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Abstract— Indoor/outdoor localization topic has gained a
significant research interest due to the wide range of potential
applications. Commonly, the Fingerprinting methods for spatial
characterization of the environments monitored are employed
in deterministic/statistical estimation. However, there are Finger-
print parameters that are generally neglected and can seriously
affect the performance yielding to low accurate location. Nowa-
days, machine and deep learning (DL) methods are employed in
this topic due to its ability to approximate complex non-linear
models being capable of mitigating the undesirable effects of
wireless propagation. In this paper, a complete overview of most
influential aspects in Fingerprinting and indoor tracking methods
is presented. Furthermore, a novel multi-modal complete tracking
system, called SWiBluX, based on statistic and DL techniques is
presented. The system relies on relevant feature extraction from
available data sources to estimate user’s/target indoor position
using a multi-phase statistical Fingerprint and DL disruptive
approach. In addition, a Gaussian outlier filter is applied to the
position estimation model output to further reduce the error in
the estimation. The set of experiments performed shows that
Fingerprint positioning accuracy estimation can be improved up
to 45% resulting in a final estimation error that outperforms
related literature.

Index Terms—Indoor positioning, tracking, orientation,
fingerprinting, particle filter, wireless, RSSI, IMU, feature vector,
machine learning, deep learning, neural network.

I. INTRODUCTION

N THE recent years, scientific methods for data analysis

of human activities have become a relevant topic to extract
behavioral patterns [1], [13], [14] which represent valuable
metrics for multiple purposes such as research, business, secu-
rity, health [3] among others [14]. Indoor/outdoor tracking has
attracted an extensive focus of research due to the continuous
progress in computing capabilities and sensing technologies
such as RGB, LIDAR, ultrasound, infra-red, etc.

An extended approach for people tracking is based
on Computer Vision techniques using RGB sensors [3].
However, occlusions, lighting changes among others, constrain
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the estimation accuracy of these methods. Moreover, recent
RGB-D and LIDAR sensors (i.e Intel Real Sense or Microsoft
Kinect [4]) allow to obtain also depth information attain-
ing a significant accuracy improvement compared to RGB
estimation. Nonetheless, short detection range in addition
to aforementioned issues decrease the application of these
devices. There exist several works that employ ultrasound
sensors [5] for tracking. However, lack of accuracy, difficulties
associated to multi-object detection and coverage range as
well, make these approaches unfeasible for scenarios where
individualization is required (i.e places with limited capacity).

Mobile technologies have fostered the development of meth-
ods for position estimation and tracking [7] due to two main
reasons: (a) these devices are widely used among population
(smartphones) and (b) fulfill most of the aspects concerning
privacy.

Advances have empowered personal devices with sev-
eral wireless technologies (IEEE802.15.1 Bluetooth [30],
IEEE802.11g/n WiFi [32] or IEEE802.15.4 [31]) that can be
used for indoor position estimation. In particular, two metrics
are used for the mentioned technologies: Time-of-Arrival
(ToA) and Received Signal Strength Indicator (RSSI) [16].
The former relies on obtaining the time lag of a packet
forwarded to an end-point and estimate the distance between
devices. However, strong requirements in terms of hardware
and synchronization make this proposal hard to implement.
The latter approach is most extended as devices are able to
obtain the RSSI parameter from packets although propagation
effects such as multipath, fading, reflections among others rise
a challenge for processing techniques applied [6], [9].

The inclusion of inertial sensors (accelerometers and mag-
netometers) has increased the set of features that can be
applied to prediction models, yielding to meaningful accuracy
improvements for person movement monitoring. For the afore-
mentioned techniques (RSSI and ToA), a Wireless Sensor Net-
work (WSN) composed of a set of nodes deployed across the
area under monitoring is utilized due to its low-consumption,
self-organizing and easy deployment capabilities. Extensive
research has been conducted in the literature to address the
person tracking problem using RSSI [7], [14], [15], [19]. These
proposals are mainly classified into deterministic or statistical
methods. On the one hand, deterministic techniques adopt a
theoretical model for propagation and geometrically combine
the measurements gathered from several nodes to estimate the
person position. On the other hand, statistical techniques, such
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as Fingerprinting, characterize the environment by creating
a background dataset that contains the measurements at pre-
defined locations. Several Fingerprinting parameters must be
adjusted to achieve good performance in position estimation
procedure. However, in most of the existing research, there is
not a clear description neither of how these parameters were
obtained nor how datasets are updated to face with changes
in the scenario.

Machine and deep learning algorithms provide novel tools to
cope with large datasets, learning complex non-linear patterns
from input information [17], [18]. Topics involve data sci-
ence [20], image classification, detection and recognition [21]
among others. Regarding the proposed scenario, Fingerprinting
can be treated as a huge dataset of RSSI measurements where
these algorithms can be applied [22]-[24]. Once the target
position is estimated, tracking is performed by filtering these
locations using well known methods such as Kalman Filters
(and its nonlinear variants) and Particle Filters [44]-[46] using
a reference movement model.

In this paper, a complete framework for indoor estimation
and tracking using wireless technologies and inertial sensors
is presented. This framework is called SWiBluX from WiFi,
Bluetooth and Xbee technologies, it adopts two layers: (a) Fin-
gerprinting for position estimation and (b) Neural Networks in
combination with a novel Gaussian Outliers Filter (GOF) for
person tracking. The main SWiBIuX contributions are:

o Describe a complete and comprehensive analysis of the

most influential parameters in Fingerprint construction.

o Outline a procedure to establish boundaries in parameters
selection.

o Draw a Deep Learning (DL) approach for Fingerprint
employment in indoor estimation.

o Provide a complete overview of different methodologies
in positioning and tracking.

o Present a disruptive and modular architecture for accurate
indoor tracking based on a combination of statistical and
DL methods.

o Propose a novel Gaussian Outlier Filter for Tracking
refinement able to improve the Neural Network perfor-
mance up to 10%.

The remainder of this paper is organized as follows:
section II shows the related work. In section III, the overall
indoor tracking problem is formulated. Section IV details the
most influential aspects in fingerprinting technique for position
estimation. The proposed system is outlined in section V.
Results and discussion are described in section VI. Finally,
in section VII the main conclusions and future work are

drawn.
II. RELATED WORK

The statistical analysis can be further improved based on
Fingerprinting methods that overcome the mentioned difficul-
ties, allowing to collect enough data for indoor scenario char-
acterization. Classical propagation models are commonly used,
however, harsh and changing indoor conditions make these
methods unfeasible due to its low accuracy. Other indoor posi-
tioning methods require to adjust several parameters subject to
the monitored area, a radio map or additional measurements.
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Fingerprinting aims to construct a reliable radiomap with
a few measurement points, enabling the use more complex
techniques to better characterize the final estimated position.

Multiple works have been presented for position estimation
using Fingerprinting technique, neglecting the details on how
the fingerprinting dataset was calculated [2], [7], [8]. Nonethe-
less, some information on its implementation was provided
in [10], [11], and [47]. In [11], several details regarding the
propagation effects have been outlined. However, justification
of how the cell number/dimension or device allocation for
RSSI collection phase is not provided.

In [12], the effects of user body absorption, antenna orienta-
tion and Line Of Sight LOS/NLOS propagation are presented.
Results showed how the RSSI attenuation is larger in the
presence of human occlusions and it must be considered for
Fingerprinting creation. In [13], a four-directions (oriented)
Fingerprinting is drawn to enhance the dataset resolution
as well as to mitigate the estimation error due to the per-
son/device orientation. Furthermore, an analysis of cell dimen-
sion influence showed that large variance of RSSI measures
affects the performance of the positioning algorithms. These
studies raised challenges on how to reach reliability of the
RSSI measurements in Fingerprinting.

Probabilistic methods exploit the RSSI variance for posi-
tion estimation [34], [40], [41]. Recent approaches based on
Machine/Deep Learning techniques are capable of employing
the RSSI dataset to learn the optimal model that relates
the measurements with the final position estimated. In [37]—
[39], methods such as K-Nearest Neighbors (KNN), Support
Vector Machines (SVM), and Neural Networks (NNs) are
applied. Moreover, works incorporating adaptive updates of
Fingerprinting parameters to adjust the models to changes in
environment conditions have been depicted in [42] and [43].

Estimated locations are provided as output from the afore-
mentioned techniques. However, these estimations are noisy
and neglect temporal dependency. Therefore, using the posi-
tions from Fingerprinting stage, several filters can be applied
on top to fit the routes obtained to a movement model as
well as to reduce the impact from outliers. The most common
approaches are Kalman Filters and Particle Filters [44]-[46]
which are based on state-space models and combine mea-
surements from different sources to estimate the next state
of the system. In fact, Fingerprinting can become an
important noise source if the parameters are not properly
adjusted.

Probably the most similar works to the one presented here
are [23]-[25], where a complete survey of classical, Artificial
Neural Networks (ANN) and Reinforcement Learning tech-
niques, attaining a positioning error in the range 1-3 meters.
However, SWiBlux extends these approaches by involving
additional information extracted from inertial/magnetic sensors
to improve the quality of the positioning and tracking algo-
rithms. A custom feature vector is proposed as ANN input
to tackle the problems related to Fingerprinting technique.
An additional layer to enhance spurious outliers filtering is
detailed. In results section VI, it is shown that SWiBluX
complete sequential architecture outperforms the literature.
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Fig. 1.

Left: This figure represents the real monitored scenario and the cells distribution for fingerprinting. Five nodes equipped with the selected wireless

technologies are deployed across the area (circles). Doors are drawn in red and furnitures in gray respectively. Right: The reference coordinates system for
inertial and magnetic sensors as well as the allocation of devices employed are illustrated.

III. PROBLEM STATEMENT

A typical indoor scenario is characterized in Figure 1
(scenario used in the experiments performed in this work)
where the width and depth are denoted by W, D respectively.
Additionally, a set of cells ¢ = {p;| [l = 1,...,L} with
geometrical center at p; = (x7, y;) € R? is defined, where
¢; is a particular cell. The distance from a cell to another is
marked by d(c;, ¢j) using euclidean distance as metric.

It is assumed that a set of nodes are deployed across
the indoor scenario under monitoring. These nodes can be
modeled as v = {v;, | i = 1,....,1;4A = 1,...,A}
and are fully connected. Furthermore, the nodes are located
at Cartesian coordinates p; = (x;,y;) € R2. Moreover,
the nodes are equipped with sensors from wireless technolo-
gies / able to extract the Received Signal Strength Indica-
tor RSSI from a packet. In particular, sensors from three
wireless technologies are considered: IEEE802.11.g/WiFi [32],
IEEE802.15.1/Bluetooth v4.0 [30] and IEEE802.15.4/XBee.
Let RSSI; , to describe the RSSI measurements gathered by
node i with technology A.

It is assumed that a/several individuals is/are moving in the
scenario wearing mobile devices endowed with at least on of
the aforementioned technologies (smartphone, wearable, etc).
The main problem addressed in this paper is the individual
tracking using the WSN information.

Optimal cell distribution for Fingerprinting is one of the
main issues addressed in this work. The most common aspects
include: (a) identifying the most influential parameters for
Fingerprint construction, (b) defining some approaches to mit-
igate the effects of cell distribution, (c¢) data fusion of several
wireless technologies, (d) analyze and assess deterministic and
statistic methods for position estimation based on RSSI dataset
as well as Machine/Deep Learning approaches, (e) a simple
outliers filter based on estimations given by the algorithms and
parameters extracted from sensors and (f) the implementation
of final tracking filtering algorithm.

Raspberry Pi devices were used as nodes, equipped with
XBee S1 (protocol IEEE802.15.4, indoor range 30 meters,
transmission power 0 dBm) Bluetooth USB Dongle PBU40
(protocol IEEE802.15.1 v4.0 BLE+EDR, indoor range around
10-20 meters, transmission power -3 dBm) and WiFi USB
dongle TP-LINK TL-WN722N (protocol IEEE802.11.(b,g,n),
indoor range around 40-80 meters, transmission power around
21 dBm), whereas the wearable was endowed with Iner-
tial Movement Unit (IMU) Adafruit 9-DOF LSM9DS0 with
accelerometer, gyroscope and magnetometer integrated.

The orientation of the wearable device attached to the body
is presented in the right side of Figure 1. The device is allo-
cated on the person hip and axes (X,Y,Z) in the figure match
the IMU axes.

IV. FINGERPRINT CALCULATION

Aforementioned factors affect the quality of RSSI measure-
ments yielding to large variance in the power level detected by
every node, which is critical when the detection is performed
in an indoor scenario as the one shown in Figure 1. Finger-
printing is employed to characterize the monitored scenario by
splitting it into a set of cells and obtaining RSSI measurements
at every cell for a predefined time. However, some important
aspects such as the number of cells, the point of interest for cell
measurements and the coverage area are generally neglected.

A. RSSI Variance

Initially, it can be argued that the larger the number of
cell is, the higher characterization resolution achieved is.
However, if the number of cells is large, the statistics could
be similar between each other, increasing the estimation errors
for Fingerprinting cells with identical behaviors or very close
among them. Consequently, it can be also stated that the larger
the number of fingerprinting cells is, the higher probability of
error in estimation is.

Therefore, an analysis is required in order to select the
cell size to prevent the overlap between RSSI measurements
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Example of RSSI variance boxplots in the collected fingerprinting database is presented for each node in different cells selected for a particular

wireless technology (XBee). Variance in measurements is large, yielding to significant fluctuations in the signal distribution over a particular location (i.e. a

cell in the monitored room).

collected in the nearest cells. In practice, RSSI values overlap
for different distances in multiple cells due to the propagation
conditions. It can be inferred that the more distances with the
same RSSI reading overlapping, the higher error probability
in position estimation.

An example of this statement is depicted in Figure 2 where
a set of four cells and all the RSSI measurements collected by
all nodes are presented. A single node has a coverage range
constrained for every particular technology, and any of these
covers the whole area. As a consequence, unexpected effects
such as a non-uniform data distribution from sensors around
this position or even lack of coverage makes difficult to fit
a proper propagation pattern for each cell. As an example,
for Cell 8, it is shown that measurements collected from
Node 2 and 3 (the closest nodes in our deployment) are larger
than measurements collected from Node 1 and 5, whereas no
measurements from Node 4 (the furthest node with more walls
in between).

B. Wireless Technology Signal Attenuation

Wireless technologies used in fingerprinting have different
signal distributions across the distance. There exist several
approaches for indoor propagation modeling where the signal
attenuation is relevant to define the cell size. As an example,
cases where signal attenuation in a cell is very low (i.e. almost
flat) have a similar distribution giving to unreliable estimations
for this area. Based on this statement, the nodes must be
allocated accordingly to the area under monitoring avoiding to
have these nearly from each other. This effect is mitigated in
the presence of multiple wireless technologies as its particular
propagation patterns allow to distinguish the locations by
fusing the data from each one.

C. Sampling Time Per Cell and Synchronization

The data collection period for every cell is relevant due to
the need of gathering enough RSSI measurements to obtain

a representative sample. The number of packets forwarded
depends on the processing capabilities of transmitting devices.
In order to synchronize the measurements collected, it is
assumed that the transmitter device is able to embed the
timestamp to the measures collected. Fixed length slicing
windows of 40 ms were created to collect measurements that
are assumed to be synchronized. In the tests performed in this
work, the sampling frequency for the considered technologies
is up to 25 samples per second and the sampling time per cell
was adjusted to 5 minutes.

D. Object or Person Tracking

The absorption of people must be considered for human
tracking applications. Several works have addressed this prob-
lem trying to model the human absorption [36]. In this work,
empirical tests were performed to determine that the average
attenuation in detection due to human absorption. In this
work, measurements along several locations and different
orientations with the device attached to the body and the device
fixed without human interactions have been collected. In addi-
tion, some measurements with 3-6 persons moving along the
monitored area were considered to emulate interference. The
mean of the information gathered was used to establish an
attenuation equal to 4 dBm.

E. Orientation

The antenna orientation effect has also implications on
the statistical RSSI positioning algorithms. In general, such
assumption remains only in the symmetric region of the
antenna. However, when communications are presented in a
non-symmetric region, which is generally the 3D case, there
is a considerable variation of RSSI values. Moreover, the radia-
tion pattern is not perfectly symmetric in all directions, having
an impact on the signal propagation. An experiment rotating
a 802.15.4 wireless device in the same plane, as explained
in [35], has confirmed that the orientation of the device is a
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Fig. 3. An example of different orientations in the same cell is presented. The
orientations have been concentrated in four angle ranges. The large variability
in the measurements depends heavily on the orientation of the device in
the cell.

significant attenuation factor in the RSSI value. In Figure 3,
it can be observed an example of the measurements collected
in a cell rotating over all the angles and representing the
RSSI measurements for a single node in four directions.
There exists a large variability in the measurements when the
device is pointing to the node (—30 dBm) or to the opposite
side (—40 dBm).

V. SWIBLUX SYSTEM ARCHITECTURE

Fingerprinting is a method for positioning in particular
times, rather than a continuous tracking technique over time.
Both, positioning and tracking methods are presented in the
architecture drawn in Figure 4. SwiBlux system architecture is
composed by several stages: First, a synchronization process
over the measurements is needed to create the feature vector.
Second, a Deep Learning approach is used to perform the
fingerprinting estimation. Third, a Gaussian Filter is proposed
to reduce the outliers impact on the estimations. A weighted
combination of the estimations after the filter provides an
estimated position which is inserted into a Particle Filter to
track the person based on a realistic movement model. The use
of additional sensors and the proper fusion of diverse sources
improves the detection accuracy. The velocity estimation algo-
rithm provides information about how fast a person is moving
in the monitored area and the Madgwick [54] filter is used
for orientation estimation to improve the final results in some
stages of the algorithm.

A. Fingerprinting Position Estimation

In this paper, the literature methods described in section II
are compared with Machine/Deep Learning approaches, where
the output of this procedure is a probability for all the cells
(at center) position based on the feature vector inserted to the

algorithm.
[RSSI 1, RSSD ;, ..., RSSIT 1] (1)

Data in this format can be analyzed employing differ-
ent methods such as Distance-based Metrics (i.e. Euclidean,
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Fig. 4. SwiBlux system architecture is composed by several stages: First,
a synchronization process an a deep learning approach is used to perform
the fingerprinting estimation (green boxes) explained in Section VA. Second,
a Gaussian filter is proposed to reduce outliers in the estimations (orange
boxes) presented in Section VB. Third, the step, velocity estimation and
absolute orientation (blue boxes) are introduced in Section VC and VD respec-
tively. Fourth, particle filter tracks the person based on a realistic movement
model giving the final position (yellow boxes) introduced in Section VE.

Mahalanobis, Spearman), K-Nearest Neighbors including its
versions (W-KNN) or more sophisticated algorithms such as
Kernel Density Estimators. Nonetheless, these methods require
some statistical information including both the first and second
moments of the distribution as well as the percentiles of RSSI
signals in each cell.

Machine/Deep Learning methods can exploit the entire
dataset to learn more complex patterns using all the available
information. The first step is to gather the RSSI measurements
for each cell by every node and create a custom feature vector
as shown in the Example 1. The resulting dataset containing
these vectors for each cell is used to train the mentioned
algorithms.

In Artificial Neural Networks (ANN) training stage, neurons
are taught to identify specific incoming signals and whether
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activate or not for a particular pattern/output. In related works
(see II), the information of the fingerprint in combination with
the multiple modalities (from inertial sensors) were employed
to train an ANN to learn the most likely cell locations of a
target and generalize the probabilities of associated propaga-
tion effects. Once the ANN has been trained on samples of
the known database, it is able to predict by detecting similar
patterns for future input data even when these have not been
seen previously. In this work, as input of ANN, the follow-
ing feature vector (Equation 2) to tackle the Fingerprinting
problems in an indoor scenario is presented:

[RSSI1,x,RSSD x, ..., RSSI; x,RSSI B, RSSh. B, . ..,
RSSILB,RSSIljw,RSSIz’W, N ,RSSILW, Yaw] (2)

where {X, B, W} indicates X = XBee, B = Bluetooth and
W = WiFi, I represents the number of nodes deployed and
Yaw is the Heading angle estimated by the Madgwick Filter.

This vector includes all available wireless technologies
which implies a synchronization stage that allows to employ
data from each node deployed for each wireless signal. For
instance, in a certain time slot, an XBee packet could have
not being received due to the attenuation, whereas the rest
of technologies collected properly the RSSI value. Moreover,
in spite the Bluetooth signal is weak and the coverage range
is not large, the estimation is possible since the rest of
technologies have a larger coverage and might be available
in cases where Bluetooth is not.

Furthermore, the Yaw/Heading angle introduced in the
vector provides relevant information for the orientated RSSI
in the cell as shown in Figure 3. The orientation affects
the measurements gathered, and these changes are registered
during the Fingerprinting creation by a person wearing the
device (to take in account body absorption impact) rotating
continuously in the cell reference. The corresponding time to
collect data on each cell is fixed to 5 minutes. In such period,
the continuous rotation during the RSSI gathering allows to
cope with multiple possible events to statistically characterize
the RSSI cell distribution and the propagation behavior in each
direction.

The selected feature vector is used to construct the complete
Fingerprinting dataset for ANN training and testing. An ANN
with two hidden layers is selected as network structure with
a final Softmax activation (Figure 6). The activation function
selected in the hidden layers is ReLu. By using two hidden
layers, it is possible to represent an arbitrary decision boundary
with rational activation function that can approximate any
smooth mapping to any accuracy. Additional layers can learn
more complex representations. Nonetheless, There is a trade-
off between architecture layers (Deepness) and the compu-
tational complexity of the proposed system. In this work,
significant improvements were not attained by increasing the
number of layer (>2) whereas the training process was longer
and the delay in estimation was perceived.

Figure 5 presents the SWiBluX complete training architec-
ture. Synchronization between the wireless sensors employed
is needed and the estimations of Yaw value from iner-
tial and magnetic sensors during database collection step.
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The proposed scheme can be observed as a classification
problem faced with an ANN where RSSI and inertial measures
are inserted as input and the cell estimated is provided as
output (classes).

Several approaches can be used to select the number of
parameters to construct the network [57]. The method to
choose both the number of hidden layers and neurons is the
Try and Error Method that is characterized by repeated, varied
attempts which are continued until success or until the agent
stops trying. A Forward propagation approach was selected to
tune the network parameters as it works better in models with
medium/low size of input data as the one presented in this
work.

Moreover, weights initialization has played a crucial role
in this work due to the fact that zeros initialization is heav-
ily penalized during the training process by not learning
at all during epochs with more complex optimization algo-
rithms or learning quickly with simpler optimization algo-
rithms. Therefore, He initialization [58] was used in this
work.

Since the input data is not very sparse, some methods
such as SGD (Stochastic Gradient Descent), NAG (Nesterov
Accelerated Gradient) and Momentum are preferred. In the
complicated task of selecting the optimal learning rate, SDG
provided the best results on the dataset created in this work
and it was chosen consequently.

The learning rate was fixed to a small value of 1073
to find a local or global minima during the optimization
by avoiding large jumps over the loss function surface.
Further, no overfitting was observed in the experiments,
therefore, no regularization method has been included during
training.

For the training process, the data was splitted into two sub-
sets, the training and test sets. The ANN model can learn more
efficiently with low-range numbers as input. The proposed
feature vector was normalized into zero-to-one values due to
the fact that all these parameters are always between a range of
—92 and —25 for RSSI values and yaw/heading value between
0 — 360 degrees respectively.

Once the feature is passed, the back-propagation optimizes
the weights to minimize the Categorical Cross Entropy Loss
Function using the selected optimization algorithm.

B. Gaussian Outliers Filtering and
Weighted Position Estimation

Machine/Deep Learning based positioning algorithms pro-
vide each cell probabilities in the Fingerprinting distribution.
In a real scenario, a person moving across the monitored area
can stay at different locations besides the cell center. The last
layer in the Neural Network usually performs the Softmax
activation function to obtain a vector with the cell probabilities
for a particular input feature vector. However, in case of wrong
estimations, a stochastic error is introduced in the next step of
the algorithm using only the center of the cell as estimation.

Layer previous to the Softmax activation contains the proba-
bilities for each cell of being selected for position estimation.
The proposed system removes the Softmax activation layer
(at testing stage) and applies a Probability Density Estimation
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256 neurons 64 neurons
Fig. 6. Deep neural network composed of: an input layer with size the

selected feature vector, two hidden layers and the last layer with size equal
to the number of cells with a final softmax activation.

(PDE) filter to separate the unlikely cells (i.e. it is not possible
that a person jumps several cells from a previous instant).
Additionally, this filter smooths the probabilities of the most
likely cells to reach a fine tuning based on the last estimation.

The two-dimensional Gaussian Function (Equation 3) is
applied over the outputs of the last layer in the ANN. The
key concept is to multiply the outputs of this layer with the
ones generated by the two dimensional Gaussian Function.
General statistical tools, the mean and deviation on both spatial
axis (x,y) are required to generate this function. The mean is
obtained using the last position estimated (previous stage) by
the Tracking Filter. The deviation is not a constant value and
depends on the person movement. Therefore, an adaptive value
is chosen to guarantee that the Gaussian Filter width fits with
the person movement at each moment.

1 1
fxCp,yp) = WCXP (_E(X - #)TE_I(X - ﬂ))
(3)

Person velocity is the key parameter used as the Gaussian
Filtering deviation due to its ability to adapt to person changes.
To cope with multiple cases, the Gaussian Filter can be wide-
spread allowing medium-far cells to be considered into the
position estimation when the velocity is high or conversely,
to employ narrow filters for slow velocity. This procedure
changes the probabilities and provides a normalized vector

Two Dimensional Gaussian
Distribution (u = Last
Position, 6 = Velocity)

Get Probabilities Without
Softmax Activation

Get probabilities
Bidimentional Gaussian
Funtion

N Estimated Cell
Last Position

Fig. 7. Example of the Gaussian Outliers Filtering. The bidimensional
Gaussian is centered at the previous estimated position and the deviation is
the velocity calculated at the current stage. The cell estimated by the neural
network, in this case, is wrong so the filter applies a low probability to it.
In this manner, the larger probability is assigned to the nearest cells (the ones
that the filter covers).

p(Gauss). Afterwards, a weighted combination of the cells

based on these probabilities yield the final estimated location

entering to the Tracking Filter as shown in Figure 7.
p(Gauss), p(Gauss);

Z > p(Gauss) Z > p(Gauss)l

Equation 4 x4, v, shows the estimated position before the
tracking filter and p(Gauss); represents the probability of a
cell (with center at location (x;, y;)) that can be candidate to
the weighted combination.

“)

C. Step Detector and Velocity Estimation

In this work, the accelerometer measurements are used
to extract information about the walking/standing state to
estimate the velocity based on the signal analysis and patterns.
The inertial sensors provide information about the acceleration
in the three coordinates axes. An example of measurements
gathered during a normal walking behavior are presented in
left part of Figure 8. Root Mean Square (RMS) estimation
from the three accelerometer axes for the signal analysis
was used for processing the raw acceleration data and it is
calculated as follows 5:

RM S cc = (5)
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Left: Three axis accelerometer measurements. Regarding the proposed referenced coordinate system it can be shown that the Y axis measurements

are around 1g representing the gravity force (9.8 m /52) in this axis. Center: Example of peaks/valleys detection. Red dots represent valleys and green dots
represent peaks. It can be observed that the amplitude needs to be large between peaks/valleys to detect them correctly. Right: Estimated velocity after Monte
Carlo Simulation to get the parameters for the movement model and filtering the output.

To detect steps, maximum (maxima) and minimum (min-
ima) acceleration peaks can be determined by using top and
bottom thresholds respectively. However, this method does not
work properly due to the large variation of both maxima and
minima amplitudes during the walking phases. This issue can
cause either lack of peaks or multiple peaks in a single step
period. Conversely, the maxima peaks have less amplitude
variations than the minimum. To reduce or even eliminate
completely this undesirable effect, a peaks/valleys detector
with an adaptive threshold is employed. Such algorithm is
known as Adaptive Step Jerk Threshold [29] and it is capable
to modify the threshold to filter peaks or valleys with no
sufficient amplitude or consecutive false peaks/valleys. Using
this information, person step length can be determined.

There are empirical equations to obtain the velocity based
on these parameters [48]-[50]. However, most of these
approaches do not fit properly the velocity model analyzed in
this paper. The performance comparison allowed to establish
that the best results are obtained using [48]. Equation 6
describes the velocity model based on the output of the
peaks/valleys algorithm:

Y Amax - Amin (6)

where A4y 1s a peak, A, represents the consecutive valleys
and Ko, 1S a constant for unit conversion. It is observed
that the equation does not adjust this model perfectly due
to the fourth square root and the unknown value for the
conversion parameter, although this model presents a similar
behavior. A Monte Carlo simulation was performed over the
root value and the conversion parameter based on different
walking measurements of diverse individuals minimizing the
error between the real and the estimated velocity.

The last step is to filter the final estimated velocity values.
An example of peaks/valey detection along with the estimated
velocity by the algorithm over these values are presented in
the center and right part of Figure 8.

Lstep = Keonv

D. Absolute Orientation Estimation

Common approaches in orientation measurement utilize low
cost sensors that lack of accuracy. Nonetheless, the information
of accelerometers, gyroscopes and magnetometers can be
fused to attain reliable orientation estimations. Three often

used choices include the complementary filter [51],
the Kalman Filter [52] and the Mahony/Madgwick Filter
[53], [54]. In SWiBluX, the Madgwick Filter was chosen
due to its good performance when applied over non high
precision sensors, low computational complexity and real-time
processing.

There exist calibration algorithms to reduce the errors
produced by sensors high sensitivity [55]. In this work,
the ellipsoid calibration algorithm [56] was selected because
of its good trade-off between precision and data required for
calibration. This algorithm collects measurements from all the
possible sensor positions in the space to correct the bias as well
as concentrate the corrected values in a normalized sphere of
radius equal to one (Figure 9).

Once the calibration procedure has finished, the absolute
orientation can be estimated. This filter uses a quaternion
representation, allowing accelerometer and magnetometer data
to be used in an analytically derived and optimized gradient-
descent algorithm to compute the direction of the gyroscope
measurement error as a quaternion derivative.

2(q192 + q0g3) )
@w+ai—a—a
Pitch = — arcsin (2(6]16]3 - 6]06]2))

2(q0q1 + q243) )

9 —at — 43+ 43
The filter output is the estimated quaternion (four dimen-

sional vector) based on the actual sensors measurements. The

quaternion vector is employed to calculate the Yaw/Heading,
Pitch and Roll as shown in Equation 7.

Yaw = arctan2 (

Roll = arctanZ( 7

E. Filtering Tracking With Particle Filter

The tracking algorithm is applied over the estimated position
from the previous stage to filter and reduce estimation noise as
well as to adjust the positions to an human movement model.
It is applied to reduce the fast non-natural movement errors
and to fit the model to a like-human movement as shown in
Equation 8:

Xpf = xp + 0 cos(0)dt
Ypf = yp + 0sin(@)dt (8)
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Fig. 9. Magnetometer calibration results. Left: uncalibrated normalized data
points, right: calibrated normalized data points after ellipsoid calibration.

where x,, y, are the coordinates of the previous positions
estimated, 0 is the estimated velocity and 6 is the yaw/heading
angle. The employed tracking algorithm is the well-known
Particle Filter [59] which is a common choice for applications
such as robotics by estimating position, velocity and heading
angle in a similar manner to SWiBluX.

The idea behind Particle Filters is that any Probability
Density Function (PDF from now on) can be represented as a
set of samples (particles). Each particle has a set of values
for the state variables representing arbitrary distributions,
making it appropriate for non Gaussian, multi-modal PDFs.
Therefore, it is feasible to find an approximate representation
of a complex model (any arbitrary PDF) rather than an exact
representation of a simplified model (Gaussian).

To start the algorithm, an initial belief state, denoted as
p(x0), which is a rough estimation of the PDF is required.
For localization problems where no previous knowledge of the
distribution is available, it is possible to scatter particles over
the whole map. In this work, the particles are scattered around
the first estimated position in the first stage with a Gaussian
distribution centered at that position with deviation equal to
twice the estimated velocity. This is done to cover a wide area
of the map in case that the previous estimation might not be
reliable. For each time step, the algorithm loop contains three
main phases: prediction, update, and resampling.

In the prediction step, each particle is displaced accord-
ing to the motion model. The resulting position from the
motion model, will be somewhere in that cloud of particles.
The resulting distribution of particles approximates the prior
distribution.

During the update step, weights are assigned to the sensor
measurements according to the probability of observing the
sensor measurements from that particles state to each particle.
The weights (w) are normalized and its sum is equal to 1
(Equations 9 and 10) to guarantee unbiased decisions.

= Xp —x)? 4+ (¥p — ¥g)?
1 ( \/p 8 p— Ve ) ©)

L., =
Y 2mo P 2072
L
W= (10)
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where L, represents the particle importance with respect to
the previous estimation and M is the number of particles.

In the resampling step, a new set of particles is chosen
maintaining the ones with the largest weights. Therefore,
unlikely particles (small weights) at the fringe are not chosen
whereas the most likely particles (near the center of the cloud)
are replicated. As a result, the high-probability region has
a high density and properly represents p(x) (the posterior
distribution). There are several methods for weights resam-
pling [60], but the Systematic Resample [61] is selected as
it faces with the event of particles wandering away from the
point and its weight tends (or is equal) to zero. Consequently,
a small number of particles implies a reduced number of
particles contributing to the approximation of the distribu-
tion. Moreover, in order to determine whether resampling is
needed or not, the coefficient of variation statistic [62] can be
calculated using the following equation 11:

LS o 12

cV = ;(Mw 1) an

The effective sample size can be calculated as shown in

Equation 12. This parameter describes how many particles

have an appreciable weight. Therefore, to check if resampling

is necessary, the effective sample size can be tested against
the number of particles as follows:

ESS Resample if ESS <7 - M (12)

M
C1+cCV
where 7 is a threshold between 0 and 1. In this work, this
value is selected as 0.5 which means that not resampling is
requested in case the half part of the particles exceeds the
ESS value.

Finally, the new estimated position is obtained based on the
calculated weights and the particles after the prediction step
as Equation 13 indicates:

M M
Xf=D Wepe Y= Wepy

i=1 i=l1

13)

where (py, py) are the x and y position of each particle
respectively and M is the number of particles.

VI. RESULTS ON POSITION ESTIMATION AND TRACKING

This section shows results on location estimation with the
most common methods in Fingerprinting positioning, compar-
ing with the results achievable by different algorithms of both
Machine Learning (ML) and Deep Learning (DL) techniques.
Furthermore, results on the use of the Gaussian Outliers
Filtering and the Weighted Combination of the outputs of
this filter after ML /DL methods demonstrates an accuracy
improvement in the position estimation. The final location of
the person wearing the device is provided by using Particle
Filter reducing the final estimated error.

The configuration of the scenario is shown in Figure 1 and
represents a typical indoor environment where human activity
can be observed and the people flow is controlled. Moreover,
harsh propagation conditions arises due to the multi-path
fading, the obstacles provoked by the furniture and the wireless
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Fig. 10. Estimation accuracy in position estimation using several methods with different feature vectors in two main cases: The first case (left) corresponds
to perform the normal Fingerprinting estimation based on the selected method, the second (right) shows the results after applying the GOF and the weighted
combination proposed in this paper. For horizontal axis X, B and W denote XBee, Bluetooth and WiFi technologies respectively.

interferences due to the existence of electronic devices. Further
details can be found in [33]. Five nodes v = wv1,...,05
are deployed and each node is equipped with three wire-
less sensors technologies A = 3: IEEE802.15.1 (Bluetooth),
IEEE802.11.g (WiFi) and IEEE802.15.4 receiver (XBee).

The monitored area has been splitted into 70 cells of
different size varying between 150 x 150 cm to 240 x 240 cm.
The system is able to collect up to 25 RSSI measurements
per second per technology. The collected dataset contains
RSSI measurements from each employed wireless technology
and Yaw values during 5 minutes in each cell. To consider
scenario changes, the measurements have been collected in five
different rounds of 1 minute per cell. After the synchronization
stage, the database contains 7.5 k feature vectors per cell.

To calculate the accuracy, it is necessary to know where the
person is located during a complete route in the monitored area
(a.k.a ground-truth). Several routes were collected to get the
error in the estimations, comparing the estimated position at
each algorithm step and getting the error from the estimated
position over the real position using the euclidean distance
metric.

Figure 10 shows the accuracy obtained using several meth-
ods for fingerprinting estimation taken different approaches
for the feature vector in two cases. Accuracy is interpreted as
the mean euclidean distance between the estimated position
and ground-truth. In the first case, the fingerprinting stage
is applied whereas the second case contains the accuracy
after applying the proposed Gaussian Outliers Filtering in
combination with the Weighted Combination of the probabili-
ties for each cell. These feature vectors contain all the possible
combinations of the three technologies employed.

Based on these two figures:

« It can be observed that all methods reach a larger accuracy
in the estimations after the application of the GOF
followed by the weighted cell combination based on the
resulted probabilities.

« Different feature vectors present diverse results. As an
example, Bluetooth technology alone has the largest error
in all methods as well as it is clear that the combination
of technologies outperforms single technology-based esti-
mation. WiFi technology provides a more robust RSSI
(with less variance). Thus, all methods work well using
this wireless technology in the feature vector.

o The use of the proposed feature vector outperforms
the rest of combinations due to the introduction of the
Yaw parameter which provides information about the
orientation, improving the pattern learning process by
Machine/Deep Learning algorithms.

o Deterministic and Probabilistic methods have the worst
results compared to learning algorithms. The method
including the feature vector proposed in this work can
not be applied to distance methods such as Euclidean,
Mahalanobis and W-KNN as enough relevant information
can not be obtained from the Yaw to be applied.

o The Deep Neural Network achieves the largest accuracy
results in both schema. Deep Learning algorithms can
learn more complex and non-linear patterns that are
limited in the Machine Learning methods.

The velocity model selects the parameters that reach the best
fitting to the real measurements with the proposed system.
A Monte Carlo simulation over a range of possible values
was used to search for the best parameters in several velocity
measurements. Finally, the mean of the parameters obtained at
each evaluation over real measurements and the final equation
are (Figure 11, Equation 14):

1

1
Kconp = 0.81 Texp = = Apnin)3

(14)

Lstep = O-SI(Amax -

W

These parameters adjust adequately to the proposed method
for velocity estimation in different cases when a person is
walking slowly, rapidly or even when a person is stopped.
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TABLE I

AVERAGE ERROR IN POSITION ESTIMATION (CENTIMETERS) FOR SEVERAL METHODS USING FINGERPRINT AT DIFFERENT
STAGES OF THE PROPOSED SYSTEM ARCHITECTURE WITH THE PROPOSED FEATURE VECTOR

Proposed System Stage . i
. . Fingerprinting
Positioning Algorithm

Fingerprinting After Gaussian | Fingerprinting + GOF +
Outliers Filtering Weighted Combination Particle Filter

Deterministic and Probabilistic Common Methods

Euclidean Distance 259.56 NA NA 156.34
Mahalanobis Distance 230.56 NA NA 145.21
Weighted-KNN 210.56 NA NA 135.67
Gaussian Kernel 184.56 147.78 120.54 102.53
Exponential Kernel 191.32 153.62 132.02 111.36
Machine Learning Methods
KNN Classifier 135.99 111.21 101.77 87.08
Logistic Regression Classifier 133.76 111.32 99.89 82.32
Support Vector Machine 104.54 90.78 85.67 78.65
Decision Tree Classifier 97.87 90.62 84.98 75.76
Gaussian Naive Bayes Classifier 89.43 82.22 78.45 69.91
Random Forest 88.59 77.79 74.76 62.48
Gradient Boosting 85.32 74.65 71.78 60.56

Deep Learning Methods

Deep Neural Network ‘ ‘ 80.67

68.72 61.88 4541

Monte Carlo Simulation for Velocity Parameters estimation
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Fig. 11. Monte Carlo simulation over a range of possible values for adjust
the the step length model to the detected peaks and valleys by the adaptive
step jerk algorithm.

Analyzing the results presented in Table I, it can be observed
a significant improvement after each stage in the system
architecture:

o« GOF improves the final accuracy by filtering critical
outliers that can degrade the performance of the final
estimations.

o The Weighted Combination based on the resulted prob-
abilities enhances the estimated positon selection, not
always placed at the center of the cell, thus reducing the
final error.

« Particle Filter tracking algorithm in combination with the
estimated parameters (Yaw, velocity) achieves a satis-
factory performance with better estimated positions and
reducing the average error up to 15 cm.

o Figure 12 represents an example of a person tracked and
the particles used by the Particle Filter at three different
moments. The number of particles is decreasing over the
time according to the selected threshold by the ESS

Particles in different times and example of estimated tracking
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Fig. 12.  Particles (blue dots) managed by the Particle Filter at different
moments during the tracking. The red dots represent the estimated position at
each moment based on the particles whereas blue line depicts the final path
estimated using the proposed architecture.

parameter. It can be shown that the inclusion of both
Velocity and Yaw provide meaningful information to the
filter achieving high accuracy in the estimations.

The ANN has been tested with different configurations look-
ing for high precision while avoiding overfitting. Furthermore,
the selection was subject to estimate quickly the position
in order to maintain estimations in (near) real time. Four
experiments were performed and are presented in Table II.
The number of epochs in all configurations is 100. The batch
size has been reduced to 64 to learn quickly reducing the
overfitting at early stages of the algorithm. Early stopping is
used to finish the training if the precision tends to decrease
due to overfitting. To ensure a correct dataset splitting in
training and validation sets, at learning phase each network
was trained ten times with random splitting at each training
and the final precision/recall/F1 values are the mean of these
ten experiments. The training data size after each splitting is
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TABLE II

DIFFERENT NEURAL NETWORKS CONFIGURATION PRESENTED
WITH SEVERAL ASSESSMENT PARAMETERS

Eval. Parameters ‘ Precision ‘ Recall ‘ F1 score ‘ Time (ms)
One Hidden Layer 256 neurons

Neural Network 1 [ 78% | 80% | 79% | 0.896
Two Hidden Layers 256, 64 neurons

Neural Network 2 [ 89% [ 88% | 8% [ 1235
Two Hidden Layers 512, 256 neurons

Neural Network 3 [ 90% [ 81% | 85% [ 2.146

Three Hidden Layers 512, 256, 64 neurons
Neural Network 4 [ 93% [ 72% | 83% [ 3.689

Training Metrics
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Fig. 13. Training loss and accuracy for training and validation sets in two

hidden layers (256, 64 neurons respectively) neural network configuration.

the 85% of the total dataset collected and the test/validation
data has the 15% of the total measurements.

« Configuration four (in table II) reaches the best precision
but the recall is not large. This is a symptom of the
starting of overfitting since the number of neurons in
the network layers is large regarding the low size of the
input feature vector. It means that the ANN learns quickly
the patterns and after some epochs, it overfits the final
estimations reducing the performance.

o The first configuration presented a short processing time
and an acceptable precision, although it is lower than
precision obtained by configurations two and three.

o Configurations two and three attain the best precision
and recall results. However, configuration two has been
selected for the experiments due to its reduced the com-
putation time.

Configuration two has been selected for the experiments
regarding the precision of the estimations and the compu-
tation time (a simple schema of this network is presented
in Figure 6). Both precision and loss during training are
depicted in Figure 13. The loss value decreases after each
iteration in the training set and the loss in the validation set
follows the same decreasing pattern. The precision grows up
in training as depicted in the figure but early stopping ended

IEEE SENSORS JOURNAL, VOL. 19, NO. 9, MAY 1, 2019

the training process at epoch 49 as the next iteration precision
and loss do not decrease.

The entire dataset containing fingerprinting measurements
for every technology, as well as example routes are totally
available for testing purposes and comparison with the work
described here. The scripts for parsing the data are provided
and the guidelines in the README file. This information can
be downloaded from http.//www.gatv.ssr.upm.es/~abh/

VII. CONCLUSIONS AND FUTURE WORK

A complete overview on Fingerprint construction and
assessment has been presented in this paper. On the one hand,
this paper showed the impact of different positioning meth-
ods using RSSI Fingerprinting technique on the estimation
accuracy. On the other hand, a custom filter was proposed to
improve the position estimation results and finally, a Tracking
Algorithm was applied to adjust the measurements to a known
movement model.

The Fingerprint dataset was constructed taken into account
the Fingerprint parameters for diverse situations. Important
aspects such as the orientation and the human presence were
considered and it has been shown that a significant improve-
ment is attained compared to other estimation procedures.
These parameters allow to obtain a consistent feature vector
for training Machine/Deep Learning algorithms. Furthermore,
the inclusion of the Yaw/Heading information in the feature
vector enhances ML/DL training accuracy up to 15%. Final
results in Fingerprinting estimated position using learning
algorithms outperform the common deterministic and prob-
abilistic methods up to 45 — 50%.

The proposed Gaussian Outliers Filter with the weighted
combination of the output probabilities yields to an increase
the accuracy around 10 — 15% in Fingerprinting position esti-
mation by avoiding impossible states or low likely estimations.

Deep Learning approaches provide better results than
Machine Learning algorithms when the input data is well
conditioned and representative as shown in section VI.

Particle Filter is applied to adjust the final estima-
tions to a realistic movement model. The use of the esti-
mated velocity and the Yaw/Heading angles outperforms
the final accuracy presented by all the methods without
applying a Tracking Algorithm. An improvement of 25%
is achieved after using this filter over the Fingerprinting
estimations.

As future work, a study of the impact of varying the
number of nodes in the network can be performed. More-
over, a deep analysis of techniques for Fingerprint auto-
recalibration of over time can yield fast and adaptive systems
that respond to the indoor scenario changes. Novel techniques
such as Reinforcement Learning can be applied to generate
new samples using the previous collected data. Additionally,
the research focus on the data fusion of multiple modalities
from WSN with visual and depth sensors is relevant to over-
come the problems associated to these sensors. An appropriate
fusion can solve several tracking problems with cameras
such as occlusions, lighting conditions and coverage among
others.
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