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Abstract— We present the design and application of
a 64 × 64 pixel SPAD array to portable colorimetric sensing,
and fluorescence and x-ray imaging. The device was fabricated
on an unmodified 180 nm CMOS process and is based on a
square p+/n active junction SPAD geometry suitable for detecting
green fluorescence emission. The stand-alone SPAD shows a
photodetection probability greater than 60% at 5 V excess bias,
with a dark count rate of less than 4 cps/µm2 and sub-ns timing
jitter performance. It has a global shutter with an in-pixel 8-bit
counter; four 5-bit decoders and two 64-to-1 multiplexer blocks
allow the data to be read-out. The array of sensors was able
to detect fluorescence from a fluorescein isothiocyanate (FITC)
solution down to a concentration of 900 pM with an SNR
of 9.8 dB. A colorimetric assay was performed on top of the
sensor array with a limit of quantification of 3.1 µm. X-rays
images, using energies ranging from 10 kVp to 100 kVp, of a lead
grating mask were acquired without using a scintillation crystal.

Index Terms— Single photon avalanche diode, SPAD, CMOS,
low-light (vision), photo detector, image sensor, x-rays.

I. INTRODUCTION

THE use of CMOS single photon avalanche
diodes (SPADs) in biomedical sensing and imaging

has increased as a consequence of their performance in terms
of fast acquisition, high sensitivity and portability [1].Typical
applications include fluorescence lifetime imaging microscopy
(FLIM) [2]–[7], fluorescence [8], point-of-care testing
(POCT) [9], Raman spectroscopy [10], positron emission
tomography (PET) [11], endoscopic TOF PET [6], x-ray
sensing [12], time-resolved spectroscopy [13], 3D vision
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and LIDAR [14]–[20], and quantum imaging [21]. All these
applications require high sensitivity and extremely fast timing
resolution of the order of picoseconds [22]. Additionally,
SPADs are a suitable technology for portable imaging
applications such as fluorescence endoscopic capsules [23],
where low power consumption and small size are required.

SPADs with exceptionally low dark count rate (DCR), high
photon detection probability and high dynamic range (DR)
have been previously reported using customized enrichment
layers manufactured in specialized CMOS technologies. Very
high efficiency CMOS SPAD arrays with extremely complex
on chip electronics, resulting in low fill factors have also
been reported [24]. Exceptionally high DR values, larger
than 100 dB, have been achieved using active quenching
circuits to prevent saturation at high count rates, but at
the expense of fill factor [25]. In such devices, microlenses
are typically used to improve performance by concentrating
light on to the active area, increasing the light capture by
up to a factor of 10 [26] hence enhancing the optical fill
factor [27]. This method can lead to misalignment and illumi-
nation non-uniformity in the optics. Recently high resolution
and high fill-factor arrays have been reported [28], [29], along
with the capability of manufacturing SPADs using 3D stack
technology [30].

In this paper we demonstrate an advance in the use of
low-cost legacy CMOS technology and its application in
several sensing imaging modalities where a SPAD array is
especially well suited. We initially detail the performance of
a single square shaped photo-carrier diffusion SPAD, imple-
mented on a test die, designed with a narrow depletion region
and wide photon collection region to maximize the PDP. The
SPAD was manufactured by AMS AG in a legacy unmodified
180 nm high voltage (HV) CMOS process. It achieves one of
the lowest DCR at the 180 nm node, smaller than 4 cps/μm2;
this performance has been achieved without the need for any
modification to the foundry process. The chips also have the
highest PDP peak for any design using the 180 nm node; it is
greater than 60% when operated at 5 V of excess bias.

Based on the figures of merit demonstrated by the
stand-alone SPAD developed in the test chip we designed and
implemented a 64×64 planar array (PA) for fluorescence, col-
orimetry, POCT and lab-on-a-chip (LoC) applications. The PA
uses a global shutter with a digital 8-bit in-pixel counter, with
data read-out circuits consisting of four 5-bit decoders and
two 64-to-1 multiplexers. The resulting pixel pitch of 61.5 μm
is a trade-off that is suitable for both the imaging and LoC
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Fig. 1. Electric field profile of the SPAD at breakdown, simulated using
Sentaurus TCAD.

Fig. 2. (a) optical micrograph of the manufactured SPAD and (b) schematic
detailing the smoothed guard ring.

applications; the former requires low pitch and high resolution
whilst the latter requires space to potentially integrate fluidic
microstructures.

As a proof of concept, we have demonstrated three different
applications based on the SPAD PA: fluorescence imaging;
x-ray imaging; and a colorimetric assay.

In sections II and III the design and characterization of a
stand-alone SPAD are reported. In section IV we present the
design, characterization and results from the 64 × 64 SPAD
array. In section V we demonstrate three applications based
on the 64 × 64 array.

II. STAND-ALONE SPAD DESIGN

The device is based on a square shaped p+ to shallow n-well
(S-NW) active junction with smoothed corners. A low grading
p-well guard ring protects the active junction whilst also acting
as the anode and forming a secondary junction with the deep
n-well (D-NW). The S-NW acts as an electric field enhancer
for the active junction [31] whilst the guard ring is formed
by implanting a shallow p-well (S-PW) into a deep p-well
(D-PW). This guard ring configuration prevents an abrupt
change of the doping profile and minimizes the guard ring
size. The D-NW acts as the photo-collection region, allowing
photo-generated electrons to diffuse into the avalanche region.
The cathode is made of n+ into a n-well (NW). The cross
section of the SPAD layout is illustrated in Fig. 1 along with
the simulated electric field at breakdown. Fig. 2(a) shows a
micrograph of the fabricated device, whilst Fig. 2(b) shows
a close-up schematic of the curved guard ring. The side
dimension of the effective active area is 11.6 μm and the
cathode-to-cathode distance is 20.4 μm.

The curved guard ring, aiming at alleviating early break-
down, has a radius of curvature of 0.35 μm. This layer
configuration was designed to achieve the maximum electric

Fig. 3. DCR values versus excess bias voltage for three different die.

field at the active junction whilst minimizing the electric field
value both in the guard ring and near to the guard ring. As can
be seen in Fig. 1 a transition region at the edge of the guard
ring is present in which the electric field slowly degrades.

The maximum value of the electric field that is 600 kV/cm
is achieved below the active junction whilst the guard ring
junction presents a smoother electric field profile with electric
fields in the range 100 to 236 kV/cm. This electric field profile
allows for an improved detection efficiency whilst maximizing
the breakdown difference between the main junction and the
guard ring junction.

The parameters used in the simulation were calculated based
on the average sheet resistance of the implants provided in the
foundry documentation. The square shaped active area geom-
etry was chosen to maximize the active area and the detection
efficiency, since this active area is 1.2 times larger than a cir-
cular shaped geometry with same cathode to cathode distance.

III. STAND-ALONE SPAD CHARACTERIZATION

The device, manufactured on a test die, showed a breakdown
voltage of 16.8 V when tested with an external passive
quenching circuit that used a 100 k� resistance. The DCR,
PDP, and dead time were measured.

A. Dark Count Rate

DCR is the number of events a SPAD counts in the
absence of light due to thermal agitation and the band-to-band
tunneling effect [32]. It represents the base level of noise.

Fig. 3 shows the curve of the average DCR against excess
voltage bias obtained from 3 different test die at room temper-
ature (25◦C). The data was acquired using a Keysight Infini-
iVision MSO X 3054T oscilloscope, with statistical analysis
capabilities, for an acquisition time of 2 minutes.

Fig. 4 shows the DCR temperature dependent behavior for
the device under test (DUT) operated at different excess volt-
age biases with a dead time of 10 μ s. The DUT was placed in
an environmental chamber, ensuring the total absence of light,
and the temperature varied from 10 ◦C to 40 ◦C in 5 ◦C steps.

The voltage applied to the DUT was adjusted according to
the temperature, to compensate for the temperature induced
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Fig. 4. DCR temperature behavior at different excess bias voltages.

drift in breakdown, thus maintain a constant excess bias volt-
age. The minimum DCR value of 4 cps was observed at 1 V of
excess bias at 10 ◦C, whilst the maximum DCR value of 1 kcps
was measured at 5 V of excess bias at a temperature of 40 ◦C.

All the reported curves show similar trends. The DCR is
sensitive to both excess bias voltage and temperature; of these
sensitivity to voltage is dominant. Based on this observation
we can conclude that the reverse bias current is dominated by
band to band tunneling.

B. Photon Detection Probability

PDP is defined as the ratio between the number of incoming
photons triggering an avalanche and the total number of
photons illuminating the sensor at a selected wavelength in
the span of the white light spectrum (380-760 nm) [32].

The experimental setup comprised a Hamamatsu
L7893 Deuterium light source, a Jobin Yvon Horiba
H20 series monochromator, and a Thorlabs IS200 integrating
sphere connected by two optical fibers. Two sets of bi-convex
lenses, Thorlabs LB1761-A, collimated the light from the
optical sphere to the DUT and to a calibrated Hamamatsu
S1336 photodiode. The monochromator, controlled by a
computer, was tuned by adjusting the output wavelength in
steps of 20 nm between 380 to 700 nm. The data, compensated
for DCR, was acquired using a Keysight InfiniiVision MSO
X 3054T oscilloscope, with statistical analysis capabilities,
for an acquisition time of 2 minutes.

When the DUT was operated at 5 V of excess bias a PDP
greater than 50% was measured from 440 to 520 nm with a
peak of 65% at 480 nm, as reported in Fig. 5, along with
PDP curves at lower excess biases. It can be noted that the
480 nm peak reduces to 55% when the DUT was operated
at 4 V and to 48% at 3 V whilst it drastically reduces to 32%
at 2 V. The reported curve is the average of two measurements
and the error bars show the range of measurement. PDP is
a function of doping levels, noise, excess bias and active
area [33], therefore the obtained PDP is achieved thanks to the
low noise of device, compared to other 180 nm HV SPADs
which will have comparable doping levels, and a larger active
area in lieu of the square shape. Fig. 6 shows a state-of-

Fig. 5. Visible light PDP at different excess voltage biases along with the
error bar values.

Fig. 6. PDP state-of-the-art, diamonds symbols highlight works at the 180 nm
lithography nodes. Our device is reported in a red diamond symbols with a
black number when operated at 5 V and a blue number when operated at 4 V.
When a work is cited two times, the second citation is reported with a blue
number.

the-art comparison in terms of DCR against PDP peak [22],
[30], [31], [33]–[51], with diamond symbols denoting works
in 180 nm lithography nodes and circle symbols for all the
other nodes. For each symbol the corresponding reference
number is inside the symbol (where possible). The same data,
with the addition of the excess voltage bias and comments, are
reported in Table I. For cases where works are reported twice
to illustrate devices with different performances or relevant
performances at different excess bias voltages, the second
citation is reported with the corresponding reference number
in blue, both in Fig. 6 and in Table I.

It can be easily noted that our device, when operated at both
4 V and 5 V, achieves the highest PDP peak in the 180 nm
node, whilst in the same node the DCR value of our SPAD
classifies second and forth lowest respectively.

Work in [33] reports similar DCR to the DCR value of our
SPAD with a reduced PDP peak value. Our SPAD compared
to the other works in the 180 nm node [35], [42] shows a
higher PDP peak at a lower DCR value.

On a more general comparison our SPAD is outperformed
by the work in [46] which achieves, with a 30 μm circular



7322 IEEE SENSORS JOURNAL, VOL. 19, NO. 17, SEPTEMBER 1, 2019

TABLE I

PDP, DCR STATE-OF-THE-ART

device, both the highest PDP peak and one of the lowest DCR
in the state-of-the-art.

Work in [47] shows a comparable PDP peak with a much
lower DCR whilst the work in [34] outperforms our PDP
performance at the expense of the DCR value.

IV. ARRAY

A. Design

A micrograph of the 64 × 64 SPAD array chip, designed
in the same technology node as the stand-alone SPAD,
is presented in Fig. 7(a). The array, which is divided into
4 independent quadrants, has a global shutter architecture in
order to optimize acquisition time and timing information. The

Fig. 7. (a) Optical Image of the 64×64 SPAD array, with inset of a 3x4 pixel
section (b) in-pixel electronics diagram.

array has an 8-bit ripple counter per pixel and four independent
5-bit decoders (two vertical ones and two horizontal ones).
It has two multiplexing systems, top and bottom, and a pitch
size of 61.5 μm. The addressing of each quadrant is managed
by a combination of a vertical and a horizontal decoder, whilst
a cascade of a 32x1 multiplexer and 2x1 multiplexer handle the
read-out process of each 8-bit pixel data count. The decoder
and the multiplexing system may be activated either one at
a time or sequentially allowing for a single quadrant or a
combination of quadrants to be used at any time. A schematic
of a pixel is shown in Fig. 7(b). Passive adjustable quenching
of the SPAD is achieved with an NMOS whilst another NMOS
connected to the global shutter allows the pulses to reach the
8-bit counting element. The read-out is controlled by an AND
gate connected to the decoder inputs. Based on this architec-
ture the SPAD excess bias can range from a minimum of 1.2 V
to a maximum of 5 V whilst the chip supply voltage is 1.8 V.

B. Dark Count Rate Characterization

The chip was bonded to a 208 CPGA carrier, and a custom
designed PCB for testing. An ST nucleo F338R8 MBED
board, programmed to generate addressing pulses and to read
count events from the chip, interfaces the chip to a laptop via
a USB cable. We developed a Matlab code to synchronize
and read the data on the serial port and then reconstruct the
data into an image with a frame rate of 3 fps. The average
breakdown voltage for the SPADs in the 64 × 64 array was
16.8 V, therefore a minimum bias of 18 V was required to
acquire data. When the array was operated at 18 V with a
shutter time of 1 ms the maximum power consumption was
100 mW.
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TABLE II

DCR SUMMARY FOR THE 64 × 64 ARRAY

Fig. 8. Dark count rate cumulative probability for 18 V, 19 V and 20 V bias
voltage at 25 ◦C.

Table II details the DCR statistics for bias voltages of 18 V,
19 V and 20 V at a temperature of 25 ◦ C. Fig. 8 shows the
DCR cumulative probability at room temperature for the same
three bias voltages of Table II.

For all bias voltages, more than 80% of the pixels show a
DCR value smaller than the mean value as observed in the
probability density functions and in the table. The reported
mean DCR values are slightly higher than those of the single
SPAD mainly because of the presence of hot pixels. The
median value (where the effect of the hot pixels is less
dominant) shows a significant reduction in the DCR.

C. Image Resolution

The image acquisition capability of the 64×64 SPAD array
was tested by acquiring images in transmission mode through
an optical block mounted on a 30 mm cage system comprising
of three coated bi-convex lenses (Thorlabs LB1761-A), a green
LED (LED TECHNOLOGY L02R3000F1), an iris (Thorlabs
CP20S), and a black transmission mask. One lens, placed
between the LED and the transmission mask, was used to
achieve collimated light, whilst the other two were used to
focus the light on the 64 × 64 SPAD array, which was
mounted on an xyz translation stage for precision alignment.

Fig. 9. (a) Picture of the custom-made transmission mask used in the setup.
(b) Reconstructed image of the transmission mask.

Fig. 10. (a) Acquired image of US AIR FORCE TARGET (Thorlabs
R1DS1N). (b) Detail of the smallest resolved feature.

Fig. 9(a) shows the transmission mask, whilst Fig. 9(b) shows
the acquired image of the transmission mask, taken with the
64 × 64 SPAD array with a voltage bias of 18 V, a shutter
time of 100 μs and light power of 500 μW. As can be seen
a low noise, high contrast image is obtained.

The spatial resolution of the 64 × 64 SPAD array was
tested using the transmission setup, with a Thorlabs R1DS1N
resolution target. Fig. 10(a) shows the acquired image of the
target, and Fig. 10(b) shows the smallest resolved feature,
which dictates the spatial resolution of the array. The smallest
feature that is clearly resolved in both the x and y axis is
78.75 μm. The corresponding contrast for this feature was
94.4% and 85.7% in the x and y axis respectively.

V. APPLICATIONS

A. Fluorescence

Fluorescence experiments were performed on solutions
of Fluorescein Isothiocyanate (FITC) at different concen-
trations. The used fluorescence setup comprised a LED
(Thorlabs LED465E), collimating lens (Thorlabs 2x AC254-
030-A-ML, 1 x AC254 075 A1 ML), blue excitation filter
(Thorlabs MF475-35), green fluorescence emission filter
(Thorlabs MF525-39), dichroic mirror (Thorlabs DMLP490L),
and a 100 μm thick black transmission mask (Fig. 10(a)) taped
to a small glass bottle containing the FITC solution. Only the
F shaped aperture in the transmission mask was exposed to the
excitation light whilst all the other apertures were sealed with
black tape. The measured light power at the custom made mask
position was 180 μW for a circular spot of 5 mm in diameter,
the total transmitted power to the fluorophores is given by the
ratio between the ‘F’ area and the circle area.

The experiments were conducted in three steps: a DCR
image of the 64×64 SPAD array was acquired to evaluate the
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Fig. 11. (a) Control image with water (200 ms); Fluorescence images with
FITC solutions of different concentrations: (b) 900 pM (200 ms), (c) 100 nM
(50 ms) and (d) 100 μm (500 μ s). The corresponding SNR values are 3.6 dB,
9.8 dB, 19.66 dB and 26.86 dB.

base level of noise; the fluorescence image was acquired; and
the DCR mask was subtracted from the fluorescence image.
The FITC fluorophores, that have excitation and fluorescence
wavelengths in the ranges 460-480 nm and 515 520 nm respec-
tively, were purchased from Sigma Aldrich and dissolved
in phosphate buffer saline to obtain solutions ranging from
100 μM to 900 pM concentrations of FITC.

The images in Fig. 11(a),(b),(c) and (d) were taken with
different integration times and normalized in terms of counts
per second. Different exposure times were used according to
the image brightness, as state in the caption for Fig. 11. This
was necessary so as to remain within the limit of the counter
circuit. The control image with water has an SNR of 3.6 dB
whilst the 900 pM FITC solution shows a value of 9.8 dB.
This large difference validates detection of the fluorescence
signal at sub-nM concentration. The SNR values at 100 nM
is 19.66 dB whilst at 100 μm is 26.86 dB.

B. Colorimetric Sensing

A colorimetric assay employs specific reagents that undergo
a measurable light absorbance change (at a specific wave-
length) which is related to the concentration of the analyte
under test.

Specifically, we present a colorimetric assay on chip for the
quantification of sarcosine, a metabolite present in human body
fluids, at three different concentrations: 5, 100 and 1000 μm
respectively.

A specific enzyme, sarcosine oxidase (SaOx), reacts with
sarcosine and produces hydrogen peroxide (H2O2):

sarcosine+H2O + O2
SaOx�⇒ f ormaldehyde

+ glycine+H2O2

The hydrogen peroxide is in turn used to oxidase a red dye (o-
dianisidine) using a second enzyme (horseradish peroxidase,
HRP):

H2O2 + reducedo-dianisidine(colorless)
H R P�⇒ Oxidi zedo-dianisidine (brown)

When the concentration of HRP >> SaOx, it is assumed
that the reaction rate of the chain is mainly dependent on
the sarcosine reaction. This reaction rate is linked with the
concentration of sarcosine, according to the Michaelis-Menten
kinetics [52]:

v (t) = Vmax[S (t)]
Km+[S (t)] (1)

where:
v(t) is the instantaneous reaction rate; Vmax represents the

maximum rate achieved by the system;
[S(t)] is the instantaneous concentration of the substrate
(sarcosine in this specific case);
Km is the Michaelis-Menten constant and represents the
substrate concentration at which the rate of the reaction
assumes a value equal to 50% of Vmax .

Thus, by measuring the initial reaction rate (IRR), the initial
concentration of the analyte under test can be estimated.

The experimental setup comprised a Bentahm light source,
a Bentham TMc300 monochromator, and a Thorlabs IS200
integrating sphere. An iris (Thorlabs CP20S) and a bi-convex
lens (Thorlabs LB1761-A) collimated light from the mono-
chromator into the sphere, whilst two sets of bi-convex lenses
(Thorlabs LB1761-A) collimated the light from the optical
sphere to the DUT and to a calibrated photodiode (DH-Si
Bentham).

A wavelength of 450 nm, corresponding to the absorption
peak of the dye, was selected. The induced change in light
transmission caused by the reaction was monitored by acquir-
ing images with the DUT operated at 18 V and a shutter time
of 500 μ s for a minimum number of frames of 6 minutes.
The stability of the light source intensity was monitored using
the calibrated photodiode.

A microfluidic channel was fabricated on the top of the
PA using standard photolithography. All the reagents for the
bioassay were purchased from Sigma-Aldrich.

After the images were corrected for DCR, the mean count
value per channel during the experimental time was calculated
and smoothed using second order exponential fitting. The IRR
values for a control measurement with no SaOx and three
different concentration of sarcosine are shown in in Fig. 12.
Fig.12 also shown the limit of detetection (LoD(cps/s)) and
the limit of quantification (LoQ(cps/s)) for sarcosine, calculated
using Eq. (2) [53].{

LoD(cps/s) = meancontrol + 3.3stdcontrol

LoQ(cps/s) = meancontrol + 10stdcontrol
(2)

When the IRR value for the three concentration are fitted
according to Eq. (1) the following values are obtained: Vmax =
247.9 cps, Km = 712 μm and an offset of 5.6.

Lastly, we converted the LoD(cps/s) and LoQ(cps/s) to con-
centrations values using Eq. (1), obtaining a LoD(μM) of 1 μm
and a LoQ(μM)of 3.1μM.

C. X-Ray

X-ray detection experiments were conducted with the
64 × 64 SPAD array, acquiring x-ray images of a lead grating
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Fig. 12. IRR values for 5, 100, and 1000 μm of Sarcosine and control. The
standard deviation values are reported in red, the LoD in a pink dashed line
and the LoQ in a dotted black line.

Fig. 13. X-ray images of the lead grating mask at different x-ray energies:
(a) 20 kVp, (b) 30 kVp, (c) 50 kVp, and (d) 100 kVp. The SNRs were 9.7 dB,
7.4 dB, 6.2 dB and 4.6 dB respectively.

mask (PTW L659084). The test pattern was taped directly onto
the 64×64 array which was then aligned to the x-ray tube. The
experiment consisted of collecting frame data in three steps.

Frame 1: 10 DCR frames were measured and averaged.
Frame 2: 10 measurements with flood X-ray illumination

of the array were measured and averaged.
Frame 3: the lead mask was attached to the array and

10 frames were measured and averaged.
Fig. 13 shows the result of combining Frame 1, 2, 3 to

give a signal from Frame3-Frame2-Frame1. All the data used
to produce Fig. 13 was taken with a shutter time of 50 ms,
a cathode bias of 18 V, and an x-ray tube voltage from 20 kVp
up to 100 kVp.

VI. CONCLUSION

We have reported a p+ to shallow n-well SPAD made in a
legacy 180 nm HV CMOS technology with no modification.

The device has the highest PDP with the second lowest
DCR (at 4 V excess voltage) from all 180 nm node devices
reported in the literature. This stand-alone SPAD, operated at
5 V, shows a PDP higher than 50 % from 440 to 520 nm

and a DCR less than 1 kcps. Based on these features the
SPAD is particularly suited for applications such as portable
fluorescence sensing under sub-nW/cm2 illumination condi-
tions. The device shows a good compromise between low
DCR and high PDP. Using the new SPAD we developed a
64 × 64 SPAD array with an 8-bit ripple counter, 61.5 μm
array pitch and 3.5% fill factor. For the array, the pixel had a
median DCR of less than 2 kcps at room temperature at a bias
voltage of 20 V. We successfully demonstrated the capability
of the SPAD array to acquire fluorescence images of FITC
at concentrations down to 900 pM with a minimum SNR of
9.8 dB. Moreover, we proved the capability of such a system
to perform colorimetric assays on sarcosine in solution with a
limit of quantification of 3.1 μm.

To the best of the authors’ knowledge, this is the first
reported SPAD array designed for visible light which is able
to detect x-rays without a scintillation crystal.

The results we present show the utility of a readily available
CMOS technology for advance sensing and imaging using
single photon avalanche diodes.
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