IEEE

IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

2635

®Sensors Council

A Machine Learning Approach to Road

Surface Anoma

ly Assessment

Using Smartphone Sensors

Akanksh Basavaraju, Jing Du, Fujie Zhou, and Jim Ji

Abstract—Road surface quality is essential for improving
driving experience and reducing traffic accidents. Traditional
road condition monitoring systems are limited in their tem-
poral (speed) and spatial (coverage) responses needed for
maintaining overall road quality. Several alternative systems
have been proposed that utilize sensors mounted on vehi-
cles. In particular, with the ubiquitous use of smartphones
for navigation, smartphone-based road condition assess-
ment has emerged as a promising new approach. In this
paper, we propose to analyze different multiclass supervised
machine learning techniques to effectively classify road sur-
face conditions using accelerometer, gyroscope and GPS data
collected from smartphones. Our work focuses on classifica-

Machine
i Learning Training

Data Pre-

Data Acquisition ¢ Processing

* SWM
* Decision Tree
* Neural Network

* Accelerometer
+ Gyroscope
* GPS Location

+ Labelling
* Filtering
* Feature Extraction

¢ Smooth
¢ Pothole
e Crack

Model
Evaluation

Classification

ing road surface ly using smartphone sensors and machine learning

tion of three main class labels- smooth road, potholes, and deep transverse cracks. We hypothesize that using features
from all three axes of the sensors provides more accurate results as compared to using features from only one axis. We also
investigate the performance of deep neural networks to classify road conditions with and without explicit manual feature
extraction. Our results indicate that models trained with features from all axes of the smartphone sensors outperform
models that use only one axis. We also observe that the use of neural networks provides a significantly improved data
classification. The machine learning approach discussed here can be implemented on a larger scale to monitor roads for
defects that present a safety risk to commuters as well as to provide maintenance information to relevant authorities.

Index Terms— Support vector machines, neural network, multilayer perceptron, decision tree, road condition, pavement
condition, pothole, crack, smartphone sensor, accelerometer.

|. INTRODUCTION

OAD condition monitoring is a challenging worldwide

problem in the field of transportation and road infrastruc-
ture [1], [2]. Poor road surface conditions create a risk of dam-
age to vehicles and increase chances of traffic accidents. Each
year, thousands of people are injured or killed on roadways
due to poor road quality [3]. Significant resources are spent on
regular road repair and maintenance. In 2015, the United States
Congress passed the Surface Transportation Reauthorization
and Reform Act for the maintenance of federal highways over

Manuscript received September 19, 2019; accepted October 23,
2019. Date of publication November 11, 2019; date of current version
February 5, 2020. The associate editor coordinating the review of this
article and approving it for publication was Prof. Meribout Mahmoud.
(Corresponding author: Jim Ji.)

A. Basavaraju and J. Ji are with the Department of Electrical Engi-
neering, Texas A&M University, College Station, TX 77840 USA (e-mail:
akanksh.b @tamu.edu; jimji @tamu.edu).

J. Du is with the Department of Civil and Coastal Engineer-
ing, University of Florida, Gainesville, FL 32611 USA (e-mail:
eric.du@essie.ufl.edu).

F. Zhou is with the Transportation Institute, Texas A&M University,
College Station, TX 77840 USA (e-mail: f-zhou @tti.tamu.edu).

Digital Object Identifier 10.1109/JSEN.2019.2952857

This work is licensed under a Creative Commons Attribution 4.0 License.

a five-year period with a budget of $46 billion per year. In the
survey they noted that nearly 10,000 traffic fatalities each year
involve poor road conditions [4].

Maintaining good road quality is therefore essential not
only to support an efficient road network but also to min-
imize risk of traffic accidents. However, maintaining roads
regularly is a challenging task due to the heavy traffic,
weather conditions and high costs of manpower. Since frequent
repairs are needed to prevent road quality from deteriorating,
a reliable and low-latency road condition monitoring system
is highly desirable to identify critical road segments and to
optimally allocate limited maintenance resources. At present,
road inspection is usually done with a manual process [5].
The manual approach brings two potential problems: variation
in inspection results due to inspectors’ personal bias, and
the difficulty of a high-frequent inspection and coverage.
To overcome the limitations of manual inspection methods,
a variety of automated road surface inspection methods have
been proposed [6], [7]. Representative technologies include
vision based methods [5], [8]-[11], LiDAR scanning [12]
ground penetration radar (GPR) [5], [13], [14], natural lighting
methods [15] and a combination of multiple sensors [16].

For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7147-7920

2636

IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

However, these sensor technologies can be expensive, costing
between $8,000 and $220,000 [17]. Due to the scarce public
funds, such systems cannot be effectively deployed on a
large-scale road network to regularly check for repairs.

To fill the gap, this paper tests an automated, crowdsourcing
based approach that predicts road conditions based on running
vehicles’ vibration data via sensors built in most smartphones.
We recognize that the vehicle vibration data as an instrument
for road damage detection is challenged by the low quality
and variability of the collected data, as it can be affected by
the different models, ages, conditions of the vehicles, as well
as the varying driving behaviors of the drivers. Therefore, this
paper aims to contribute in the following areas:

1. Providing a state of art evaluation of the road inspection
methods;

2. Providing empirical evidence about the feasibility of using
vehicle vibrations for the automated road inspection;

3. Applying and analyzing different machine learning tech-
niques for multiclass classification for vehicle-vibration
enabled road inspection. Specially, a benchmarking study
is performed to identify the potentials and challenges of
multiple machine learning techniques for road damage
recognition.

In this study, the classified road damage types include
smooth roads, potholes and deep transverse cracks. Transverse
cracks were chosen as they pose a higher risk to vehicle safety
and have the highest potential to develop into bigger faults or
potholes. We utilize features extracted from the time domain,
the frequency domain and the wavelet domain from all three
Cartesian coordinate axes of sensor data to train our classifiers.
The remainder of this manuscript provides a review of the state
of art in automated road inspection, the benchmarking study
and findings for future investigations.

Il. RELATED WORKS

At present, road inspection is usually done with a man-
ual process [5]. State Departments of Transportation have
published standard procedures for manual inspection [18],
such as Texas Pavement Management Information System
Rater’s Manual [19]. The manual approach is to visually
inspect road conditions and record data regarding the con-
dition of road surfaces. This can be combined with factors
like ride quality, structural adequacy, skid resistance, climate,
and traffic data to help describe the quality of road net-
works such as the state-maintained highway system [20].
Although easier to implement, the manual inspection is
always costly and inaccurate. As an alternative to the manual
approach, sensor-based approaches have been proposed and
tested. A representative method is via the use of radars. For
example, Benedetto ef al. [21] tested the inspection proce-
dure with GPR. Their data indicates a good performance of
the numerical algorithm and electronic equipment assessing
the reliability of the procedure and shows a 20 percent
or lower false alarm [3]. Following the previous findings,
Benedetto er al. [22] further tested an algorithm based on GPR
data to significantly lower the amount of data to be processed

and the time required for data processing. The method has
also been successfully tested in mobile platforms [23]-[25].
Another track of methods relies on imagery data of pavement
damages. For example, Pu et al. [26] presented a framework
for road damage recognition from mobile laser scanned point
clouds, and achieved an 87% accuracy in pothole recognitions.
Su et al. [15] proposed a dual-light inspection (DLI) method
to predict road damages based on pixel differences under at
least two different lighting conditions. The results based on
212 samples indicate that the DLI method can significantly
reduce false alarms.

Recently a crowdsourcing approach has been tested to
reduce the data collection cost. Potholes Marker [12] and Fill
That Hole [27] are applications developed where users take
photos of potholes and submit them to a central server. They
are less practical on a large scale as users are reluctant to stop
and record the pothole locations. PAVEMON [28] is a GIS
web-based pavement monitoring system by VOTERS that uses
data from multiple sensors such as accelerometer, microscope,
tire pressure sensor, imaging, radar etc. to evaluate different
road distress parameters. However, the need for specialized
vehicular setup restricts the use of this system as a platform
for mass data collection. Nericell [29] and TrafficSense [30],
systems developed by Microsoft Research India, uses sensors
such as accelerometers, microphones and GPS on Windows
smartphones to detect potholes using simple threshold-based
heuristics. These thresholds are assigned based on observation
and hence remain subjective. Wolverine [31] detects road
bumps or potholes based on variations in accelerometer data
perpendicular to the ground. The thresholds are determined
using mean and standard deviation only, ignoring higher order
statistics. Pothole Patrol (P?) [2], developed by Massachusetts
Institute of Technology, is based on a simple machine-learning
approach to analyze patterns in accelerometer data using X-Z
ratio and speed-Z ratio.

Another approach is to measure the International Roughness
Index (IRI) using a quarter-car vehicle math model [32].
Forslof et al. [33] is an Android smartphone application
that surveys road condition and classifies it as good, sat-
isfactory, unsatisfactory and poor based on calculated and
estimated IRI. Li and Goldberg [34] calculated a proxy-
IRI value that is linearly related to IRI. Although IRI is a
common road roughness index measure worldwide, it some-
times fails to recognize isolated faults on smooth roads as
it is calculated for a stretch of road using the road’s pro-
file. Lepine et al. [35], [36] implemented different machine
learning algorithms to separate non-stationary vibrations and
transient shocks in road vehicle vibration (RVV) signals
using accelerometer data. He concluded that machine learning
algorithms could be optimized and tuned to achieve a high
accuracy in detecting road vehicle vibration shocks. However,
the road vehicle vibration signals he used were artificially
generated using non-stationary random vibration and shock
impulses that reproduced typical vehicle dynamic behavior.
Allouch et al. [37] used machine learning techniques such as
C4.5 Decision Tree, SVM and Naive Bayes to label road
conditions as ‘Smooth’ or ‘Potholed’. Bhoraskar et al. [31]
used k-means clustering and SVM to label road conditions

BASAVARAJU et al.: MACHINE LEARNING APPROACH TO ROAD SURFACE

2637

I Data Pre-) Machine
Data Acquisition 7 > % e
Processing Learning Training
* Accelerometer + Labelling = SVM
* Gyroscope » Filtering * Decision Tree
* GPS Location » Feature Extraction * Neural Network

Model
Evaluation

Classification

Fig. 1. Overall block diagram of the proposed system.

as ‘Smooth’ or ‘Bumpy’. Silva et al. [38] approached the
problem with data mining using Scikit-learn and Weka to
detect unlevelled manholes, short bumps and long bumps.
Several other works used similar techniques and focused on
either estimating a roughness metric or detecting potholes
only [39]-[42]. However, effective road lifecycle management
requires timely maintenance in stages prior to pothole for-
mation such as cracking, shoving, delamination etc. Crack
detection using accelerometers is challenging due to its subtle
vibration pattern and vehicle vibration noise. Several video
image processing techniques have been suggested [25], [43],
but these techniques are memory and computation intensive.
With significant advancements in big data analytics and a push
for smart cars in recent years, a high volume of driving data
can be collected from users and processed to obtain useful
information. Li and Goldberg [34] and Masino et al. [44]
proposed the use of crowd-sensing to obtain data and classify
road conditions.

To summarize the literature review, there are certain areas
that can be explored or improved for the purpose of road
anomaly detection using smartphone sensors. The majority of
current literature focuses on binary classifications using simple
machine learning techniques or threshold-based heuristics.
Multiclass classification has not been explored for different
stages of road deterioration. Data used for anomaly detection
only focuses on vibration signals collected from acceleration
data in the direction of gravity. Information and relationships
between data that may be present in other directions orthogo-
nal to the direction of gravity are not taken into consideration.
Finally, the use of neural networks for multiclass classification
has not been explored.

I1l. METHODS

Our goal is to analyze different multiclass supervised
machine learning techniques to effectively classify road
surface conditions using data collected from smartphones.
We investigate our conjecture that using features from all three
axes of the sensor provides more accurate results as compared
to using only one axis. We also investigate the performance
of deep neural networks to classify road conditions without
explicit manual feature extraction.

Our general methodology consists of five stages whose
system block diagram is shown in Fig. 1. The data acquisition
stage deals with obtaining and recording data required for
our system. This data is acquired using the accelerometer,
gyroscope and GPS sensors present in smartphones. The data

collected is then passed through a pre-processing stage where
the raw data collected is labelled with appropriate road condi-
tions and then filtered prior to extracting required features. The
features extracted are then passed to the training stage of vari-
ous machine learning algorithms like SVM, Decision Tree and
Neural Networks to obtain a trained machine learning model.
These models are then evaluated with various performance
metrics and finally, the classification stage classifies unlabeled
data to determine the appropriate road condition label. We then
compare the performance of the various algorithms to test our
hypothesis. In our study, all data processing, machine learning
training, and model evaluation were performed offline. For
real-world applications, only filtering and feature extraction
and classification will be needed after an optimal processing
pipeline is selected.

A. Data Acquisition

To build the system described above, an Apple iPhone 6 was
chosen to collect accelerometer, gyroscope and GPS data in
this pilot study. The device was chosen due to our familiarity
with programming on iOS devices. We do not anticipate
difficulty implementing the data acquisition system in Android
devices. The iPhone 6 contains two separate accelerometer
chips- Bosch BMA280 and InvenSense MPU-6700 [45]. The
InvenSense MPU-6700 sensor operates as a six-axis com-
bination gyroscope-accelerometer, whose specifications are
comparable to the InvenSense MPU-6500. The chip has a
specified output data rate of 4,000 samples per second which
is common for accelerometers in most smartphones available
in the market today. Although they are capable of sampling at
4,000 samples per second, operating systems such as Android
and iOS restrict the output data rate to reduce power consump-
tion. Our initial analysis with Apple iOS version 11.2.6 shows
that the operating system restricts the maximum sampling
frequency of the accelerometer and gyroscope that is available
to app developers through Xcode to approximately 100Hz.

Three different cars were used as data collection vehicles to
take into consideration the differences in the suspension qual-
ity of different types of cars. A Ford Focus sedan, a Ford Focus
hatchback and a Subaru Outback SUV were used to represent
compact, mid-size and SUV car types. Generally, the type and
condition of the car affects the vibration recorded [40], [46].
An 10S app called ‘Vibration Recorder’ was developed to
record Accelerometer and Gyroscope data at 100Hz, GPS
longitude and latitude data at 1Hz and their corresponding
Epoch/UNIX timestamps. The iPhone running the Vibration
Recorder app was mounted to the windshield of the car with
a phone mount as shown in Fig. 2.

A DJI Osmo was used to record video of the road surface
to facilitate the road condition labelling in the pre-processing
stage. The Osmo was mounted on the vehicle’s hood and
angled towards the road using a DJI Osmo Vehicle Mount. The
video was recorded at 720p and 60FPS to obtain clear views
of the road ahead. In order to synchronize the video frames
with the data recorded by the Vibration Recorder, another
smartphone that displayed the Epoch/UNIX timestamp was
placed in the field of view of the Osmo. The Osmo setup and
a snapshot of its field of view are shown in Fig. 3.

2638

IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

wilAitel T @D 917 AM 7 5%

Vibration Recorder

Acceleration In X:
Acceleration in Y:
Acceleration in Z:

Rotation About X:
Rotation About Y:
Rotation About Z:

Latitude Value:
Longitude Value:
Current Speed:

-0.052139
-0.529999
-0.844940

-0.0913
-0.0099
-0.0117

12.87916574
7756432672
-1.0000

Timestamp:
1514605638.823450

Fig. 3. Osmo setup and snapshot of the Osmo setup’s field of view.

The Osmo’s position and angle of elevation was measured
and recorded to estimate the distance between the road ahead
and the car tires using trigonometric relationships. A total of 4
data collection runs were conducted in and around College
Station, Texas, covering road surfaces with asphalt pavements.

B. Data Pre-Processing

Data acquired was pre-processed in several stages to make
it more coherent and pragmatic. First, the acceleration data
collected was virtually reoriented to a global frame of refer-
ence to remove variations due to the phone’s position and
orientation. The acceleration and gyroscope measurements
were recorded in a three-dimensional Cartesian coordinate
system with respect to the phone’s frame of reference as
shown in Fig. 4. To maintain uniformity and integrity of the
data collected from multiple data runs, the phone’s frame of
reference was transformed to a global frame of reference with
respect to the ground as shown in Fig. 5.

The reorientation algorithm performs accelerometer data
reorientation using Euler’s angles, which form a representation
of the spatial orientation of a certain reference frame as a com-
bination of three orthogonal elemental rotations. Ideally, when

Fig. 4. Cartesian coordinate axes of iPhone accelerometer and
gyroscope (adapted from [47]).

+Z'

Fig. 5. Global frame of reference: Cartesian coordinate axes w.r.t.
ground.

a car is at rest on a flat surface, the acceleration values
would be:

ay =0m/s?, ay, = 9.81m/s* and a, = Om/s’

Equations (1) to (4) are used to calculate two of the three Euler
angles and reorient acceleration values to the global frame
of [48]. 'y, a’ya’; are the acceleration values with respect to
the global reference frame while a and § are the roll and pitch
angles, respectively. Fig. 6. shows the plot of the acceleration
data of a 1.5s window before and after reorientation.

o = tan”! (a_y) = tan~! . S 1

Gz g vV (ay)2 + (az)2 v
= cos (f) ax + sin (B) sin (a) ay + cos (a) sin (f) a; (2)
= cos (a)ay — sin (a) a, 3)
a' ; =—sin (f) ax+cos (f) sin (a) ay+cos (a) cos (B)a; (4)

a

)
~ o~ e~

The next stage of pre-processing requires the road surface
condition to be labelled in order to obtain the ground truth for
our supervised machine learning algorithms. Road pavement
surface was classified as Potholes, Deep Transverse Cracks or
Smooth Road based on guidelines and descriptions provided
in pavement maintenance manuals from the Texas Department
of Transportation [20], [49]. Transverse cracks that created a
pavement elevation or depression of over 0.5 inches at the
position of the crack were considered to be Deep Transverse
Cracks.

BASAVARAJU et al.: MACHINE LEARNING APPROACH TO ROAD SURFACE

2639

X-Axis Data X'-Axis Data
02
E i =
8 onbe WU innd 8 0L
Goapy f 1" NParrin g 8 Ol ol W mereminon
0.6 02
0 05 1 15 0 05 1 15
time(s) time(s)
Y-Axis Data Y'-Axis Data
— = -08
Y o s = Y y
S W WAty g M e 1 M
£ -02 \ 2 VoY
0s <2 |
“o 05 1 15 0 05 1 15
time(s) time(s)
Z-Axis Data Z'-Axis Data
5 -04 i VJ] = 02 |
b MW A o |
[*0 W) M A o 0 MJ‘\
g 08 VM T E el i
08
0 05 1 15 0 05 1 15
time(s) time(s)

Fig. 6. Reorientation of acceleration data to global frame of reference.

Fig. 8. Road condition classifier software with tire-trajectory overlay.

A custom software application was developed in Java plat-
form to help label the recorded video data [50]. In its current
form, the software runs as a stand-alone program, even though
it can be potentially extended to serving as a web-based portal
for crowdsourcing. It enables the user to perform standard
video playback operations such as play, pause, fast-forward,
rewind and view frame-by-frame. Since our interest lies only
in the section of the road that the car tires travel over, it also
provided a feature to overlay the projected tire-trajectory onto
the video frames as shown in Fig. 8. Instances where the car
tires partially travel over a road anomaly was labelled as an
anomaly if it covered at least 60% of the tire width. Finally,
the user assigns a label to the road segment by selecting

Before Filtering Before Filtering
5 81
c c
=l S
® ®©
g 5 0 %W i, Y
2 8
8 8
<< - < -1
0 2 4 6 8 10
Time (s) Time (s)
After Filtering After Filtering
81 cF
c c
& S
go Wwww iy || o
o] £2
]]
8 8
< -1 < -1
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Fig. 9. Acceleration signal in X’ and Z’ axis before and after filtering.

a certain frame and specifying the anomaly and the current
timestamp displayed.

Next, in order to geographically localize the instances of
road conditions recorded, the recorded GPS data was synced
with the vibration data collected using the timestamps. The
speed of the vehicle was calculated based on the rate of change
of GPS coordinates. However, due to differences in sampling
rates of the Accelerometer/Gyroscope and the GPS sensor,
the GPS data and the vehicle speed was interpolated using a
spline function. This provided a reasonably accurate estimation
of the location and speed at a higher sampling rate.

Furthermore, to remove certain driving conditions that are
not related to the quality of road surface such as acceleration,
stopping, braking, lane changing, turning etc., the acceleration
data in the X’ and Z’ axis was filtered with a Butterworth high-
pass filter of order 11, cut-off frequency of 3Hz and attenuation
of 80dB. The filter removes low frequency components related
to these events while preserving any high frequency changes
due to road anomalies as shown in Fig. 9. To analyze the
information contained in higher frequency bands due to the
anomalies, a low pass filter or smoothing filter was not applied.

The continuously filtered data was then converted into
segments of data windows, each with 100 data samples and a
50% overlap with the previous window. Labeled anomalies and
smooth road segments were extracted and stored separately for
further processing described in the feature extraction section.
From all data collected, a dataset of 1010 window segments
was taken into consideration which contained 149 pothole
instances, 45 deep crack instances and 817 smooth road win-
dow segments. The filtered data segments and their associated
labels (smooth road, potholes, and deep transverse cracks)
were then saved for next-step processing, which is feature
extraction.

C. Feature Extraction

There are different types of features used for the purpose
of road vibration analysis. We consider three broad categories,
namely, time domain features, frequency domain features, and
wavelet domain features.

Previous works in literature only used a few selected fea-
tures that were considered to provide good distinction between

2640

IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

road conditions. However, we wanted to comprehensively
explore various possible features to extract any useful infor-
mation provided by them. Gadelmawla et al. [51] discussed
59 different surface roughness parameters. After reviewing
various possible parameters mentioned by Gadelmawla et al.
and previous literature, various time domain measures such
as Maximum Value, Minimum Value, Mean Value, RMS
Value, Peak-to-Peak Value and Ten-Point Average Value were
calculated from the time domain signal and its peaks, troughs
and signal envelopes.

In the frequency domain, the power spectral den-
sity of vibration signals provides very useful information
that could be used to distinguish different road condi-
tions [52], [53]. The power spectral density was calcu-
lated for the windowed signals and the entire bandwidth
was divided into smaller bands of 5Hz each. For each of
these bands, average band power, RMS band value and
maximum band value were considered as frequency domain
features.

In the wavelet domain, Mortlet wavelets and Daubechies
wavelets were deemed suitable to analyze vibration pat-
terns due to road conditions following a review of litera-
ture [54]-[56]. Griffiths [54] conducted an extensive study
to determine suitable mother wavelets by comparing Haar,
Mortlet, Mexican Hat and Daubechies 6 and 10. She con-
cluded that the Mortlet wavelet as well as Daubechies
6 and 10 wavelets could be used to effectively analyze road
vehicle vibrations. Upon preliminary study, scales 4 and 5 for
each of the three wavelets showed the most distinguishable
characteristics for different road conditions. RMS values and
ten-point averages of these scales were considered as wavelet
domain features.

In previous literature, as mentioned in the introduction
section, acceleration in the Y’ direction was considered to
contain most of the features needed to adequately classify
road anomalies. Accelerations in X’ and Z’ directions were
considered for driving events only. However, we believe that
more information regarding road anomalies presents in the
X’ and Z’ directions. For example, when a car hits a pothole
with its left front wheel, there is a sudden deceleration in the
7' direction as well as a sudden tilt in the X’ direction. Such
information may contribute to distinguishing between cracks
and potholes, considering that cracks tend to span the entire
width of the road whereas potholes are more localized. In total,
54 features were extracted from the accelerometer data for
each of the three axes. Hence, each feature vector consisted
of 162 feature values. These features include Maximum Value,
Minimum Value, Mean Value, RMS Value, Peak-to-Peak Value
and Ten-Point Average Value calculated from time-domain
signals; average band power, RMS band value and maximum
band value from power spectral density; and RMS values
and ten-point averages of three Wavelets at scales 4 and 5
(Mortlet, Daubechies 6 and 10 Daubechies wavelets) in the
Wavelet domain. Note that signals from all three axes were
included. These features along with the manually labelled
road conditions for the 1011 data sets were then used in
the training, validating, and testing of the machine-learning
algorithms.

Raw Data

Feature
extraction

hyper-parameter selection Predicted
Train t i Labels
train |
— |
Training H Validation m

[Validation | furz f
| Dataset |

Features \
and Labels |

estimate

Testing
Dataset

Fig. 10. General workflow diagram of machine learning algorithms.

D. Machine Learning Approaches

Machine Learning (ML) is an application of Artificial
Intelligence that provides computer systems with the ability
to learn and improve from experience without explicit pro-
gramming. Once a computer algorithm is trained in ML, it can
apply the relationship learnt during training to solve similar
problems. In this work, we apply and analyze different ML
algorithms for road surface assessment collected with sensors
on smartphones.

Fig. 10. shows the general workflow for both classification
and regression type of machine learning approaches. It begins
with a dataset of raw data whose class labels are previously
known. Vehicle vibrations are acceleration signals recorded by
the smartphone that are labelled with different road conditions.
This input dataset is processed to obtain various attributes
of the data called features that are compatible with machine
learning algorithms. Once the features and class labels are
extracted, the features list and corresponding class labels are
partitioned into three sets: the training dataset, validation
dataset and testing dataset. All three sets have the same
distribution of classes in terms of proportion. The training set
is used to train the algorithm and develop the classifier model.
The validation dataset is then used to validate the performance
of the trained classifier. If there is not enough data to create a
validation set, there are several other approaches for validation
of models such as cross validation where the entire data is
used for both training and validation. The validation phase is
useful to compare and correlate the performance of different
models and choose the best one that fits the problem. To test
the model on new data, the testing dataset is used as input
to the final model to predict output data labels. Note that we
used supervised ML models because they will provide a direct
outcome for the road conditions based on the collected signals.
Various machine learning classification algorithms have been
developed, which makes the selection of a classifier a difficult
task. Since there are no standardized nomenclature in machine
learning, similar classification algorithms may be expressed
with different names. MATLAB®incorporates the Statistics
and Machine Learning Toolbox, which includes implemen-
tations of various machine learning classifiers [57]. These
classifiers can be primarily divided into seven categories-
Naive Bayes Classification, Discriminant Analysis, Ensembles,
Decision Trees, Nearest Neighbors, Support Vector Machines
(SVM), and Neural Networks [58], [59]. For our study, SVM,
Decision Trees, and Neural Networks were chosen as they are
popular and reliable techniques used for classification of road
vibration data according to the literature.

BASAVARAJU et al.: MACHINE LEARNING APPROACH TO ROAD SURFACE

2641

For ML training and evaluation, the complete dataset
of 1010 samples, each consisting of a feature vector and road
condition label, was randomized and divided into training and
testing dataset with an 80:20 ratio, keeping the proportion of
the classes in each dataset constant. All data was collected
using the device described in Section III.A and processed
using the procedures described in Section III.B. To investigate
whether the models trained with input features extracted from
all three axes perform better than using features from Y’ axis
only, two datasets containing 162 features and 54 features
were created for each case respectively. The parameters used
to analyze and quantify results are discussed in the Model
Evaluation Parameters section.

1) Support Vector Machines (SVM): Support Vector Machine
is a supervised machine learning model that evaluates input
data and recognizes patterns for classification and regres-
sion analysis. SVM performs classification by finding the
hyperplane that maximizes the margin between data point
clusters corresponding to different classes. SVMs are versatile,
memory-efficient and effective in high-dimensional spaces.
Generally, SVM is used to classify data that have two distinct
labels. In order to execute multi-class SVM, MATLAB®
incorporated the ‘ClassificationECOC’ class in their Statistics
and Machine Learning Toolbox. ClassificationECOC is an
Error Correcting Output Code (ECOC) classifier used to
perform multiclass learning by reducing the classifier to simple
binary classifiers such as SVMs. An ECOC model reduces a
classification problem involving at least three classes into a
set of binary classifiers. If M is the coding design matrix with
elements my; and s; is the predicted classification score for
the positive class of learner /, a new observation is assigned
to the class & that minimizes the aggregation of losses for the
L binary learners given by (5) [60].

L
i = argmin D=y lmualg(mu, s1)

k Sy Iml

For our study, SVM was implemented in two ways- the
Simple SVM and Cross Validated SVM. The Simple SVM
implementation uses the default SVM binary learners and one-
versus-one coding design to train the SVM model. However,
this type of model tends to have the problem of over-fitting.
In order to try and overcome this problem, a subset of data
called validation set is used to test the model during the train-
ing phase. Cross validation techniques such as 5-fold cross-
validation, 7-fold cross validation, 10-fold cross-validation
and Leave One Out cross-validation are implemented for our
analysis.

2) Decision Trees: Decision trees, also known as classifica-
tion trees or regression trees, predict output responses based
on input data. Following the decisions in the tree from the
root node to the leaf node gives the output response to that
particular input data [61]. The decision tree is an algorithm
that classifies data through a cascade of statistical tests as
shown in Fig. 11. These tests compare the value that is input
to a node with a threshold value that splits the tree’s path.
Tests can have multiple results and different tree paths can
follow to the same output class label. The complexity of the
tree is defined by the number of branch splits and depending

5)

Test 1
true false
Test 2 Test 3
true false
Test 4 Test 5 true false
true false true false
a b c d e f

Fig. 11. Decision tree structure used in the work.

Hidden Layers

Input Layer Output Layer

Fig. 12. Structure of a neural network classifier with two hidden layers.
In this work, we use 7 to 8 hidden layers.

on its complexity. Decision trees have quick training and
prediction speeds, a moderate predictive accuracy and low
computational memory requirements.

The MATLAB®Statistics and Machine Learning Toolbox
was used to train a binary classification decision tree for
multiclass classification. Allouch et al. used a C4.5 Decision
Tree model for pothole detection and concluded that it is
an accurate classifier [37]. Similar to our approach to SVM,
we develop a simple classification decision tree and a cross
validated tree to reduce over-fitting.

3) Neural Networks: Neural networks represent a popular
machine learning framework that attempts to imitate the learn-
ing pattern of natural biological neural networks in the brain.
A typical neural network consists of inter-connected arithmetic
processors called neurons which produce a sequence of real
valued activation outputs. Neurons present in the input layer of
the neural network are activated through sensor data perceiving
the environment, while neurons present in other layers get
activated through weighted connections from previously active
neurons. Neural network algorithms link the feature vectors
(input layer) to the class labels (output layer) using multi-
layered networks called hidden layers, as shown in Fig.12.
The complexity of the classification problem determines the
number of hidden layers needed. Although neural networks are
powerful, high accuracy algorithms, training them requires a
large dataset. The size of the required dataset also increases
as the number of hidden layers increases.

A multilayer perceptron (MLP) is a class of feedforward
neural networks comprised of at least one hidden layer and
uses backpropagation for training its models [62], [63]. Each
neuron in the hidden layers uses a nonlinear activation function
which distinguishes it from a linear perceptron. Each neuron

2642

IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

RelLU

f(z):{() for z<0

z for z>0

Sigmoid TanH
12 15 10

tanh(z) =
10 (z) T

8
6
4
05 2
0
2

- 4 -2 0 2 4 67 % 4 -2 0 2 4 6 6 4 2 0 2 4 6

Fig. 13. Activation function plots for Sigmoid, Tanh and ReLU.

inputs values from neurons in the previous layer and outputs
the result of a weighted linear summation followed by a
non-linear activation function. The output layer receives the
values from the final hidden layer and outputs the class that
is predicted for that input data. We chose this NN architec-
ture because the signal/feature vectors used in the study are
1-D in nature. For 2-D or higher dimensional data, other NN
architectures such as convolutional NN (CNN) might be more
powerful and appropriate.

To realize MLP networks, the Scikit-learn library for
supervised Neural Network was used [64]. MLP can be
implemented similarly in Matlab and Java platforms. The
training data and the testing data goes through additional
pre-processing where the features are standardized by remov-
ing the mean and scaling to unit variance. This standardization
step is a common requirement for various machine learning
algorithms including MLPs as they may perform poorly if the
individual features do not resemble a standard normal distribu-
tion. The MLP Classifier class available in Scikit-learn creates
a model that optimizes the log-loss function using LBFGS or
stochastic gradient descent. It includes various parameters such
as activation function, hidden layer size, weight optimization
solver, regularization factor, weight update learning rate, etc.
to tune the model to the specific problem [65]. After evaluating
the performance of the classifier for all permutations of para-
meters, the MLP classifier that provided reliable results with
high accuracy consisted of 7 to 10 hidden layers, an LBFGS
weight optimization solver, a constant learning rate for weight
update and an activation function of “Tanh’ or ‘ReLU’.

LBFGS is a limited memory optimizer in the family
of quasi-Newton methods that approximates the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [66], [67]. For
MLPs, the LBFGS solver can converge faster and performs
well when dealing with small datasets. Adam, a stochastic
gradient-based optimizer proposed by Diederik Kingma and
Jimmy Ba was also used in comparison [68], however, Adam
works best in terms of training time and validation scores for
larger datasets with thousands of training samples. A compar-
ison of activation functions ReLLU, Tanh and logistic sigmoid
discussed in the Results Section showed that ReLU and Tanh
perform better.

Since deep neural networks can be used with raw data and
performs feature extraction implicitly, similar MLP classifiers
were designed by providing the raw acceleration data as the
input instead of the extracted features. As a window size
of 100 data points was considered, each input vector had a
length of 100 for the single ¥’ axis and 300 when all three axes
were considered. Providing direct data to a neural network
eliminates the process of manual feature extraction and hence

saves time and memory in the training stage. However, such
networks require a very large dataset in order to extract useful
features and may not give high accuracy for the limited
dataset we possess. Therefore, we explore not only the use
of neural network classifiers in classifying feature vectors but
also classifiers that can classify raw data directly. The results
are provided in the Results section using the performance
evaluation parameters discussed in the next section.

E. Model Evaluation Parameters

To evaluate the performance of the classifiers described in
the previous section, various performance evaluation metrics
are used for machine learning models. For each of the clas-
sifiers, we consider relevant and important parameters which
best enable us to derive a conclusion on its performance.

A confusion matrix is a specific tabular representation of the
performance of a supervised machine learning algorithm. Each
column represents the number of instances of the predicted
class while each row represents the number of instances
of an actual class. Most classification metrics are derived
from the confusion matrix based on the number of true
positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). A classifier’s accuracy, precision and
recall are described in (6).

(TP+TN)
Accuracy = (6)
(TP+TN+ FP + FN)
FP+ FN
Loss = (+) 7
(TP+TN+ FP + FN)
. TP
Precision = ——— (8)
(TP+FP)
Recall = TP)
CAL= TP+ FN)

To evaluate the performance of the Simple SVM and
Simple Decision Tree classifier, the average training loss and
average test accuracy for the trained classifier are recorded.
The average training loss is the average in-sample loss of the
trained classifier model using the training dataset while the
average test accuracy is the average classification accuracy
using the testing dataset for n iterations. The average precision
and average recall for the three distinct classes predicted by
the model are also recorded to analyze what proportion of
positive identifications were correct and what proportion of
actual positives were correctly identified. For cross validated
SVM and cross validated Decision Tree, average training loss
and cross validation error rates for k-fold and leave-p-out cross
validations are recorded. Graphs of these parameters give an
intuitive understanding of their reproducibility.

Similarly, for the MLP classifier, the average training accu-
racy and average test accuracy are recorded for each of the
selected combination of parameters. This provides an overview
of the classifier’s performance while the Precision and Recall
rates for each of the three classes provide more specific insight
into the classifier’s performance.

All algorithms were implemented and tested on an HP
ENVY x360 convertible notebook running on Microsoft
Windows 10 Home OS with an Intel®core™i5-6200 proces-
sor, 2.30GHz CPU and 8GB RAM. SVM and Decision tree

BASAVARAJU et al.: MACHINE LEARNING APPROACH TO ROAD SURFACE

2643

TABLE |
FEATURE EXTRACTION AVERAGE TIME REQUIREMENTS

TABLE Il
SIMPLE SVM IMPLEMENTATION RESULTS

Using Features Using Features P " Using Features from all Using Features from
Parameter from all Axes (ms) from Y’ Axis (ms) arameter Axes Y’ Axis Only
High Pass Filtering 0.0157 0.0157 Avg.Ll;rSaSmmg 0.0279 00773
Time EDotmaltp Feature 15.257 5135 Ave. Test
Xtraction P, 0.8855 0.9015
Frequency Domain Y
. 1.674 1.084
Feature Extraction
) Crack | Pothole | Smooth | Crack | Pothole | Smooth
F\;iz:;e]ti)]?t?g?i?n 52.877 19.01 Avg. Precision | 04025 | 07221 09442 | 03862 | 07479 | 09417
Total 69.823 25.245 Avg. Recall 0.4375 0.6776 | 0.9471 02100 | 0.6568 | 0.9823
algorithms were implemented using the Statistics and Machine TABLE Il
Learning Toolbox on MATLAB®2017, while Neural Network CROSS VALIDATED SVM IMPLEMENTATION RESULTS
MLP implementation was carried out using Scikit-learn on - -
. Using Features from all Using Features from
Python 3.6 environment. Parameter Axes Y Axis Only
Avg, Training 0.0149 0.0663
IV. RESULTS Loss : ’
In this section, we analyze and discuss the obtained results Avg. 5-fold 0.0822 0.0990
and evaluate each of the machine learning model’s capability Loss
for detecting rQad anomalies. The pararpeters. used to mea- Avgi 7-fold 0.0851 0.0990
sure and quantify performance are described in the previous 088
section. . . o . Ave, 10-fold 0.0842 0.0941
To analyze the time requirement significance of extracting
features using all three axes as compared to using only one Oizgo ;ei\(]):s 0.0812 0.0931
axis, a comparison of time required to extract the features was

performed and results tabulated in Table I. These durations
correspond to the average time taken over 200 trial runs. It can
be noted that even though extracting one axis features was
faster, the feature extraction process for both cases were fast
enough to complete the entire process in real time. An analysis
for time taken to classify the data is discussed later in this
section. Since sliding windows of 1 second with 50% overlap
are used, the worst-case time requirement to realize the system
in real-time is 500ms.

A. Support Vector Machines

The Simple SVM was implemented with one hundred
iterations, each using distinct combinations of instances for
the training and testing datasets while maintaining the same
proportion of classes. Average values of evaluation parameters
for these iterations were considered to evaluate the generalized
performance of the algorithm. As discussed earlier, the SVM
was trained separately using features from all three axes as
well as features from only Y’ axis to conduct a comparative
analysis of performance. The simple SVM models trained were
one-vs-one classifiers with equal misclassification cost and
a linear kernel function. The training loss, testing accuracy,
precision and recall rates are tabulated in Table II. The
precision and recall rates are displayed for each of the three
classes to analyze bias.

The cross validated SVM model also implements a one-
vs-one classifier with a linear kernel function and measures
performance using different cross validation methods. The
results of the cross validation ECOC classifier for SVM is
tabulated in Table III.

From Table II, it is observed that the classifier trained with
features from all three axes had a lower loss and outperformed
the classifier trained with features from Y’ axis only. The
average test accuracy was slightly lower when all three axes
are used against only one axis since the number of dependency
variables was greater. The precision and recall rates for the
individual classes were also higher when all three axes are
used. The recall rate for cracks showed the most significant
improvement, increasing by over 20%, while the recall for
smooth road decreased by about 3.5%. The precision and recall
rates for potholes remined very comparable. Table III shows
that the cross validated classifier with features from all three
axes has a lower training loss and lower cross validated errors
as well.

B. Decision Tree

The decision trees were implemented in a similar manner
to SVM, with five hundred iterations of the simple decision
tree being implemented with unique sets of training and
testing data for each iteration. Decision trees are usually
faster to train. However, they create a highly varying set
of hyperparameters with each iteration such as number of
nodes and node thresholds. There is a tradeoff between
speed and reproducibility. The training loss, testing accu-
racy, precision and recall rates of the simple decision tree
implementation are tabulated in Table IV. The results of the
cross validated ECOC classifier for Decision Tree is tabulated
in Table V.

2644

IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

TABLE IV TABLE VI
SIMPLE DECISION TREE IMPLEMENTATION RESULTS MLP IMPLEMENTATION USING RELU- RESULTS
Parameter Using Features from all Using Features from MLP Hidden Using Features from all Using Features from
Axes Y’ Axis Only Layer Count Axes Y’ Axis Only
Avg. Training 0.0199 0.0248 AVG. TEST ACCURACY
Loss 7 0.9212 0.8921
Avg. Test 8 0.9190 0.8919
Accuracy 0.8835 0.8734 AVG. PRECISION RATES
Crack Pothole Smooth Crack Pothole Smooth Crack Pothole Smooth Crack Pothole Smooth
Avg, Precision 0.4348 0.6663 0.9497 0.2925 0.6581 0.9442 7 0.559 0.769 0.969 0.350 0.674 0.962
8 0.550 0.769 0.964 0.345 0.688 0.959
Avg. Recall 0.4121 0.6716 0.9470 0.3080 | 0.6462 | 0.9471
AVG. RECALL RATES
TABLE V Crack Pothole Smooth Crack Pothole Smooth
CROSS VALIDATED DECISION TREE IMPLEMENTATION RESULTS 7 0.611 0.799 0.962 0.342 0.723 0.953
8 0.585 0.781 0.963 0.365 0.708 0.952
Parameter Using Features from all Using Features from
Axes Y’ Axis Only
Avg. Training
Loss 0.0188 0.0267 TABLE VII
Ave. 5-fold MLP IMPLEMENTATION USING TANH- RESULTS
V8 00 0.1178 0.1257
Loss
Avg. 7-fold MLP Hidden Using Features from all Using Features from
Loss 0.1208 0.1109 Layer Count Axes Y’ Axis Only
AVG. TEST ACCURACY
Ave 10-fold 0.1010 0.1218 7 0.9122 0.8978
Loss . :
Ave. L 8 0.9149 0.8950
VE. Leave 0.0970 0.1317 AVG. PRECISION RATES
One Out Loss
Crack Pothole Smooth Crack Pothole Smooth
7 0.486 0.757 0.964 0.395 0.705 0.961
.. . . 8 0.491 0.754 0.967 0.364 0.708 0.958
From Table IV, it is observed again that the classifiers
trained with features from all three axes outperformed the AVG RECALL RATES
classifiers trained with only Y’ axis. Precision and Recall for Crack | Pothole | Smooth | Crack | Pothole | Smooth
cracks increased by over 10% each and training loss and test- 7 0498 | 0774 | 095 [0409 | 0738 [0956
ing accuracy shows slight improvements. Table V shows that 8 0529 | 0782 1 0958 | 0416 | 0718 | 0955

the cross validated classifier with all axes also performs better
and shows lower training loss and cross validation errors.
However, when compared to SVM performance, the cross-
validation errors are higher.

C. Neural Networks

The preliminary analysis stage of implementing an MLP
neural network classifier involved comparison of test accu-
racy, precision and recall for the various combinations of
parameters that were chosen. Twenty iterations of each set
of parameters were implemented and on inspection of the
output performance metrics, the following conclusions were
made: classifiers that implemented the Adam weight opti-
mization solver gave a slightly better overall test accuracy
than the LBFGS when used with activation function ReLU
and comparable accuracy when used with activation function
Tanh. However, the individual precision and recall rates for
Crack and Pothole was much lower for Adam as compared to
LBFGS. Classifiers that implemented LBFGS converged faster
than Adam when the number of hidden layers was small but
increases as the neural network grew deeper with more hidden
layers. Comparison of precision and recall rates showed that
the Tanh activation function gave poor precision and recall

for cracks which was compensated in overall accuracy by
high precision and recall for smooth road. After the analysis,
it was concluded that a classifier that implements LBFGS
solver and hidden layer size 7 and 8 gave the most optimal
results. However, a trade-off existed between ReLLU, which
yielded better precision for cracks, and Tanh, which yielded
better precision for smooth road but gave very poor precision
rates for cracks.

The final analysis compared the performance of the MLP
neural networks for input feature vector lengths 162 and
54 while implementing ReLU and Tanh with LBFGS. The test
accuracy, precision and recall for these models are tabulated
in Table VI and Table VII.

Based on Table VI and Table VII it can be observed that the
average test accuracy, precision and recall rates were higher for
the MLP models using features from all three axes compared
to only a single axis. In models trained using features from
only one axis, using Tanh as the activation function yielded
higher precision and recall rates among the three classes.
However, when utilizing features from all three axes, ReLU
standed out in its high precision and recall rates for cracks.

BASAVARAJU et al.: MACHINE LEARNING APPROACH TO ROAD SURFACE

2645

TABLE VIII
MLP CLASSIFICATION USING DIRECT DATA FOR RELU- RESULTS
MLP Hidden Using Features from all Using Features from
Layer Count Axes Y’ Axis Only
AVG. TEST ACCURACY
7 0.8027 0.8157
8 0.7946 0.8112
AVG. PRECISION RATES
Crack Pothole Smooth Crack Pothole Smooth
7 0.283 0.329 0.918 0.271 0.423 0.911
8 0.408 0.301 0.906 0.258 0.469 0.905
AVG. RECALL RATES
Crack Pothole Smooth Crack Pothole Smooth
7 0.139 0.672 0.912 0.156 0.607 0.911
8 0.142 0.673 0.919 0.141 0.621 0.921
TABLE IX
CLASSIFIER PERFORMANCE: TESTING TIME
. Avg. Time to Classify
Classifier One Window (us)
SVM 294
Decision Tree 48
MLP1 36.0
MLP2 (Direct Data) 72.1

The precision and recall rates for potholes and smooth roads
remained quite similar between the two activation functions.

In order to test performance of the MLP Neural Network
classifiers in classifying road vibration data without manually
performing feature extraction prior to training, the acceleration
data was directly used as the input to the neural network and
was evaluated over 20 iterations. The single axis input vector
contained length 100 and input vector with all axes had length
300 with data each axes concatenated end to end. An initial
analysis regarding choice of activation function showed that
Tanh activation function failed to produce significant preci-
sion and recall rates for cracks. Therefore, only ReLU was
considered for the purpose of analyzing MLP classifiers using
direct data. The average test accuracy, precision and recall for
direct data input using ReLU activation function is tabulated
in Table VIIIL.

It is observed that the average test accuracy of MLP models
using direct data was lower compared to MLP models trained
using extracted features as input. The average precision and
recall rates for the case of cracks and potholes were also
lower. However, it was already anticipated that training neural
networks without features would require a larger dataset and
we were limited by the size and composition of our data.

The main advantage of using Neural Networks without
feature extraction is the time saved in feature extraction when
realizing real time systems. Earlier, we saw that on average,
the feature extraction required approximately 70ms and 25ms
for the case of 3 axes and 1 axis respectively. Table IX

shows the average time required to classify a single data
window using data from all three axes for different trained
machine learning algorithms discussed in this paper. Since
each of the classifiers take classification times in the order of
microseconds, using MLP with direct data as the input would
save computation time for feature extraction. When realizing
such a system in real time, this saves significant computation
time.

V. DISCUSSION

Based on the results of the study, we observed that the
machine learning approaches implemented were effective in
classifying road anomalies such as cracks and potholes. Clas-
sifiers trained using features from all axes proved to be more
accurate when compared to features from only one axis. Since
our approach of extracting a large number of features from all
three axes to train multiclass machine learning classifiers was
a novel approach, our results extended in current literature.

There are certain limitations in our current work that shall
be addressed in future works. The relatively small size of our
training dataset can cause loss of accuracy and precision. The
disproportional distribution of instances of cracks, potholes
and smooth road conditions introduces a bias and may have
affected the individual precision and recall rates. Since neural
networks generally require a very large data set to accurately
train itself using direct data, results can be improved by
addressing our shortage of data. For our study, we imple-
mented a fully connected MLP network with equal number
of neurons in each hidden layer. Exploring different neural
network architectures could help improve results. A separate
study was conducted to analyze the influence of different data
acquisition conditions such as the type of car, quality of car
suspension, position of smartphone, use of high sampling rate
accelerometers etc. It was seen that these factors significantly
impacted the quality of signal captured and were important
factors to be considered in future works. We also observed that
the machine learning algorithms discussed in this paper could
be used to classify road vibration data very quickly after the
classifiers were trained. This indicates the possibility of scaling
up the implementation of these approaches using crowd-sensed
data for real time detections.

VI. CONCLUSION

Based on the results and discussions presented in this paper,
it can be concluded that the use of machine learning techniques
to classify road anomalies based on sensor data collected from
smartphones is a viable and cost-effective way of monitoring
road conditions. Machine learning models trained with features
extracted from all three coordinate axes give significantly
higher accuracy, precision and recall rates as compared to
models trained with features from only the axis perpendicular
to ground. This trend is observed in all three machine learn-
ing techniques explored in this paper. It supports our initial
hypothesis that useful and relevant information regarding the
road condition presents in data collected with respect to all
three coordinate axes. MLP neural networks perform partic-
ularly well at classifying potholes, cracks and smooth road

2646

IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

when trained with features extracted from raw data. The use of
neural networks trained using direct input data has immense
potential in road surface anomaly assessment using sensors.
They show potential for real time big data analytics. With the
expected increase in autonomous vehicles that possess multiple
sensors, more data would become available for road surface
assessment to improve safety and infrastructure quality.

ACKNOWLEDGMENT

The authors would like to thank M. Saulnier, D. Knox and
K. Tan, students at Texas A&M University, for their support
and contribution in collecting and labeling data for this project.

(1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]
[20]

[21]

[22]

REFERENCES

R. Bishop, “A survey of intelligent vehicle applications worldwide,” in
Proc. IEEE Intell. Vehicles Symp., Oct. 2000, pp. 25-30.

J. Eriksson, L. Girod, B. T. Hull, R. Newton, S. Madden, and
H. Balakrishnan, “The pothole patrol: Using a mobile sensor network
for road surface monitoring,” in Proc. 6th Int. Conf. Mobile Syst., Appl.,
Services, Jul. 2008, pp. 29-39.

Traffic Safety Facts—Crash Stats, U.S. Department of Transportation,
Washington, DC, USA, Jun. 2015.

(2002). Pothole. [Online]. Available: http://www.pothole.info

R. Medina, J. Gémez-Garcia-Bermejo, and J. E. Zalama, “Automated
visual inspection of road surface cracks,” in Proc. Int. Symp. Automat.
Robot. Construct. (ISARC), 2010, pp. 14-20.

J. D. Achenbach, “On the road from schedule-based nondestructive
inspection to structural health monitoring,” in Proc. 6th Int. Workshop
Struct. Health Monit., Quantification, Validation, Implement. (IWSHM).
Stanford, CA, USA: DEStech, 2007, pp. 16-28.

S. Cafiso et al., “Tools for road inspection and safety management,” in
Proc. 3rd Int. Conf. Trans. Infrastruct. Pisa, Italy, 2014.

R. A. Ferguson et al., “Road pavement deterioration inspection system,”
Google Patents 6615648 B1, Sep. 9, 2003.

Y. Huang and B. Xu, “Automatic inspection of pavement cracking
distress,” J. Electron. Imag., vol. 15, no. 1, Jan. 2006, Art. no. 013017.
E. Salari and G. Bao, “Automated pavement distress inspection based on
2D and 3D information,” in Proc. IEEE Int. Conf. Electro/Inf. Technol.,
May 2011, pp. 1-4.

S. Varadharajan, S. Jose, K. Sharma, L. Wander, and C. Mertz, “Vision
for road inspection,” in Proc. IEEE Winter Conf. Appl. Comput. Vis.,
Mar. 2014, pp. 115-122.

Pothole Marker And More APK, Mountain View, CA, USA, Google
Play, 2017.

Roadscanners oy. (1998).
http://www.roadscnners. fi

M. R. Mahmoudzadeh, J. B. Got, S. Lambot, and C. Grégoire, “Road
inspection using full-wave inversion of far-field ground-penetrating radar
data,” in Proc. 7th Int. Workshop Adv. Ground Penetrating Radar,
Jul. 2013, pp. 1-6.

Y.-S. Su, S. R. Sukumar, A. F. Koschan, D. L. Page, and M. A. Abidi,
“Dual-light inspection method for automatic pavement surveys,”
J. Comput. Civil Eng., vol. 27, no. 5, pp. 534-543, Jul. 2012.

S.-J. Yu, S. R. Sukumar, A. F. Koschan, D. L. Page, and M. A. Abidi,
“3D reconstruction of road surfaces using an integrated multi-sensory
approach,” Opt. Lasers Eng., vol. 45, no. 7, pp. 808-818, Jul. 2007.

J. Budras. (Aug. 2011). A Synopsis on the Current Equipment Used
for Measuring Pavement Smoothness. [Online]. Available: http://www.
fhwa.dot.gov/pavement/smoothness/rough.cfm

L. M. Pierce, G. McGovern, and K. A. Zimmerman, “Practical guide for
quality management of pavement condition data collection,” U.S. Dept.
Transp., Federal Highway Admin., Tech. Rep., Feb. 2013.

Pavement Management Information System—Rater’s Manual, Texas
Dept. Transp., Austin, TX, USA, 2016.

Texas DOT Pavement Management Information System (PMIS) Rater’s
Manual, Texas State Dept. Transp., Austin, TX, USA, 2018.

A. Benedetto, F. Benedetto, F. de Blasiis, and M. R. Giunta, “Reliability
of Radar Inspection for Detection of Pavement Damage,” Road Mater.
Pavement Des., vol. 5, no. 1, pp. 93-110, 2004.

F. Benedetto and F. A. M. Tosti Alani, “An entropy-based analysis of
GPR data for the assessment of railway ballast conditions,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 7, pp. 3900-3908, Jul. 2017.

Roadscanners. [Online]. Available:

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

F. Benedetto and A. A. Benedetto Tedeschi, “A mobile Android applica-
tion for road and pavement inspection by GPR data processing,” in Proc.
15th Int. Conf. Ground Penetrating Radar, Jun./Jul. 2014, pp. 842-846.
F. Benedetto and A. A. Benedetto Tedeschi, “GPR image and signal
processing for pavement and road monitoring on Android smartphones
and tablets,” in Proc. EGU Gen. Assem. Conf. Abstr., May 2014.

A. Tedeschi and F. Benedetto, “A real-time automatic pavement crack
and pothole recognition system for mobile Android-based devices,” Adv.
Eng. Inform., vol. 32, pp. 11-25, Apr. 2017.

S. Pu, M. Rutzinger, G. Vosselman, and S. O. Elberink, “Recognizing
basic structures from mobile laser scanning data for road inventory stud-
ies,” ISPRS J. Photogramm. Remote Sens., vol. 66, no. 6, pp. S28-S39,
Dec. 2011.

(2015). Fill That Hol. Accessed: Dec. 2015. [Online]. Available:
https://www.fillthathole.org.uk/iphone

S. S. Shamsabadi and M. R. Wang Birken, “PAVEMON: A GIS-
based data management system for pavement monitoring based on large
amounts of near-surface geophysical sensor data,” in Proc. 27th Annu.
Symp. Appl. Geophys. Eng. Environ. Problems (SAGEEP), Mar. 2014.
P. Mohan and V. N. Padmanabhan, “Nericell: Rich monitoring of road
and traffic conditions using mobile smartphones,” in Proc. 6th ACM
Conf. Embedded Netw. Sensor Syst., Nov. 2008, pp. 323-336.

P. Mohan, V. N. Padmanabhan, R. Ramjee, and V. Padmanabhan,
“Trafficsense: Rich monitoring of road and traffic conditions using
mobile smartphones,” Microsoft Res., Washington, DC, USA, Tech. Rep.
MSR-TR-2008-59. Apr. 2008.

R. Bhoraskar, N. Vankadhara, B. Raman, and P. Kulkarni, “Wolverine:
Traffic and road condition estimation using smartphone sensors,” in
Proc. 4th Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2012,
pp. 1-6.

M. W. Sayers, “The little book of profiling: Basic information about
measuring and interpreting road profiles,” Univ. Michigan, Ann Arbor,
MI, USA, Tech. Rep., 1998.

L. Forslof and H. Jones, “Roadroid: Continuous road condition monitor-
ing with smart phones,” J. Civil Eng. Archit., vol. 9, no. 4, pp. 485496,
Apr. 2015.

X. Li and D. W. Goldberg, “Toward a mobile crowdsensing system
for road surface assessment,” Comput., Environ. Urban Syst., vol. 69,
pp. 51-62, May 2018.

J. Lepine, “An optimised machine learning algorithm for detecting
shocks in road vehicle vibration,” Ph.D. thesis, Victoria Univ., Footscray
VIC, Australia, 2016.

J. Lepine, V. Rouillard, and M. Sek, “On the use of machine learning
to detect shocks in road vehicle vibration signals,” Packaging Technol.
Sci., vol. 30, no. 8, pp. 387-398, Aug. 2017.

A. Allouch, A. Koubaa, T. Abbes, and A. Ammar, “Roadsense: Smart-
phone application to estimate road conditions using accelerometer and
gyroscope,” IEEE Sensors J., vol. 17, no. 13, pp. 42314238, Jun. 2017.
N. Silva, J. Soares, V. Shah, M. Y. Santos, and H. Rodrigues, “Anomaly
detection in roads with a data mining approach,” Procedia Comput. Sci.,
vol. 121, pp. 415-422, Jan. 2017.

K. Chen, M. Lu, X. Fan, M. Wei, and J. Wu, “Road condition monitoring
using on-board three-axis accelerometer and GPS sensor,” in Proc.
6th Int. ICST Conf. Commun. Netw. China (CHINACOM), Aug. 2011,
pp. 1032-1037.

V. Douangphachanh and H. Oneyama, “A model for the estimation
of road roughness condition from sensor data collected by Android
smartphones,” J. Jpn. Soc. Civil Eng., vol. 70, no. 5, pp. 103-111, 2014.
F. Seraj, B. J. van der Zwaag, A. Dilo, T. Luarasi, and P. Havinga,
“RoADS: A road pavement monitoring system for anomaly detection
using smart phones,” in Big Data Analytics in the Social and Ubiquitous
Context. Springer, 2015, pp. 128-146.

G. Singh, D. Bansal, S. Sofat, and N. Aggarwal, “Smart patrolling: An
efficient road surface monitoring using smartphone sensors and crowd-
sourcing,” Pervasive Mobile Comput., vol. 40, pp. 71-88, Sep. 2017.
A. Mohan and S. Poobal, “Crack detection using image processing:
A critical review and analysis,” Alexandria Eng. J., vol. 57, no. 2,
pp. 787-798, Jun. 2018.

J. Masino, J. Thumm, M. Frey, and F. Gauterin, “Learning from the
crowd: Road infrastructure monitoring system,” J. Traffic Transp. Eng.,
vol. 4, no. 5, pp. 451463, Oct. 2017.

J. Dixon-Warren, “Comparing the invensense and bosch accelerometers
found in the iPhone 6,” Chipworks, Sep. 2014. Accessed: Dec. 5, 2019.
[Online]. Available: https://www.macrumors.com/2014/09/26/iphone-6-
6-plus-two-accelerometers/

BASAVARAJU et al.: MACHINE LEARNING APPROACH TO ROAD SURFACE

2647

[40]

[47]
(48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
(58]

[59]

[60]
[61]

[62]

[63]

[64]
[65]
[66]

[67]

[68]

V. Douangphachanh and H. Oneyama, “Formulation of a simple model
to estimate road surface roughness condition from Android smartphone
sensors,” in Proc. IEEE 9th Int. Conf. Intell. Sensors, Sensor Netw. Inf.
Process. (ISSNIP), Apr. 2014, pp. 1-6.

Features for Expanded Ad Units, Apple, Cupertino, CA, USA, Jun. 2015.
V. Astarita et al., “A mobile application for road surface quality control:
UNIquALroad,” Procedia Soc. Behav. Sci., vol. 54, pp. 1135-1144,
Oct. 2012.

Pavement Manual, Texas Dept. Transp., Austin, TX, USA, 2018.

A. Basavaraju, “Machine learning approaches to road surface anomaly
assessment using smartphone sensors,” M.S. thesis, Texas A&M Univ.,
College Station, TX, USA, 2018.

E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and
H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol.,
vol. 123, no. 1, pp. 133-145, Apr. 2002.

L. Sun, “Simulation of pavement roughness and IRI based on power
spectral density,” Math. Comput. Simul., vol. 61, no. 2, pp. 77-88,
Jan. 2003.

D. M. Xu, A. M. O. Mohamed, R. N. Yong, and F. Caporuscio,
“Development of a criterion for road surface roughness based on power
spectral density function,” J. Terramech., vol. 29, nos. 4-5, pp. 477-486,
Jul./Sep. 1992.

K. R. Griffiths, “An improved method for simulation of vehicle vibration
using a journey database and wavelet analysis for the pre-distribution
testing of packaging,” Ph.D. thesis, Univ. Bath, Bath, U.K., 2012.

W. Staszewski and J. Giacomin, “Application of the wavelet based FRFs
to the analysis of nonstationary vehicle data,” in Proc. Int. Soc. Opt.
Eng., Feb. 1997. pp. 425-431.

L. Wei, T. Z. Fwa, and Z. Zhe, “Wavelet analysis and interpretation
of road roughness,” J. Transp. Eng., vol. 131, no. 2, pp. 120-130,
Feb. 2005.

Statistics and Machine Learning Toolbox, MathWorks, Natick, MA,
USA, 2018.

V. Cherkassky and F. M. Miilier, Learning from Data: Concepts, Theory,
and Methods. Hoboken, NJ, USA: Wiley, 2007.

S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge, U.K.: Cambridge Univ. Press.
2014.

Multiclass Model for Support Vector Machines or Other Classifiers,
MathWorks, Natick, MA, USA, 2018.

A. Gordon, L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classifi-
cation and regression trees,” Biometrics, vol. 40, no. 3, p. 874, Sep. 1984.
F. Rosenblatt, “Principles of neurodynamics. Perceptrons and the theory
of brain mechanisms,” Cornell Aeronautical Lab Inc, Buffalo NY, USA,
Tech. Rep., 1961.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning inter-
nal representations by error propagation,” Inst for Cogn. Sci., Univ.
California San Diego, Jolla, CA, USA, ICS Rep. 8506, 1985.

ICS Report 8506

F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.
sklearn.Neural_Network.MLPClassifier—Scikit-Learn 0.19.1 Documen-
tation. [Online]. Available: http://scikit-learn.org

G. Andrew and J. Gao, “Scalable training of Ll-regularized log-linear
models,” in Proc. 24th Int. Conf. Mach. Learn., Jun. 2007, pp. 33-40.
R. Malouf, “A comparison of algorithms for maximum entropy para-
meter estimation,” in Proc. 6th Conf. Natural Lang. Learn., Aug. 2002,
pp. 1-7.

D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” Dec. 2014, arXiv:1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980

Akanksh Basavaraju received the B.Tech.
degree in electronics and communication engi-
neering from Amrita University, India, in 2015,
and the M.S. degree in electrical engineering
from Texas A&M University, College Station,
in 2018. His research interests include biomed-
ical signal processing, machine learning, and
software development.

Jing Du received the M.B.A. and Civil Engineer-
ing degrees from Tianjin University, China, and
the Ph.D. degree in construction management
from Michigan State University, in 2012. He is
currently an Associate Professor with the Depart-
ment of Civil and Coastal Engineering, University
of Florida. His research focuses on smart infor-
mation technologies for construction projects.
He has received about $2.3 million in external
research funding from agencies, including the
National Science Foundation (NSF), the National
Institute of Standards and Technology (NIST), the U.S. Department of
Transportation (US DOT), Fiatech, and the Zachry Group. He is an
Assistant Specialty Editor of ASCE Journal of Construction Engineering
and Management (JCEM).

Fujie Zhou received the Ph.D. degree in pave-
ment engineering from Tongji University, China,
in 1998. He was an Assistant Professor with
Tongji University. He is currently a Research
Engineer with the Texas A&M Transportation
Institute (TTI), Texas A&M University System.
He has published more than 50 journal arti-
cles and 25 conference papers. His research
interests include connected and automated vehi-
cles (CAV) safety and pavements, materials
testing, performance (distress) models, and
pavement designs. He has received more than $10 million in research
funding from agencies, including the National Science Foundation (NSF),
the National Cooperative Highway Research Program (NCHRP), the U.S.
Department of Transportation (US DOT), the Texas Department of
Transportation, the Ohio Department of Transportation, and GAF. He has
received twice the Annual Best Paper Awards from the Association of
Asphalt Paving Technologists in 2010 and 2014.

Jim Ji received the B.S. and M.S. degrees
in electrical engineering from Tsinghua Univer-
sity, China, and the Ph.D. degree in electri-
cal engineering from the University of lllinois
at Urbana—Champaign (UIUC). He is currently
an Associate Professor with the Department
of Electrical and Computer Engineering, Texas
A&M University, College Station. His research
interests include biomedical imaging and image
processing, machine learning for big data image
processing, MRI and their applications in cancer,
and neural applications. His recent work is focused on novel MRI
methods for cancer interventions, MRI with large arrays and compressive
sensing, and big data in MRI. He is the Program Co-Chair of the Annual
International Conference of IEEE Engineering in Medicine and Biology
Society in 2014. He received the Zhongwang Outstanding Graduate
Student Prize from Tsinghua University, in 1997, the Sundaram Seshu
Fellowship from UIUC in 2001, and the Faculty Early Career Develop-
ment (CAREER) Award from the National Science Foundation (NSF)
in 2008. His research support includes QNRF, NSF, and NIH. He also
served as an Associate Editor for the IEEE TRANSACTIONS ON BIOMED-
ICAL ENGINEERING, |IEEE JOURNAL OF BIOMEDICAL HEALTH INFORMATICS,
Quantitative Imaging in Medicine and Surgery, and serves as an Editor
for IEEE-EMBC Biomedical Imaging and Image Processing Theme.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

