sampling rates,
and the SVM obtained 97% accuracy, with a sampling rate
of 5.8 Hz. In this sense, position and rate are both important
to consider at the design stage, and assume an important role
in the scope of this work.

We will benchmark our method with the publicly available
UMAFall dataset from Casilari et al. [9]. Thus, we have
surveyed state-of-the-art works which used this dataset for
evaluation of their own methodology. Tsinganos et al. [10]
have extracted features from the accelerometer magnitude,
considering only the belt position. These features were used
to train a k-NN classifier. Their validation method
was not user-independent (because they did not
use leave-one-subject-out (LOSO) validation), and achieved
a F1-score of 96.7%. The work of Wisesa et al. [11]
revealed a F1-score of 97.4% using a LSTM model solely
trained with data from the X-axis of the accelerometer
from the belt position. For validation of results, the authors
have divided the dataset into two static parts at random,
disregarding user-independence; thus, the obtained results are
not only orientation-dependent, but may also be optimistic if
aiming real-world utilisation with unseen users. The work of
Khojasteh et al. [12] compared a decision tree (DT) model
with a feed-forward neural network (NN). The authors have

SILVA et al.: AUTOMATED DEVELOPMENT OF CUSTOM FALL DETECTORS: POSITION, MODEL AND RATE IMPACT IN PERFORMANCE 5467

Fig. 1. Study design overview.

validated their models considering only the wrist position and
applying a 5x2 cross validation, which can also be considered
user-dependent. The DT slightly outperformed the NN model
regarding the geometric mean of sensitivity and specificity
(DT - 92.4%; NN - 91.8%). The work of Wang et al. [13] was
the only study found with evaluation with the UMA dataset
using LOSO cross validation. Their best approach combines
data from accelerometer and gyroscope in a threshold-based
algorithm. The highest obtained results were 95.3% sensitivity
and 81.5% specificity (i.e, 88% geometric mean), although
the authors did not refer if all UMA dataset positions were
considered to evaluate their results.

III. METHODS

Figure 1 depicts an overview of the proposed approach for
automated development of custom fall detectors, enabling a
clearer understanding of the relation between each stage within
the flow of the method. The following subsections detail the
steps at each of these stages.

A. Data Acquisition

1) Protocol: Fraunhofer AICOS has been acquiring
simulated falls and non-falls since 2009. The protocol for
data collection was first described by Aguiar et al. [5], [14],
which followed the protocol defined by Noury et al. [15], and
considers data collection for the on-body sensor positions of
chest, belt, and pocket. Recently, that protocol was extended to
include the wrist position and non-fall movements specific to
the wrist. The dataset was collected in laboratory conditions,
at AICOS’ living lab, where two mattresses were placed
in the ground. The living lab also included a sofa, a table
with chairs, a bed and an open space for acquiring running
and walking samples. The activities of daily living recorded
as non-falls included drop the sensor on the table, sit on a
lower chair, catch an object from the floor while walking,
run a few meters, laying on a bed, among others. The type
of falls recorded included forward, backward and lateral falls
(without recovery) ending lying on the floor. The protocol was
previously described by Aguiar et al. [14] and Alves et al. [5].
Overall, the dataset comprises 36 different types of falls
and 43 types of non-falls. Data was collected using a data
logger Android application that provides access to the inertial

TABLE I
DISTRIBUTION OF DATASET ACROSS DIFFERENT POSITIONS

IN TERMS OF NUMBER OF SUBJECTS, FALL AND

NON-FALL SAMPLES

sensors either directly built-in the smartphone or in wearable
devices paired with the smartphone. The wearable devices
used are proprietary of Fraunhofer AICOS and include a 3-axis
Inertial Measurement Unit (IMU) [16]. Several smartphone
models were used for data collection, namely: Samsung S3,
S3 Mini, S4, Nexus S, Galaxy Nexus, Nexus 5,
Moto G XT1032, and Vodafone 985N.

2) Data Distribution: Data was collected in several occasions,
from different participating subjects who wore a set of
devices in different on-body locations. For this reason, none
of the subjects has collected data for the complete set of
usage positions considered in this study. For each subject,
the positions for which only one class is available
(fall or non-fall) were removed prior to the analysis. The
cleaned dataset is composed by 42 subjects (34 male)
with average age of 25.0 ± 2.9 years, an average weight
of 72.4 ± 12.6 kg, and an average height of 176.0 ± 7.9 cm.
The percentage of samples that were captured by the built-in
sensors of the smartphones was 54.17% and the percent-
age acquired with the wearable devices was 45.81%. The
average sampling rate for the smartphone samples was
102.26 ± 24.11 Hz and for the wearable samples the average
sampling rate was 97.68 ± 8.50 Hz. The accelerometer range
was ± 2G for all used smartphone models and wearable
devices. The distribution of samples across the two classes is
presented in Table I. The belt and pocket sensor positions have
a higher percentage of samples than chest and wrist positions,
because belt and pocket positions include samples from the
smartphone and from wearable devices, whereas the chest and
wrist include only samples from wearable devices. Overall,
the distribution of falls and non-falls per position for the entire
dataset may be considered nearly balanced. On average the fall
events have a duration of 15.20 ± 4.99 seconds and the ADLs
activities have a duration of 14.94 ± 5.30 seconds.

B. Modelling

Figure 2 illustrates the pipeline for automated modelling,
using the AICOS dataset. This pipeline is prepared to
receive several input parameters which enable the cus-
tomized modelling (see Figure 1): 1) train and test positions;
2) learning models; 3) target sampling rate; 4) grid-search
optimization score. In the scope of this work, all experiments
were performed using the F1-score as the optimization score.

1) Data Pre-Processing: A resampling strategy was firstly
implemented with the aim of correcting the time distribution
of all arriving samples and compensating for eventual sensor
reading gaps. The accelerometer signal magnitude was evenly
sampled, according to the target sampling rate. To that end,
we computed the expected time of arrival of each sample (te).

5468 IEEE SENSORS JOURNAL, VOL. 20, NO. 10, MAY 15, 2020

Fig. 2. Modelling stage: data pre-processing, feature extraction and
selection, and nested leave-one-subject-out validation with grid search.

Samples arriving before te were stacked and their average
was computed and set to correspond to te; if there were no
samples arriving before te, the value of the last sample which
arrived in the stream was considered. This combination of up
and down-sampling techniques resulted in the computation
of the accelerometer signal magnitude, evenly distributed
in time, according to the required sampling rate. The data
stream was segmented into windows of 7.5 seconds, without
overlap, centered in the signal magnitude maximum. If there
were not enough samples in the beginning or in the end
of the window, after centering it in the maximum, the first
and/or the last samples, respectively, were replicated until the
pre-defined window size is reached. Windows with a standard
deviation of low accelerometer magnitude were removed in
order to discard samples that were useless for training the fall
detection algorithm.

2) Features: Several time-domain features were extracted
for each time-window signal magnitude: mean, standard
deviation, median, median deviation, maximum, minimum,
energy, root mean square, inter quartile range, histogram
(10 bins), skewness and kurtosis, using our open source
Time Series Feature Extraction Library [17]. These features
require low computation power and are the most common used
features for fall detection according to Pannurat et al. [18].
Features with correlation higher than 0.90 were removed. All
features of the training set were standardized by removing
the mean and scaling to unit variance. The same parameters
were used to standardize the test set. These features constituted
the input for all classifiers, with the exception of CNN. CNN
received a feature vector of raw signal magnitude (for each
time-window), re-scaled to [0, 1] range by subtracting the
minimum and dividing by the difference between maximum
and minimum signal magnitude.

3) Leave-One-Subject-Out Validation: Two nested LOSO
loops were used for training and validation assessment. The
inner LOSO was used to optimize the hyperparameters of
the learning models via grid search (except for the CNN-1D
model) using N-2 participants for training and 1 subject for
validation.

TABLE II
DIFFERENT COMBINATIONS OF INPUT PARAMETERS TESTED

USING THE MODELLING PIPELINE

• Grid search for hyperparameters optimization: The
hyperparameters of the learning models were optimized
for F1-score metric. The following hyperparameters were
optimized for each classifier: k-Nearest Neighbours
(k-NN), parameter k and search algorithm; Decision Tree
(DT) & Random Forest (RF), maximum depth, number
of features and estimators, and minimum samples to split,
AdaBoost, number of estimators; Multi-layer Perceptron
(MLP), variable alpha, activation function and learning
rate; Support Vector Machine (SVM), variable C, degree,
gamma and type of kernel.

• CNN-1D architecture: the architecture of the network
encompasses two stacked 1-Dimensional Convolutional
Neural Network (CNN-1D) with kernel size of 5, with
4 filters, and tangent activation function. CNN-1D layers
were interleaved with max pooling and 0.25 dropout
layers. The sigmoid function was used in the last
activation layer. The loss function was set to the binary
cross-entropy and optimized with Adam algorithm.

The outer LOSO was used to assess the performance of
the best set of parameters, retrieved from the grid search
(inner LOSO), in the remaining subject of the dataset. The
final output metrics, presented in section IV, were computed
by mapping correct and misclassifications by user, position
and learning model. This process enabled the computation of
single (cumulative) confusion matrices with respect to each of
these parameters, from which all performance metrics were
extracted: accuracy (Acc), sensitivity (Se), specificity (Sp),
precision (Prec), F1-score (F1), Youden index (YI), and
geometric mean of sensitivity and specificity (G). As such, this
outer LOSO was paramount to enable the fair comparison of
algorithms defined by different input parameters, maintaining
complete user-independence in the validation process.

C. Multiple Comparisons

ANOVA multiple comparison analysis was used for
comparison of performance metrics between different tests,
using vectors of metrics by user obtained from the
outer LOSO validation loop as input. As post-hoc test,

SILVA et al.: AUTOMATED DEVELOPMENT OF CUSTOM FALL DETECTORS: POSITION, MODEL AND RATE IMPACT IN PERFORMANCE 5469

we used the Tukey’s Honest Significant Difference test
(95% confidence level) between pairs of different learning
models, usage positions or sampling rates. These tests aimed
the identification of statistically significant differences between
different combinations of input parameters (Table II), in order
to address the research questions of this work.

All learning models were considered and compared
pair-wise for training and testing with all positions at 100 Hz
(Baseline). For simplicity of analysis, we selected a single
model - Random Forest - for conducting all remaining tests,
based on the results of the aforementioned comparison and
the fact that it is a decision-based classifier. Algorithms based
on decision trees are very interpretable, do not require much
computation, and are ease to implement in any platform.
A more detailed explanation of this selection process is
provided in subsection IV-A.

D. Deployment

The output metrics of the LOSO validation in the modelling
stage shall assist the process of selecting the most adequate
learning model for deployment, considering the requirements
of each specific use case, i.e. the selection process should
consider performance, complexity and/or other requirements
initially setup for the algorithm.

After the selection of the classification algorithm, all data
of the AICOS dataset corresponding to the required positions
(and resampled to the desired target rate) are used to refit
the classifier, with the respective best set of hyperparameters
derived from the process of LOSO grid search. This step
completes the deployment of a final fall detection algorithm.

To evaluate the effectiveness of our method, we have
deployed a fall detector algorithm using a Random Forest
classifier, expecting a sampling rate of 10 Hz, and trained with
all positions available in the AICOS dataset. This algorithm
was then tested using all data from the UMAFall dataset for
performance comparison with other fall detection works using
the same data.

E. Benchmark Validation Using the UMAFall Dataset

We benchmarked our framework with the publicly available
UMAFall dataset [19] described in Casilari et al. [7], [9].
Several ADLs and simulated falls were collected
from 17 volunteers with an average age of 26.7 ± 10.5 years
old. Each subject wore four different wearable devices – chest,
belt, wrist, ankle -- and carried one smartphone in the pocket.
Overall, 11 types of ADLs and 3 types of falls were
simulated, yielding a total of 970 falls and 2444 non-falls,
with an average of 683 samples for each usage position.
Accelerometer, gyroscope and magnetometer data was
collected at a sampling rate of 20 Hz from the wearables and
200 Hz from the smartphone.

The UMAFall dataset was selected for its representation of
all sensor positions included in AICOS dataset. Interestingly,
it also contains data from wearables positioned in a new
position -- the ankle –, which our framework is not expecting,
and shall thus allow us to assess the generalization of the
deployed fall detector for this new usage position.

Fig. 3. F1-score for all tested classifiers, considering the baseline input
parameters. Classifiers with SSD from CNN for each sensor position are
marked with stars.

IV. RESULTS

A. Multiple Comparisons

Even though we analysed multiple comparisons for several
performance metrics, we opted for solely presenting the results
for the F1-score for simplicity of analysis, since it was selected
as the scoring metric in the optimization process. Moreover,
the F1-score will allow us to assess the performance of the
algorithm taking into account an harmonic mean of precision
and recall.

The first set of comparisons corresponded to the
performance of different learning models for the same set
of input parameters (defined as Baseline in Table II). Results
were arranged by position and classifier and exhibited in
Figure 3. We looked for statistically significant differences
(SSD) between all pairwise combinations of classifiers.
No SSD were found among the conventional supervised
binary models tested within each position; however, CNN’s
performance was frequently significantly inferior to that of
the remaining models. Given the equivalence of all the
conventional models tested, all subsequent experiments were
performed using a single classification model. We prioritised
decision-based models (Decision Tree and Random Forest) in
this selection, due to their low prediction expensiveness which
is valuable for wearable implementations. Random Forest was
finally selected since it consistently led to higher average
F1-scores than Decision Tree classifiers.

Figure 4 presents the results for different combinations of
train/test sensor positions, organised by sensor position of test
data. Multiple comparison analysis was performed between
results for respective positions derived from setting as input
parameters: 1) Baseline vs. Unseen test position; 2) Baseline
vs. Single position. No SSD were found between either of
them. This means that, for example, for 1), the performance
of detecting falls in data from sensors in the pocket remains
unchanged irrespective of whether data from sensors in this
position are included in the training set or not; and, for 2),
solely using data from sensors in the pocket for training does
not improve the performance of fall detection in data from

5470 IEEE SENSORS JOURNAL, VOL. 20, NO. 10, MAY 15, 2020

Fig. 4. F1-score for Random Forest classification, considering the
described combinations of input parameters. Pipelines with SSD from
Baseline for each sensor position are marked with stars.

TABLE III
EVALUATION RESULTS WITH THE UMAFALL DATASET. ALL

PERFORMANCE METRICS ARE IN %

sensors in the pocket, relatively to including data from all the
different sensor positions in the training set.

Finally, fall detection performance results using data
sampled at different rates are depicted in Figure 4. A Random
Forest classifier was trained and tested using data from sensors
in all the positions available in AICOS dataset and varying
the accelerometer sampling rate (Baseline and Rate variation
entries of Table II). Considering rates of 100 Hz, 50 Hz,
20 Hz or 10 Hz did not lead to SSD between the fall
detection performance for respective test positions. However,
statistically significant decays of performance were verified
for belt and pocket positions for rates of 5 Hz and 3 Hz, and,
more evidently, for all positions with data sampled at 1 Hz.

B. Benchmark Validation

Table III combines the results obtained using the
framework’s model specifically deployed for benchmark
validation, as previously described, organised by testing data
sensor positions, for all sensor positions included in AICOS
dataset (i.e. except ankle), and for the entire dataset. All
computed metrics were presented for analysis to instigate
further comparisons with previous and future works in the
field.

The belt sensor position presented, overall, the best results,
immediately followed by pocket and chest positions - the
first associated with more false positive occurrences
(lower specificity) and the latter associated with more false

negative occurrences (lower sensitivity). For data from sensors
placed on the wrist a decrease of performance was ver-
ified, as compared with the previous positions, which is
coherent with the results obtained using the AICOS dataset
(Figure 3). Finally, considering the testing data from sensors
on the ankle yielded the poorest performance for all compared
metrics. Combining the samples of all positions, we achieved
an F1-score of 84.6%, which increased until 88.8% by not
considering the unexpected ankle position.

V. DISCUSSION

This section will provide an overall discussion of results,
considering general results, CNNs compared with standard
techniques, and impact of positions and sampling rate in
the performance of the models. Moreover, a state-of-the-art
performance comparison will be presented along with potential
limitations of this study.

A. Need for Customization

Figures 3 and 4 provide important information
towards understanding the cases worthy of investment
in customization.

Starting with the problem of selecting the most adequate
learning model, considering trade-offs of performance and
available resources in wearable implementations, one can take
the results depicted in Figure 3, which unveiled that there
is no SSD between the performance of all standard binary
classification models in our tests for all considered sensor
positions. If we describe model complexity as a function of
its consumed resources and prediction expensiveness, one can
observe that there is no evidence that higher model complexity
leads to improved results in the conditions under which these
tests took place. This means that selecting the least complex
model for implementation may be beneficial for the final
system, because it shall lead to lower resource consumption
while achieving statistically similar results. If this conclusion
is taken under consideration at the moment of system design,
there may not be a need to develop several fall detectors
with custom learning models to improve performance under
different restrictions on the availability of resources.

Figure 4 enables a discussion of the role of considering
(or not) sole data from the intended place of usage of the
sensing device in the training stage. Our tests verified that the
fall detection performance on data from each of the 4 sensor
positions is similar, regardless of its inclusion in the training
stage, using AICOS dataset. While this conclusion is not
particularly surprising for belt and pocket (both at the waist),
or even chest (all in the trunk region), to achieve similar
performance for the wrist regardless of its consideration in the
training stage is not intuitive. This conclusion can reiterate a
claim for position generalization of our method, even though
further tests should be conducted to thoroughly understand
if there is a more significant impact for other performance
metrics. Moreover, to solely consider data from the intended
sensor position to train the models leads to statistically similar
results than considering all positions as training data. As such,
it may be beneficial to consider all positions at the modelling
stage, regardless of the effective place of usage of the final

SILVA et al.: AUTOMATED DEVELOPMENT OF CUSTOM FALL DETECTORS: POSITION, MODEL AND RATE IMPACT IN PERFORMANCE 5471

system, so that its portability is facilitated under different
conditions, if needed.

From the rate impact study, one can conclude that the lowest
sampling rate considered that did not present SSD from the
baseline 100 Hz pipeline was 10 Hz. This conclusion appears
to be coherent with findings of previous works [8], setting a
valuable landmark in the field of fall detection towards the
efficiency of wearable systems.

B. State-of-the-Art Performance

The quality of the AICOS dataset, regarding its variety of
usage positions, the representative amount of samples for each
position, and expression of relevant different types of falls
and non-falls, allowed us to deploy a robust Random Forest
classifier trained with all usage positions of this dataset for
a target rate of 10 Hz, since no SSD were found between
these models and models trained considering higher sampling
rates. This process based the conclusion that our framework
is able to deploy models that perform adequately when tested
with data acquired under different conditions (not controlled
by the authors), as Table III corroborates.

The authors of the UMA dataset have achieved their best
results for chest and belt [7], comparing with other usage
positions, consistently with our findings, to which we can
add the pocket position in our case (performance similar to
chest and belt). Moreover, the geometric mean achieved in
that work was always inferior to 75% for any combination
that included the sensor in the ankle, which means that even
though our dataset did not feature any sample acquired from
the ankle position, our method still outperforms the method
of the authors of the dataset at detecting falls in this position
(79% geometric mean for the sole classification of ankle
samples).

Directly comparing previous studies with our
user-independent approach is, however, a difficult task,
since the validation methods previously reported are mostly
user-dependent; thus, it is unclear if these methods would
lead to the same results under user-independent conditions,
typically more challenging. The work of Wang et al. [13]
was the only study found employing LOSO cross validation.
Comparing that work with ours, one can verify that our method
achieved better results (geometric mean of 91% vs. 88%)
for all positions considered in the UMA dataset. However,
the authors did not explicitly refer if all UMA dataset
positions were considered to evaluate their results.

It is also worth mentioning that the model that we have
deployed was trained with data downsampled to 10 Hz, instead
of using the most frequent sampling rate of the UMA dataset,
20 Hz. In spite of that, the results obtained with our models
are in line with those of other studies using the same data.

C. Limitations

These conclusions may not be true for all datasets, but only
for datasets similar to AICOS; they are maybe only true due
to the quality of our dataset, and the higher amount of samples
for each usage position, that allowed us to generalize better to
new unseen positions. Moreover, these results were obtained
using the F1-score as the optimization score. One can also

analyse all of the pipelines’ comparisons for other scoring
metrics, and the conclusions found with the F1-score may not
stand. The model deployed by our framework retrieved from
the pipeline described in this study should also be validated
with more datasets, and ideally with data from real fall events.

VI. CONCLUSION

In this work, we studied the impact of learning models,
on-body positioning and sampling rate in fall detection
performance, using a new machine learning pipeline which
is able to deploy fall detection solutions adapted to the
aforementioned system requirements. Our experiments did not
verify any relation between model complexity and perfor-
mance. Moreover, using our dataset and method, considering
3 positions in the training set was enough for achieving model
generalization for the 4th (unseen) position, and considering
solely data from a certain position vs. all positions in the
training stage led to statistically similar results when detecting
falls at that position. We were also able to decrease the
sampling rate expected by our pipeline until 10 Hz without
any statistically significant impact in performance.

Finally, we used the UMAFall dataset to benchmark a
solution deployed by our framework. This solution is expected
to receive data sampled at 10 Hz and uses a Random
Forest classifier previously trained with data from AICOS
dataset. This experiment unveiled that our solution led to
state-of-the-art results for the UMAFall dataset, even under
our demanding test conditions (considering an unseen test
position, the ankle; lower sampling rate; test data acquired
under conditions not controlled by the authors).

As future work, we can optimize our pipeline for different
performance metrics (other than F1-score), to deploy models
that require a specific trade-off between sensitivity and speci-
ficity. For example, in a specific case or disease it can be
more important to detect falls than to have a higher rate of
false alarms. This framework will ease the fast deployment
of fall detection models that are adjusted to different use
cases. After selecting the most suitable model and the target
performance metric, we expect to implement our pipeline in
a wearable solution to assess the model’s performance in
free-living conditions.

ACKNOWLEDGMENT

The authors would like to thank all the participants involved
in the collection of the AICOS dataset, and the authors of the
UMAFall dataset.

REFERENCES

[1] L. Ren and Y. Peng, “Research of fall detection and fall pre-
vention technologies: A systematic review,” IEEE Access, vol. 7,
pp. 77702–77722, 2019.

[2] K. Chaccour, R. Darazi, A. H. El Hassani, and E. Andres, “From
fall detection to fall prevention: A generic classification of fall-related
systems,” IEEE Sensors J., vol. 17, no. 3, pp. 812–822, Feb. 2017.

[3] C. Wang et al., “Low-power fall detector using triaxial accelerometry
and barometric pressure sensing,” IEEE Trans. Ind. Informat., vol. 12,
no. 6, pp. 2302–2311, Dec. 2016.

[4] O. Aziz et al., “Validation of accuracy of SVM-based fall detection
system using real-world fall and non-fall datasets,” PLoS ONE, vol. 12,
no. 7, Jul. 2017, Art. no. e0180318.

5472 IEEE SENSORS JOURNAL, VOL. 20, NO. 10, MAY 15, 2020

[5] J. Alves, J. Silva, E. Grifo, C. Resende, and I. Sousa, “Wearable
embedded intelligence for detection of falls independently of on-body
location,” Sensors, vol. 19, no. 11, p. 2426, May 2019.

[6] A. Özdemir, “An analysis on sensor locations of the human body
for wearable fall detection devices: Principles and practice,” Sensors,
vol. 16, no. 8, p. 1161, Jul. 2016.

[7] J. Santoyo-Ramón, E. Casilari, and J. Cano-García, “Analysis of a
smartphone-based architecture with multiple mobility sensors for fall
detection with supervised learning,” Sensors, vol. 18, no. 4, p. 1155,
Apr. 2018.

[8] K.-C. Liu, C.-Y. Hsieh, S. J.-P. Hsu, and C.-T. Chan, “Impact of sampling
rate on wearable-based fall detection systems based on machine learning
models,” IEEE Sensors J., vol. 18, no. 23, pp. 9882–9890, Dec. 2018.

[9] E. Casilari, J. A. Santoyo-Ramón, and J. M. Cano-García, “UMAFall:
A multisensor dataset for the research on automatic fall detection,”
Procedia Comput. Sci., vol. 110, pp. 32–39, Jan. 2017.

[10] P. Tsinganos and A. Skodras, “On the comparison of wearable sensor
data fusion to a single sensor machine learning technique in fall
detection,” Sensors, vol. 18, no. 2, p. 592, Feb. 2018.

[11] I. W. W. Wisesa and G. Mahardika, “Fall detection algorithm based
on accelerometer and gyroscope sensor data using recurrent neural
networks,” IOP Conf. Ser., Earth Environ. Sci., vol. 258, May 2019,
Art. no. 012035.

[12] S. B. Khojasteh, J. R. Villar, E. de la Cal, V. M. González, and C. Chira,
“Comparing model performances applied to fall detection,” in Proc. Int.
Conf. Math. Appl., 2018, pp. 1–6.

[13] F.-T. Wang, H.-L. Chan, M.-H. Hsu, C.-K. Lin, P.-K. Chao, and
Y.-J. Chang, “Threshold-based fall detection using a hybrid of tri-
axial accelerometer and gyroscope,” Physiol. Meas., vol. 39, no. 10,
Sep. 2018, Art. no. 105002.

[14] B. Aguiar, T. Rocha, J. Silva, and I. Sousa, “Accelerometer-based fall
detection for smartphones,” in Proc. IEEE Int. Symp. Med. Meas. Appl.
(MeMeA), Jun. 2014, pp. 1–6.

[15] N. Noury et al., “Fall detection-principles and methods,” in Proc. 29th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2007, pp. 1663–1666.

[16] “A day with pandlets,” Fraunhofer AICOS, Porto, Portugal, White Paper,
2016.

[17] Fraunhofer AICOS. (2019). TSFEL: Time Series Feature Extraction
Library. [Online]. Available: https://github.com/fraunhoferportugal/tsfel

[18] N. Pannurat, S. Thiemjarus, and E. Nantajeewarawat, “Automatic fall
monitoring: A review,” Sensors, vol. 14, no. 7, pp. 12900–12936,
Jul. 2014.

[19] E. Casilari, J. Santoyo-Ramón, and J. Cano-García. (2018). UMAFall:
Fall Detection Dataset. [Online]. Available: https://doi.org/10.6084/
m9.figshare.4214283.v7

Joana Silva received the master’s degree in
bioengineering from the Faculty of Engineering,
University of Porto, in 2013. During the master’s,
she has worked in projects related to physical
activity monitoring and walking data analysis
using wearable devices, and her master’s thesis
focused in the area of physical activity monitoring
using smartphones. She is currently pursuing the
Ph.D. degree in machine learning applied to fall
prediction and detection using wearable sensors.
Since 2013, she has been a Researcher with

Fraunhofer Portugal AICOS in the area of falls and activity monitoring.
The work developed under the master’s thesis was reward with the Young
Scientist Best Paper Award in the p-Health Conference 2014 in Vienna.

Diana Gomes received the M.Sc. degree
in bioengineering, in the field of biomedical
engineering, from the Faculty of Engineering,
University of Porto, in 2017. She is currently
a Researcher with Fraunhofer Portugal AICOS,
where she has been conducting research activ-
ities since 2017. During her studies, she was
involved in several projects, including an
internship at AGH-UST, Krakow, Poland, related
to physiological signals processing, computer
vision, and machine learning. Since the devel-

opment of her master’s thesis, she has focused her research in the
field of human activity recognition through inertial sensing and signal
processing, namely developing assistive technology for the elder and
sports performance monitoring solutions.

Inês Sousa received the M.Sc. and Ph.D.
degrees in biomedical engineering from the
Instituto Superior Técnico, University of Lisbon,
in 2007 and 2013, respectively. Her Ph.D. thesis
focused on functional magnetic resonance imag-
ing of the brain using quantitative methods and
was developed in collaboration with Siemens
Healthcare. She is currently the Head of Intel-
ligent Systems and a Senior Scientist with
Fraunhofer Portugal AICOS, where she has
been researching on machine learning, signal

processing, and time series analysis, specifically focusing on human
motion analysis based on inertial sensors.

Jaime S. Cardoso (Senior Member, IEEE)
received the Licenciatura (5 year) degree in
electrical and computer engineering, the M.Sc.
degree in mathematical engineering, and the
Ph.D. degree in computer vision from the Univer-
sity of Porto in 1999, 2005, and 2006, respec-
tively. He is currently an Associate Professor
with Habilitation with the Faculty of Engineering,
University of Porto, where he has been teaching
machine learning and computer vision in Ph.D.
Programs and multiple courses for the graduate

studies. He is also the Coordinator of the Centre for Telecommunications
and Multimedia, INESC TEC. His research can be summed up in
three major topics computer vision, machine learning, and decision
support systems. From 2012 to 2015, he served as the President of
the Portuguese Association for Pattern Recognition (APRP), affiliated in
the International Association for Pattern Recognition (IAPR).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

