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Abstract— We present a novel seismocardiography (SCG)-
based approach for real-time cardio-respiratory activity measure-
ment called the Autocorrelated Differential Algorithm (ADA).
Measurements were performed on ten male subjects in the
supine position for three 7-minute-long sets each, corresponding
to 14,619 heartbeats. The ADA utilized temporal variations,
windowing, and autocorrelation to produce physiological mea-
surements corresponding to heart rate (HR), and left ventricular
ejection time, and estimations of respiration rate, volume, and
phase. The versatility of the ADA was investigated in two con-
texts: physical exertion and heart rate variability. The accuracy
of HR measurements at a sampling frequency of 200 Hz resulted
in a correlation coefficient (r2) of 0.9808 when compared with a
manual annotation of all datasets. Its reproducibility was tested
on externally obtained SCG and electrocardiography datasets,
which produced an r2 of 0.8224. The accuracy and computational
time were also characterized by different sampling frequencies to
quantify performance. The recommended sampling frequency is
200 Hz corresponding to a computation time of 0.05 s per instan-
taneous measurement using a standard desktop computer. The
ADA delivered real-time SCG measurements with a refresh rate
that was dependent on the computational time per measurement,
which could be decreased by lowering the sampling frequency.
The presented algorithm offers a novel tool toward real-time
physiological monitoring in clinical and everyday scenarios.

Index Terms— Seismocardiography, autocorrelation, heart
rate, respiration rate, cardiac time intervals, real-time, digital
signal processing.

I. INTRODUCTION

THE continuous and portable monitoring of cardiac
and respiratory activity has attracted significant interest

among the healthcare community in recent years due to the
increasing prevalence of cardiac and respiratory ailments.
Cardiovascular diseases are one of the highest contributing
factors to global mortality rates [1]. Additionally, increased
pollution levels in major cities have prompted governments to

Manuscript received January 15, 2019; revised February 15, 2019; accepted
February 22, 2019. Date of publication March 7, 2019; date of current
version June 4, 2019. This work was supported in part by the National
Sciences and Engineering Research Council (NSERC) of Canada, in part by
the MacDonald, Dettwiler and Associates Corporation, and in part by McGill
University. The associate editor coordinating the review of this paper and
approving it for publication was Prof. Aime Lay-Ekuakille. (Corresponding
author: Yannick D’mello.)

Y. D’Mello, J. Skoric, S. Xu, M. Akhras, P. J. R. Roche, and
D. Plant are with the Department of Electrical and Computer Engi-
neering, McGill University, Montreal, QC H3A 2T5, Canada (e-mail:
yannick.dmello@mail.mcgill.ca).

M. A. Lortie and S. Gagnon are with the MacDonald, Dettwiler and
Associates Corporation, Ottawa, ON K2K 1Y5, Canada.

Digital Object Identifier 10.1109/JSEN.2019.2903449

fund research into the investigation of respiratory ailments [2].
Accurate diagnosis is instrumental in the detection, prevention,
and cure of such issues as the symptoms are not always
obvious. This demand highlights the need for portable devices
capable of measuring cardio-respiratory activity (CRA) as and
when required. Knowledge of a subject’s physiological activity
prior to, during, and after events such as stroke, cardiac arrest,
or breathlessness can enable a deeper insight into the causes
and symptoms of these issues. The data collected from the
continuous, portable monitoring of CRA will therefore enable
a deeper, long-term evaluation of the relationship between
measurements and physiological wellbeing, improve the effi-
ciency of medical treatment, and contribute to the development
of prediction algorithms for health state trajectories.

A number of methods have been established that deliver
measurements of cardiac activity. Photoplethysmography is
a portable measure of peripheral oxygen saturation (SpO2)
in the blood from which heart rate may be derived, but
is sensitive to variations in ambient light and skin contact
[3]. Other methods exist such as ballistocardiography (BCG),
which measures full-body microaccelerations and requires the
use of a weighing scale or bed [4]; sphygmomanometry uses
bulky instrumentation to produce accurate albeit discretized
measurements [5]; and phonocardiography, a measure of heart
sounds, lacks the ability to pinpoint the timing correspond-
ing to valvular moments [6]. Alternatively, the movements
caused by CRA within the diaphragm manifest as vibrations
on the surface of the chest, which can be non-invasively
detected by miniaturized inertial sensors based on micro-
electro-mechanical systems (MEMS) technology. The method
of measuring myocardial vibrations through acceleration at
the sternum is termed seismocardiography (SCG) [7]–[9].
The extraction of respiration rate from the acceleration sig-
nal produced by the SCG waveform [10]–[13] enables an
analysis of the coupling between respiration and myocardial
activity, which is a contributing factor to heart rate variabil-
ity (HRV) [14]–[17]. The direct causal relationship between
CRA and SCG enables an accurate interpretation of cardiac
mechanics and therefore muscle activity, especially in high-
risk subjects [18] or those with congenital heart defects. The
ability to measure cardiac mechanics overcomes a limitation
of electrocardiography (ECG), which is confined to measuring
electrical activity of the heart but not the consequent contrac-
tions of the muscle [19] that are responsible for circulation.
Outside of the clinic, SCG offers a promising approach that
could provide continuous health monitoring at home and in
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mobile circumstances due to its unobtrusive and continuous
monitoring capabilities [20]–[22].

The shape and timing of fiducial points in the seismocardio-
gram has the potential to detect cardiac conditions [23] includ-
ing ischemia [24], [25], and hemorrhage [26], and also enable
hemodynamic assessments. However, a significant difficulty
with CRA measurements is inter-subject variations, which
necessitates robust and adaptable digital signal processing
(DSP) algorithms [27]. The current state of the art regarding
accuracy in SCG-DSP includes algorithms that either perform
an analysis of the signal offline due to high computational
requirements [28]–[30], that require synchronized measure-
ments with ECG [21], [31], or that implement pre-training
for calibration to the user [32], [33]. Caveats such as these
preclude the implementation of SCG in real-time, portable
cardiac analysis. Still, there exist ECG-less algorithms [27],
[34], [35] that deliver high accuracy, real-time heart rate
detection by using techniques such as adaptive threshold-
ing, envelope or spectral-based analyses, and autocorrelation.
However, envelope or spectral methods are limited in their
classification of intra-beat cardiac time intervals (CTIs) and
SCG morphology within individual cardiac cycles. Addition-
ally, the estimation of fiducial points using fixed thresholds
is limited by the dependence on signal quality. The most
common drawback of autocorrelation techniques for SCG
analysis is the damping of HRV due to the inherent averaging
of many beats, or poor correlation between consecutive cardiac
cycles due to HRV itself. This negates the value of cardiac
monitoring in measuring palpitations, attacks, or arrhythmia,
which are vital to the early detection of CVDs [36]–[38]. The
accuracy of most SCG-DSP algorithms is dependent on signal
quality and minimal heart rate variability between SCG cycles.
The detection of CRA taking into account variability, motion
artifact and noise suppression are necessary objectives for the
realization of a cost-effective system.

In this paper, we present an algorithm that provides a real-
time evaluation of cardiac activity based on the autocorrelation
technique, and consequently extract respiration metrics. Signal
amplification relied on the waveform morphology, which will
be described in Section II.A followed by the protocol used for
SCG signal acquisition in Section II.B and a description of the
autocorrelation approach and its utility in Section II.C. Regard-
ing the algorithm, variable windowing of the signal facilitated
instantaneous detection and reduced the smoothing effect
inherent to autocorrelation techniques as will be explained in
Section III.A. The autocorrelation was performed on a filtered
SCG, after the extraction of respiratory information as detailed
in Section III.B. Variations in the filtered signal morphology
were accounted for by exploiting the consistency in the shape
of the S1 feature between consecutive beats in any SCG signal
as explained in Section III.C. The versatility of the approach
was evaluated by including intra-subject dynamic variations
for resting heart rates, as well as varying amplitude and fre-
quency SCG signals obtained from physically exerted subjects
in Section IV.A. The accuracy was measured in Section IV.B
by evaluating its correlation with a manual annotation of all
SCG datasets and with an external database containing both
SCG and ECG signals. The analysis was further extended in

Fig. 1. Time-averaged SCG waveform (black) of 300 consecutive cardiac
cycles (red) from a supine subject in a relaxed state. The annotations indicate
inflection points in the morphology of the waveform corresponding to specific
events in a regular cardiac cycle [19].

Section V, to an investigation of CTIs as well as performance
characterization for accuracy and computational time. The
paper is concluded in Section VI along with final remarks.

II. METHODS

A. Seismocardiogram Morphology

The SCG waveform for each cardiac cycle consists of
certain fiducial points that correspond to specific events in
the cardiac cycle. These events [19] are labeled in Fig. 1 for
an experimentally measured SCG pattern obtained by aver-
aging 300 consecutive cardiac cycles from a subject at rest.
The inflection points indicate the mitral valve closure (MC),
isovolumetric moment (IM), the aortic opening (AO), isotonic
contraction (IC), and rapid ejection (RE) of blood to the body,
within the systolic phase of the cardiac cycle. The diastolic
phase starts with the aortic closure (AC) for refilling of the
left ventricle, and is followed by the mitral opening (MO) and
the rapid flow (RF) of blood refilling the heart. The accurate
detection of these events is necessary for the calculation
of CTIs [39] such as the pre-ejection period [40], systolic
period (QS2), left ventricular ejection time (LVET) [41], and
diastolic period [42] which quantify myocardial performance
and functionality [43], [44].

The primary cardiac sound S1 originates in the W-complex
described by the MC-IM-AO-IC-RE fiducial points. The mid-
dle peak-valley-peak pattern formed by the AO-IC-RE events
is of particular interest as it is a prominent feature of any SCG
waveform, and is used in this algorithm as a reference point
to distinguish cardiac cycles. The AC-MO region causes the
second sound S2, which if sufficiently strong, may interfere
with S1 detection in algorithms that rely on envelopes or AO
peak thresholding for heart rate evaluation. With issues such
as respiratory sinus arrhythmia [45], the amplitude of S2 may
be larger than S1, which can reduce the accuracy of more
advanced algorithms [34]. We therefore took into account
the oscillation amplitude and shape of the S1 feature during
detection.

B. Protocol for Data Acquisition

The study was conducted on 10 male subjects between
20 and 30 years old. Similar to other SCG-based studies, only
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subjects with no prior knowledge of heart conditions were
considered. All data was collected with approval from the
Research Ethics Board at McGill University. Each subject was
measured in the supine position during three data collection
sets, each with a duration of 7 minutes. The first two sets were
conducted with the subject relaxed, after which, the subject
was made to perform a Mountain Climber exercise to induce
physical exertion [46]. The third set was collected immedi-
ately after the exercise to obtain information relating to the
trajectory of the subject’s physiological recovery pattern.

SCG data was collected by strapping an InvenSense
MPU-9250 inertial measurement unit (IMU) on the xiphoid
process of the sternum with the accelerometer X, Y, and Z
axes oriented right along the sinistro-dexter, upward along
the inferior-superior, and outward along the dorsoventral axes,
respectively. The MPU-9250 was sampled at a frequency
of 250 Hz with the acceleration set to its lowest resolution of
±2 g, where 1 g equals 9.8 m/s2. It was interfaced through an
I2C link to an Arduino Leonardo microcontroller. Data from
the Arduino was sent to a computer serially and processed in
MATLAB.

The medical device used as a reference was an Omron
S10 cuff sphygmomanometer strapped to the upper left arm.
For each cuff measurement, the timing of occurrence of two
distinct events were logged: (i) the beginning of the cuff
deflation which marked the start of the measurement process,
and (ii) the time at which the cuff deflated completely mark-
ing the finished process. The cuff automatically performed
three consecutive, independent heart rate measurements spaced
60 seconds apart in each set. The results were used as a
baseline verification of HR measurements, but considering the
large window of uncertainty regarding the timing of mea-
surement, and the low frequency of measurements, they were
not used to quantify the real-time accuracy. In this context,
the experimental data obtained from the cuff was manually
synchronized with the SCG monitor. This was justified because
the human error introduced via manual logging (less than 1s)
was negligible as compared to the temporal uncertainty of
the cuff measurements. As an additional layer of verification,
every SCG dataset was manually annotated at the AO points
to provide a reference for the detection of AO points using the
code.

C. Utilization of Autocorrelation

The choice of autocorrelation as the basis of the Auto-
correlated Differential Algorithm (ADA) was motivated by
two factors: the quasi-periodicity of cardiac cycles, and the
consistency in the shape of the S1 feature for a given heart
despite arrhythmia or variability.

Previous techniques employing template-based cross-
correlation to detect averaged heart rate in BCG [47] and
SCG [48] signals have demonstrated an ability to accurately
measure heart rate when subjected to only small variations in
inter-beat intervals. However, significant HRV is common in
healthy hearts and accurate HRV analysis is necessary for the
interpretation of CTIs [49] as it offers insight into the interplay
between the sympathetic and parasympathetic nervous system.

Fig. 2. Process flowchart of the Autocorrelated Differential Algorithm.
The raw accelerometer signal was first split into multiple windows of
increasing size. Each window was analyzed assuming no variation within
the window. The data was down-sampled and filtered for each measurement,
and subsequently analyzed. The resulting measurements were delivered to the
algorithm for further processing and visualization.

A common limitation in autocorrelation-based algorithms is
therefore their ability to measure HRV and more severely,
issues such as murmurs or atrial fibrillation [50]. We overcome
this limitation by windowing the autocorrelation function using
increasing window sizes. The autocorrelation was performed
on a filtered SCG with respiratory oscillations subtracted from
the raw signal. This extraction did not take into account
the modulation of cardiac activity by respiration [51]. Such
variation in cardiac activity typically limits the scope of
autocorrelation algorithms, along with other variations caused
by HRV, sensor position and signal quality, interpersonal
variations in SCG morphology, exertion levels, etc. These
variations were considered by exploiting the consistency in
the shape of the S1 feature between consecutive beats in any
SCG signal as will be explained in the next section.

III. AUTO-CORRELATED DIFFERENTIAL ALGORITHM

In keeping with the functionality of a heart-rate monitor,
the ADA was designed to update its delivery of physiological
measurement calculations with a refresh rate of one second.
This implied that the ADA could only be considered a real-
time system when run on a processor with a computing power
capable of processing data using the algorithm, in under a sec-
ond. The implicit speed requirement was realized using any
commercially available processor (as explained in Section V-A
and ran at a computational time of under 0.05 seconds per
measurement, corresponding to one second of data collection.
The process flow of the algorithm is shown in Fig. 2, where
signal processing was performed on a four-column matrix
consisting of the three co-ordinate axes, and a fourth axis
comprising of the vector magnitude of the three axes.

A. Windowing

Raw, accelerometer data was acquired from a subject using
the protocol described in Section I.B. The time signatures of
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Fig. 3. Windowing of the accelerometer data. Each window starts at time
t = 0 s or “now” and extends backwards for a specific number of seconds.
Cardiac activity was analyzed in the smaller windows and respiratory activity
analysis was prioritized in the larger windows.

the signal were first down-sampled to a frequency of 200 Hz
using a pchip interpolation. This frequency was found to result
in minimal loss in accuracy while maintaining a computational
time of less than 1 second, per second of measurement.
The choice of sampling frequency retained any significant
SCG features that lied within the spectrum up to 100 Hz
as determined by the Nyquist theorem, considering most of
the SCG spectrum is speculated to exist until approximately
20 Hz [42]. The pchip interpolation technique accounted for
any discretization errors caused by inconsistent lags in the
data transfer between the accelerometer and the computer.
The data stream at each time instance was then partitioned
into varying window sizes consisting of 2 to 10 s periods as
depicted in Fig. 3, with each window ending at t = 0s or the
timestamp corresponding to ‘now’. The maximum window
size of 10 s was stipulated by the maximum allowable delay
before a medical device would be required to issue a warning
if abnormal CRA was detected [52].

The implementation of this windowing approach was
designed to overcome the limitation of autocorrelation algo-
rithms to maintain accuracy over varying rates of cardiac and
respiratory activity. Note that the periodicity of a cardiac cycle
with respect to a measurement was assumed constant within
any given window. Analysis was then performed on each
windowed segment separately for consistency and redundancy.
The results from all windows were compared with each other
using suitable decision-making algorithms, which determined
the appropriate value to be assigned to each physiological
measurement. This process was repeated for each new second
of data that the system received.

B. Respiratory Activity: Frequency Domain Extraction

The higher amplitude respiratory component was filtered
from the accelerometer signal for SCG analysis. The extraction
process enabled estimations of respiratory activity from the
signal corresponding to respiration rate, inhalation volume,
lung capacity, and respiration phase as follows:

1) Respiration Rate: Expansion of the diaphragm during
respiration causes corresponding oscillations in acceleration
at the sternum. However, as the lungs are located above the
xiphoid process and therefore the placement of the IMU,

the accelerometer did not move directly outward along the
dorsoventral axis – its Z axis. Irrespective of body positioning,
the low frequency (typically sub-Hz) acceleration-based oscil-
lations due to respiration were manifested as chest movements
in sometimes the X, Y, and Z axes. Hence, the FFTs from
all three axes within a specific window were simultaneously
considered, assuming a constant respiration rate within the
window.

The spectra were first passed through a brick-wall filter
with a lower limit of 2.4 breaths/minute. No upper limit
was specified in order to account for hyperventilation and
coughing. For reference, respiratory monitors are advised to
provide a warning within 10 seconds if the rate exceeds
30 breaths/minute [53]. The filter eliminated the lower fre-
quency components related to orientation while retaining any
cases of holding ones breath, and eliminated the upper fre-
quency components related to motion artifact while retaining
any signs of hyperventilation. The peak frequency of each
of the three measured spectra offered an indication of the
respiration rate but typically, the peak frequency from each
of the three measurement axes was different. The correct peak
within each spectrum was therefore chosen through a process
of elimination. First, a normalized, weighted mean of all four
(X, Y, Z, and magnitude) peak frequencies was calculated by
using their corresponding amplitudes as weights. The furthest
value from the weighted mean frequency was then eliminated.
In the case of two equidistant options from the weighted mean,
the value corresponding to a lower amplitude was eliminated.
In this way, the respiration rate was calculated as the best
option among the frequency spectra, taking into account other
amplitudes and axes. Due to the maximum window size set
at 10 s, the resolution at the lower end of the frequency
spectrum was heavily discretized causing the respiration rate
measurement to appear quantized, especially for lower rates
when the subject was relaxed.

2) Inhalation Volume: A comprehensive insight into res-
piratory activity and its effect on the body requires knowl-
edge of the instantaneous inhalation volume, as well as the
overall capacity of the lungs for calibration. The signal was
parsed to quantify the volume of air that had been inhaled
into the lungs until ‘now’, that is, since the most recently
acquired acceleration value from the sensor as it correlated
to the current, instantaneous, inhalation volume. In order to
accurately determine this value, the signal was segmented into
individual respiratory cycles using the previously calculated
respiration rate. The most recent cycle was then fitted to
a sinusoid with a periodicity similar to the respiration rate.
Fig. 4 below shows an 8 s long window with the most
recent respiration cycle highlighted, and fitted to a sinusoid.
The most recently acquired acceleration value was compared
with the amplitude and offset of the sinusoid, and subtracted
from the most recent, lowest exhalation point to provide a
qualitative estimate of how much air had been inhaled relative
to empty lungs. Note that the quantification of volume was
limited by unknown factors such as the lung size (estimated
from the subject’s height), low frequency motion artifacts, and
accelerometer drift. Hence, the measured inhalation volume
was a relative and not an absolute value. The oscillation
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Fig. 4. Acceleration at the diaphragm (red) caused by the respiratory cycle
within an ∼8 s window. The most recent breath (bold red) was fitted to a
sinusoid (blue). The amplitude of the fitted sinusoid offers insight into the
smoothed inhalation volume. Its phase or angle indicates that the status of
respiration is at the inhalation peak.

amplitude of the fitted sinusoid (corresponding to inhalation
volume) was calibrated as a fraction of the lung capacity to
quantify the volume of air inhaled or exhaled.

3) Lung Capacity: The maximum capacity of the lungs
of a given subject is technically almost constant, but that
value cannot be a priori determined without a knowledge
of the subject’s physical dimensions [54], or preliminary
deep breaths for baseline calibration. Hence, lung capacity
dynamically evolved with new incoming data. The maximum
amplitude of all low-frequency components of respiration,
corresponding to the largest breath, provided an indication of
the maximum volume of air that had been inhaled in the given
window. However, this factor could have been affected by a
small window size, irregular breathing, heaving, or movement.
Hence, the overall capacity of the lungs was estimated as the
mean of the Hilbert envelope [34] of the respiratory cycle, and
the amplitude of largest breath. The power spectral density
was not used for this calculation since the resolution of the
spectrum at low frequencies was significantly low, and since it
did not enable a quantification of the capacity of the lungs from
chest displacement. The values from multiple windows were
aggregated using a weighted mean, with preference given to
larger window sizes since normal breathing patterns occurred
over multiple seconds.

4) Respiration Phase (Inhalation Vs Exhalation): The phase
of inhalation was predicted by using the combination of an
instantaneous phase evaluation from the Hilbert transform of
the lower frequency components, and by correlating the phase
of inhalation to the phase of the peak frequency component
of the respiration spectrum. The angle of the fitted sinusoid
in Fig. 4 offered insight into the respiratory phase of the
subject, namely whether the subject was currently exhaling
or inhaling (and its extent). This was extrapolated to offer a
prediction as to whether the subject would exhale or inhale
next. The inhalation phase was calculated by extracting the
phase of the sinusoid corresponding to the current respiration
cycle, and verifying it with the instantaneous Hilbert phase.
In cases where the phases were in disagreement, the latter half
of the respiratory cycle was fitted to a 2nd order polynomial,
and the curvature was used to determine the respiratory phase.
Note that whilst fitting contributed to robustness by smoothing
any irregular peaks, fitting also introduced an accuracy trade-

off because this process induced rounding errors of approxi-
mately a few milliseconds in cases where one of the double
peaks was in fact, the correct peak.

The extraction of phase provided an estimation of the
respiratory state of the subject. The quantification of this phase
via sinusoid fitting enabled a prediction of the next point in
the cycle, which offered insight as to whether the subject
would be inhaling or exhaling. Since heart rate is modulated by
respiration [51], this information would be useful for motion
artifact cancellation and filtering implicit in future iterations of
the ADA, as well as more accurate measurements of cardiac
activity.

C. Cardiac Activity: Windowed Autocorrelation

Cardiac activity was obtained by amplifying specific fea-
tures in the SCG corresponding to events at the AO and
AC points, and performing an autocorrelation to quantify the
periodicity of each feature for a specific window. Analysis
of SCG morphology was demonstrated by extracting the
left ventricular ejection time (LVET), which is a prominent
indication of the systolic time interval [55].

1) Heart Rate: The acceleration signal was passed through
a high pass brick-wall filter to eliminate frequencies lower
than 0.4 Hz (or 24 bpm), which are typically associated
with respiratory activity or changes in orientation. In order
to amplify the AO-IC feature, an algorithm called VarWin
(variation in window) was created. For each timestamp in
the waveform, the function computed the maximum variation
between the acceleration at that timestamp s (t), and all values
within a specific range. The range was pinned to the maximum
duration of a heart sound i.e., 0.25 s.

f (t) = max (s (t) − s (tv )) , tv ∈ [t ± 0.25s] (1)

Thus, significant variations in the SCG between successive
inflection points appeared as spikes in the VarWin output
as shown in Fig. 5, with the peaks matching the amplitude
of oscillation at the areas of strongest variation. This is the
‘Differential’ aspect of the ADA. The temporal length of
the AO-IC feature was shorter than this time window, and
furthermore, the temporal range was purposely enlarged so
as to spread out or smear the feature for easier detection via
autocorrelation. The function hence produced a representation
of the SCG waveform, as the output directly related to the
shape of the original SCG, but did not completely retain
every feature. This was due to the effective ‘smearing’ of
the signal over the specified range, while emphasizing any
variations in the signal. The process is therefore not completely
reversible. The resultant waveform was a representation of
the variations in the SCG using a sliding window. VarWin
significantly improved peak detection. It desensitized the ADA
to AO amplitude variability and instead focused on the con-
sistent AO-IC variations. ‘Smearing’ further increased inter-
beat correlation and reduced the interference from AC-MO
variations.

The waveform was autocorrelated to identify periodicity in
the signal by comparing it with a time-delayed copy of itself,

As (τ ) → A f (τ ) =
∫ ∞

−∞
f ∗ (t) f (τ + t) dt (2)



5132 IEEE SENSORS JOURNAL, VOL. 19, NO. 13, JULY 1, 2019

Fig. 5. Visual representation of the SCG (red), VarWin function (green), and
an autocorrelation of the VarWin output (blue). The delay between the right
and middle peaks is the duration between beats.

Here τ is the delay and t is the timestamp of the signal. The
autocorrelation A f (τ ) waveform generated a series of peaks
whenever strong periodic features (AO-IC drops) aligned,
as can be seen in Fig. 5. The fundamental harmonic was
identified as the strongest peak with an amplitude greater
than 15% of the 0th harmonic. Thresholding was necessary to
eliminate correlations with AC-MO peaks or noise, whereas
we implemented relative thresholding to ensure that a weak
signal was still correctly identified. Factors such as HRV, heart
efficiency fluctuations, and variations between beats caused
additional distortion within the harmonics. The detected fun-
damental harmonic peak of A f (x) was therefore fitted with
a second order polynomial to smooth discontinuities,

A f

(
x → τ ; x ∈

[
τ

2
,

3τ

2

])
= p (x) = ax2 + bx + c, a < 0

(3)

The delay between the apex of the polynomial and the 0th

harmonic was calculated as the inter-beat interval correspond-
ing to the average duration of a cardiac cycle within the given
window. This calculation was based on the periodicity of the
SCG within 2 to 5 cardiac cycles, and the predictability of the
waveform in retaining key SCG features. The instantaneous
beat-to-beat interval (BTB) was calculated as the inter-beat
interval from the smallest possible window.

The periodicity of SCG is a useful tool to help evaluate
the instantaneous BTB, but does not take into account HRV
in a healthy heart, which introduces significant fluctuations in
real-time heart rate (HR) measurements as shown in Fig. 6.
Moreover, all cardiac time intervals are frequency modulated
by respiration and nerve activity [14]–[17], [51]. In a gen-
eral medical examination, HRV is typically factored out by
counting the number of beats over one minute. However,
the advantage of real-time monitoring would be lost if the
biometric signal was smoothed over an entire minute of data
acquisition. This is validated by the recovery profile in Fig. 8.b
that showed a significant decline in HR during recovery
from physical exertion within the first minute. On the other

Fig. 6. HR calculated per second from SCG using the instantaneous
calculation, weighted mean smoothing, and standard mean between windows,
for the ADA and manual annotations. Outlier smoothing was evident near the
176 s and 189 s timestamps. The price for outlier smoothing was a slightly
damped variability in the continuous heart rate measurement.

hand, a relatively stable heart rate measurement has higher
readability when delivered on a per second basis in a real-time
advisory situation as assumed by the ADA design. In order to
retain HRV and still smooth the HR to be relatively stable in
real-time, the ADA incorporated a windowing function that
calculated a normalized, weighted mean of HR from multiple
window sizes over the most recent five seconds. Since the
smaller windows contained less cardiac cycles, they had a
stronger correspondence to the instantaneous HR. Therefore,
small windows were given preference in the weighted mean
calculation, with the weight being determined by the duration
of the window as follows,

wi = TN−i∑N
i Ti

(4)

Here w is the weight assigned to the HR value obtained in a
particular window, T is the temporal length of the window, and
N is the number of windows. The first window was assigned
a weight based on the duration of the last window, and so on.
The weight of a window was therefore inversely proportional
to its duration. The final BTB evaluation was approximately
equal to the BTB calculated for the smallest window (the
instantaneous HR) albeit moderated by the larger windows
(previous BTB values). The HR was then calculated as the
inverse of the BTB measurement. The smoothing of the real-
time HR measurement improved its readability.

2) Left Ventricular Ejection Time: The left ventricular ejec-
tion time (LVET) is a prominent CTI as it measures the delay
between the aortic opening, tAO , and closure, tAC , during the
systolic phase of the cardiac cycle,

LV ET = tAC − tAO (5)

The LVET indicates the amount of time taken for blood
to leave the left ventricle, corresponding to an approximately
60% reduction in the volume of this chamber, measured as
the left ventricular ejection fraction [56]. The morphological
similarity in the AO-IC and AC-MO features necessitated a
suppression of the AO-IC feature after identification, espe-
cially since it was typically stronger than the AC-MO feature.

The LVET was calculated using the same process as the
extraction of BTB by amplification of the fiducial points
in the SCG. First, the calculated heart rate was used to



D’MELLO et al.: ADA FOR REAL-TIME SCG ANALYSIS 5133

Fig. 7. Separation and identification of the AO and AC fiducial points
in a 3 s window. The SCG (red) is processed to amplify the AO-IC drops
(violet). Once identified, the region around the AO points is suppressed for
identification of the AC-MO drops (green).

identify the AO points in the given window. The signal around
each AO point and beyond each MO point was suppressed
by nullifying the amplitude near local minima, as shown
in Fig. 7. This suppression resulted in the AC-MO drop
being the strongest feature in the SCG waveform, which was
subsequently detected. The identification of the AC points
allowed for a straightforward calculation of LVET using the
previously determined AO points.

IV. RESULTS

A. Analysis of Cardiac Activity

The ADA was tested on SCG signals obtained from subjects
in the supine position that were measured twice when relaxed,
and once when recovering from physical exertion, during a
period of seven minutes for each measurement. DSP conducted
on multiple window sizes produced a set of physiological
measurements for each window, which were then averaged
across windows using a weighted mean. The refresh rate was
set to one second, implying that CRA was evaluated by the
ADA at every one-second increment in measurement.

A set of ADA outputs for a subject with consistently high
resting HRV are shown in Fig. 8 at rest (left) and during
recovery (right). The SCG signal in Fig. 8.a was analyzed
to deliver estimations of respiratory activity including:

1) respiration rate (RR) in Fig. 8.b,
2) respiration phase (classification of inhalation versus

exhalation), estimated lung capacity, and inhalation vol-
ume relative to lung capacity in Fig. 8.c,

and measurements of cardiac activity including:

1) heart rate (HR) from ADA, manual annotation, and an
upper-arm cuff sensor in Fig. 8.d,

2) beat-to-beat interval (BTB), left ventricular ejection time
(LVET), and LVET as a fraction of BTB (LVETF)
in Fig. 8.e.

The limitation that was imposed by setting the maximum
window size to 10 s was evident in the respiration measure-
ments. The minimum obtainable frequency component of the
spectrum of the signal constrained within a 10 s window was
0.1 Hz, as compared to a normal, awake, resting RR of 0.2 Hz
(12 breaths/minute). The subjects in this study generally had a

relaxed respiration rate higher than this floor, but the measure-
ment still appeared quantized as seen in Fig. 8.b due to the lack
of resolution in the lower frequency side of the corresponding
spectrum. In the frequency domain, considering the fact that
the low frequency components relevant to orientation and
motion artifact were already filtered, barely 3 to 5 accurate
frequency points in the DFT were available over which to cal-
culate respiratory activity. Hence the low resolution of the FFT
within a small window size caused an apparent quantization of
the relaxed respiration rate. In contrast, the recovery RR was
less susceptible to this issue as the rate was typically high
enough to obtain a more accurate calculation. The envelope
of the Hilbert function for lung capacity calculation was also
limited by the window size. Hence if the lungs did not inhale to
their maximum capacity at least once during this time window,
the estimated lung capacity decreased proportionately. This
was evident in the lung capacity estimation for the recovery
state in Fig. 8.c. Recovery and relaxed respiration rates also
showed variation in their morphology, as the fraction of the
respiratory cycle devoted to inhalation was lower for relaxed
breathing. A comprehensive analysis of the effect of exertion
on respiration would require acquisition outside a laboratory
setting since a conscious awareness of breathing affects the
respiratory cycle [57].

Heart rate variability as severe as 50 bpm was sometimes
observed between beats during manual annotation of the
SCG signals for recovering as well as relaxed subjects. The
manually annotated heart-rate was processed using the same
normalized weighted mean windowing as that used in the
ADA. A sample result of this weighted smoothing feature
was shown previously in Fig. 6. Heart rate measurement
using the cuff was extracted at an indeterminable timestamp,
because this measurement was taken during its deflation. As a
result, the temporal error bars for the reference measurement
in Fig. 8.d indicate the period of cuff deflation during which
the measurement was known to have occurred. Vertical error
bars correspond to a 95% accuracy of the measurement as per
instrument specifications.

B. Verification of Hr Measurement Accuracy

The ADA was performed on each second of 12,958 seconds
of data, including 18 seconds containing motion artifact. This
corresponded to approximately 14,619 heartbeats that did not
include motion artifact, as determined by a manual annotation
of the AO peaks. Since the last of three measurement sets
were conducted post-exercise, approximately a third of this
data reflected measurements of recovery patterns immediately
after physical exertion.

The accuracy of the ADA was benchmarked using the fol-
lowing two overlapping techniques: (i) by comparing the ADA
measurements with manual annotations using the acquired
experimental dataset, and (ii) by comparing the ADA mea-
surements with ECG-based measurements using an external,
publicly available dataset. The ADA was compared with
manual annotations to quantify its beat detection accuracy in
comparison to a trained eye. Regarding ECG, note that the
reason SCG AO-AO intervals can be used as a surrogate for
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Fig. 8. (a) Vectorial magnitude of acceleration measured at the sternum over a 7-minute period for one supine subject when (left) relaxed and (right)
recovering from physical exertion. The decline in cardiac and respiratory signal amplitudesduring recovery was noticeable, and is manifested in the results.
(b) The respiration rate evaluation appeared more quantized for low-frequency values due to the lower resolution of the Fourier Transform given the limited
window size. (c) The volume of air in the lungs was estimated from the oscillation amplitude of the most recent respiratory cycle. The angular phase of this
oscillation determined the current respiration status as inhalation (green) or exhalation (red). The lung capacity estimation (blue) was based on the maximum
inhalation volume of the largest window evaluated at each second. (d) Heart rate (blue) showed expectedly significant variability in the relaxed state, and was
referenced with manual annotations (red) and a cuff sensor (black). (e) The decline in heart rate during recovery implied a rising beat-to-beat interval (red),
and corresponded to a rising left ventricular ejection time (blue). Evidence of this can be seen in the relatively stable left ventricular ejection fraction (green).

ECG R-R intervals in traditional heart rate measurement is due
to the strong agreement between the electrical R points and
mechanical AO points. Hence as an unbiased quantification
of accuracy, the ADA was further benchmarked using an
externally sourced dataset consisting of ECG and SCG signals,
on which it was not previously trained.

1) Accuracy Compared to Manual Annotations: Every SCG
dataset was manually annotated to identify AO peaks and
evaluate the corresponding BTB durations. The results were
windowed to apply the same weighted mean smoothing as
in the ADA evaluation of HR. Sections of the signal that
were masked by noise were ignored during manual annotation,
totaling 18 s worth of information in this study. The heart rate
evaluation per second from both approaches was rounded to
the nearest beat-per-minute value within two decimal places.
Fig. 9 shows the correlation between HR measurements for
each second of data, as well as the corresponding Bland-
Altmann results. The 95% confidence intervals appear at less
than ±5 bpm, which is in agreement with the tolerance
limits for the medical standard regarding heart-rate measure-
ment [52].

A well-known drawback of the SCG acquisition method of
CRA measurement is data corruption due to motion artifact
such as movement, physical contact, or error from sensor
misplacement. These issues mask the signal with noise and
lead to measurement evaluation failures. In this test, the sub-
jects remained motionless during acquisition, which provided
a high signal-to-noise ratio for the detection of cardiac-induced
vibrations as opposed to motion artifact. For certain situations,
the ADA was able to account for a higher level of corrupted
data in its evaluations than manual annotation. In most cases
this provided a sensible estimate for heart rate despite masking

of the AO points by noise or motion artifact, which rendered
them manually unidentifiable. This was due to the flexibility
of the ADA in identifying similarities between cardiac cycles
in the rest of the signal around the AO instead of just the
AO itself. Additionally, the feature amplification process of
the VarWin function only identified relative changes with
no consideration for absolute values or thresholding, which
benefitted pattern recognition in the autocorrelation technique.
The VarWin modified signal enabled a higher than expected
accuracy for feature identification especially during periods of
low signal quality of which the causes were speculated to be
sensor misplacement, inhalation, or inadequate contact with
the body. Another consequence of this approach was found
to occur in the rare case where the AC-MO features caused
a stronger differential acceleration than the AO-IC features.
This pattern resulted in a stronger correlation at delays that
corresponded to the duration between AC-AC beats instead of
the expected AO-AO peaks. However, since the autocorrelation
was blinded to the shapes of features in the signal, and since
the MO peaks had a proportional delay from the AO peaks
(due to low LVET variability as explained in Section IV-A
combined with rapid AC-MO transition), the method still
produced satisfactory results for HR albeit with outliers.

2) Accuracy Compared to Ecg on External Data: Manual
annotations are susceptible to human error and observer bias.
Such annotations do not conclusively prove the ability of the
ADA to distinguish AO peaks from false positives such as
motion artifacts that bear a similar resemblance to heartbeats
(and would therefore also challenge the interpretation of the
annotator). Therefore, as an additional test of reproducibil-
ity, the algorithm was used to analyze an external dataset
consisting of synchronized Z-axis SCG, and ECG signals.
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Fig. 9. (a) Scatter plot of ADA and manual SCG AO-AO heart rate
fitted with a linear regression line with an r2 correlation coefficient of 0.98.
(b) Bland-Altman plot of heart rate computed from ADA and manual
annotation with average error (black) and 95%-limits of agreement (red).

The data is available on the Physionet database [58], [59]
and the algorithm was not designed for, or trained on, this
externally sourced data. The data consisted of 17 subjects, with
three sets of 200-second recordings, totaling 10,200 seconds
across all subjects. The corresponding correlation and Bland-
Altman plots are shown in Fig. 10. The test produced an r2

of 0.8224 for HR measurements, which is expectedly lower
than the accuracy correlation coefficient obtained by using
the acquisition protocol in Section I.B for which the ADA
was developed. The lower r2 can therefore be attributed to
possible variability in the positioning, acquisition method,
noise, and motion artifact. The results validate the proposed
approach by comparison with the ECG gold standard of
HR measurement.

V. DISCUSSION

As an extension of the work, a feasibility study was con-
ducted on the algorithm to determine the following features:
(i) robustness concerning AO detection during periods of high
HRV, (ii) versatility of the ADA toward other SCG feature
recognition such as AC detection and consequent LVET cal-
culation, and (iii) algorithm efficiency constraints regarding
speed and accuracy. In this context, the accuracy of AC detec-
tion was not determined. A comprehensive analysis including
AC and LVET measurement would necessitate the acquisition
of concurrent Impedance Cardiography (ICG) reference data
and will be conducted in a future study. Finally, the efficiency

characterization provided a useful tool to quantify the real-time
capability of the algorithm.

A. Investigation of Ctis During Rest and Recovery

The LVET showed noticeably lower variability than BTB
for relaxed measurements, indicating that the systolic phase of
the cardiac cycle was relatively unaffected by HRV, as could
be inferred from Fig. 11 with most of the temporal variability
contained in the diastolic phase. The independence of LVET
from relaxed BTB can be attributed to its origin: LVET is a
result of the mechanical function of the heart, specifically the
aortic valvular motion that acts in response to the dynamic
pressure differential between the left ventricle and the aorta
during the cardiac cycle. The occurrence of AO peaks on
the other hand, are a consequence of the contraction of both
ventricles triggered by the firing of the atrioventricular node,
which relates to the pre-ejection period and corresponds to
ECG measurements [9]. The evolution of the LVET in relation
to the cardiac cycle can be seen in Fig. 8.e showing LVET,
BTB, and the duration of the LVET as a fraction (LVETF) of
the BTB duration,

LV ET F = LV ET

BT B
(6)

The LVETF was less responsive to changes in HR as can be
seen during post-exercise recovery. An improved stability at
higher heart rates was attributed to lower HRV [60]. As a
consequence of this relationship between LVET and BTB,
the LVET is typically corrected using the HR as determined by
a metric called the left ventricular ejection time index (LVETI)
accurate up to 150 bpm [61], and given by [62],

LV ET I = LV ET + 0.0017 × H R (7)

The characterization of exertion is relatively difficult in SCG
due to an implicit and proportional increase in motion artifact.
This offers limited depth for studies on SCG morphology
performed during exertion, and requires referencing with ECG
[63]. Our protocol worked around the problem by measuring
supine subjects immediately after undergoing intense exertion,
that is, during post-exercise recovery. The validity of this
approach is demonstrated in Fig. 11 which visualizes the result
of averaging relaxed and exerted cardiac cycles over 300 heart
beats, when lined up at their respective AO fiducial points. For
the relaxed state in Fig. 11.a, a sharp AC-MO coincidence was
seen between the waveforms despite the cycles being different
lengths due to HRV, whereas normalizing the cycle durations
(to a period of 1 s each in Fig. 11.b) induced an AC-MO mis-
match. In the recovery state however, while following cardiac
activity from exertion (violet) to relaxation (red) in Fig. 11.c,
the decreasing BTB blurred any AC-MO overlap between mul-
tiple waveforms, and this became apparent when considering
the clear AC-MO overlap that was obtained in Fig. 11.d after
temporally normalizing the waveforms to a 1 s duration.

It is worth noting that the amplitude of AO acceleration also
showed a consistent decline during recovery. This is in con-
trast to the acceleration of the AC-MO variation that instead
consistently increased in amplitude and therefore definition,
as heart rate returned to a normal resting state.
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Fig. 10. (a) Scatter plot of ADA AO-AO and ECG R-R heart rate calculations
fitted with a linear regression line with an r2 correlation coefficient of 0.8224.
(b) Bland-Altman plot of heart rate computed from ADA and ECG with
average error (black) and 95%-limits of agreement (red).

Fig. 11. Time-averaged SCG waveforms for 300 heartbeats in the relaxed
(top) and post-exercise recovery (bottom) states for raw (left) and temporally
normalized (right) cardiac cycles. HRV in relaxed SCG did not propagate into
LVET as can be seen from the clarity of the signal in (a), and the blurring
of the signal when the cardiac cycles were temporally normalized (scaled
to a duration of one second) in (b). However, HRV is less prominent for
exerted SCG (c), which facilitated accurate detection of LVET by temporally
normalizing the signal (d). This helped account for weaker detection as
a consequence of the suppression of the AC-MO feature with increasing
exertion.

These results were consistent with cardiological studies
relating a decline in HRV with exertion, as well as a decline
in systolic time intervals (STIs) [64]. The LVETI was calcu-
lated as an indication of STI trends, as it is more strongly
influenced by HR than the pre-ejection period [65]. Conse-
quently, the LVETI and HRV were evaluated at 1s intervals
(as explained in Section IV-A) within the ADA framework,

Fig. 12. LVETI and HRV calculated using LVET and BTB values from
the smallest viable window of each measurement. The values are taken
from exclusively the recovery datasets of all 10 subjects. LVETI (green)
was calculated as in equation (7) for healthy males, and HRV (violet) was
calculated as the successive differences between beats represented by the AO
points. Expected mean values are represented as dashed black lines.

Fig. 13. Characterization of the ADA performance for accuracy and
computational time. The computational time was evaluated as the runtime
in seconds required for each evaluation of all output physiological metrics.
It therefore indicates the upper limit of the ADA refresh rate. The clock
supplied by the operating system for performance measurement through the
MATLAB profiler was used for this purpose. Accuracy was measured as the
correlation coefficient between HR produced by the ADA, and by manual AO
annotation.

and are depicted in Fig. 12 for the recovery datasets of all
10 subjects. The root mean square of successive differences
(RMSSD) and standard deviation (SD) are commonly used
metrics of HRV [66]. When calculated from the AO points,
both metrics showed an inverse relationship with heart rate,
as depicted by the convergence of values towards the right
in Fig. 12. As the level of exertion increased, the HR rose,
and the variability in BTB declined. Interestingly, the HRV
was found to reduce significantly despite the fact that the BTB
was already continuously increasing as the subject naturally
recovered. Despite the fact that the recovery trajectory of
the subject had not been calibrated out of this depiction,
the HRV still clearly reduced with HR. Additionally, evalua-
tions of LVETI during exertion appeared to be constrained to a
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minimum value as shown in the form of a dashed black line.
The linear regression equation for LVETI intersected with
the median LVETI of 0.446 s at a heart rate of 94 bpm,
which was approximately equal to the median of measured
heart rates, and therefore suggested a uniform distribution.
The distribution was in general agreement with the expected
LVETI of 0.413 s (dashed black line) for healthy males
with allowance for daily fluctuations, outliers, and variability
[67], but also suggests that the algorithm has potential for
improvement.

The relationship between HRV and systolic time intervals
such as LVET, particularly within the context of physical
stress, offers insights into cardiac performance, autonomic reg-
ulation, and possible disease prediction based on the reactivity
hypothesis [68]. Longer measurement periods with larger pop-
ulations and standard referencing will be required to evaluate
the ability of the ADA to quantify exertion from CRA. These
measurements highlight the potential of the ADA code for
deeper analyses of cardiac-induced sternal vibrations, which
will be explored in future studies.

B. Performance: Computational Time

The ADA approach was characterized for algorithm perfor-
mance at different sampling frequencies. The lowest accept-
able frequency retaining basic SCG morphology was found to
be 50 Hz with r2 > 0.5. Previous investigations have detected
the occurrence of cardiac events such as valvular activity and
murmurs that contain frequency components as high as 320 Hz
[69]. Current state of the art algorithms typically sample above
200 Hz [29], [31], [34]. However, we have found that the
ADA accuracy did not significantly improve beyond 150 Hz.
Admittedly, the accuracy was quantified for only heart rate
measurements and no other features in SCG morphology such
as LVET. For further analysis of SCG morphology, a higher
sampling rate may be required.

The performance was measured on a 2.6 GHz Intel i7-
770HQ processor with 16 GB 2133 MHz LPDDR3 memory.
The performance of the algorithm was evaluated at different
sampling frequencies using accuracy (correlation coefficient)
and computational time as characterization metrics, as shown
in Fig. 13. An intuitive observation is the trade-off between
accuracy and computational requirement for different sampling
frequencies. The ADA computational time was linearly depen-
dent on sampling frequency, which contrasts other algorithms
available in the literature whose computational time have
been found to increase exponentially with sampling frequency.
An optimal operational efficiency was seen at a sampling
frequency of 100 Hz, although acceptable accuracy or com-
putational time was obtained at 75 Hz or 125 Hz respectively,
as well. Recommended operating frequency is 200 Hz as this
allows real-time measurements requiring 0.05 s runtime for
each second of measurement data, with an accuracy close to
the maximum, and well within medical standards [52]. The
metrics of computational time and accuracy in Fig. 13 rep-
resent, to our knowledge, the only efficiency characterization
over sampling frequency that has been reported in the literature
for a real-time SCG detection algorithm.

C. Extensions

The ADA autocorrelation-based technique provided a cus-
tomized pattern recognition tool to amplify relevant SCG
features for analysis. The functionality was supported by a
combination of first principles (e.g., the VarWin) and sta-
tistical methods (e.g., autocorrelation for feature detection).
This provides a useful framework for future integration with
learning algorithms, deeper analyses of cardiac time intervals
such as LVET, and feature recognition and identification to
determine cardiac behavior. Due to the large variability in
SCG morphology and the need to adapt to large amounts
of data without standardized waveforms, machine learning
techniques would be useful to develop future SCG algorithms.
The combined approach would allow for further refinement
using regression or classification algorithms to improve, for
example, heart rate calculations, motion artifact filtration, and
beat identification. Currently, however, it is our belief that the
ADA still has scope for improvement using further fundamen-
tal modeling of cardiac-induced vibrational wave propagation
through the chest, and the relation to SCG morphology and
variability. Supervised learning algorithms trained on the raw
data could also improve tasks such as detection accuracy and
motion artifact filtration, which would significantly benefit
from rigorous statistical approaches.

VI. CONCLUSION

The ADA represents a novel approach for the non-invasive
and real-time measurement of specific physiological activity.
It was applied to the extraction of CRA measurements from
accelerometer data. Data was collected from ten subjects in the
supine position for three 7-minute-long sets. This represented
measurements over 14,619 heartbeats within 12,958 seconds.
Respiratory activity was also evaluated from the SCG sig-
nals. Temporal windowing and autocorrelation-based pattern
recognition were employed to detect and amplify characteristic
features in the SCG signal, whilst accounting for variations
and noise from issues such as motion artifact or sensor
misplacement. Fiducial points of interest were used to deter-
mine time intervals within, and between, consecutive cardiac
cycles.

For the prediction of heart rate, the accuracy was compared
with a medical reference device and manual verification on
all data sets. The computational efficiency of this approach
was found to be significantly high as compared to algorithms
available in the literature. This suggests easy scalability to a
variety of platforms for a real-time, reliable evaluation of phys-
iological measurements. However, increasing the sampling
frequency showed diminishing returns in accuracy beyond
125 Hz, which indicated a possible Nyquist limit for SCG
features relevant to the ADA.

We have therefore demonstrated the performance of an algo-
rithm capable of providing CRA-relevant metrics in real-time.
Considering the heart rate of a supine subject, the accuracy
was within the standards for a medical device. An acquisition
rate as low as 100 Hz still delivered heart rate accuracy
within medical standards [52] and therefore allows for options
for lower power energy consumption when implemented in
a portable system. The algorithm also demonstrated basic
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motion artifact cancellation in its evaluation of physiological
metrics.
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