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Distributed Inference Condition Monitoring System
for Rural Infrastructure in the Developing World

Heloise Greeff , Achut Manandhar, Patrick Thomson, Robert Hope, and David A. Clifton

Abstract— Remote condition monitoring systems for rural
infrastructure lack “intelligent” analysis and advanced insights
offered by recent Internet of Things devices. This is because
the extreme and inaccessible operating locations necessitate the
conservative use of limited resources, such as battery life and data
transmission. Present implementations are often limited to usage
data loggers, which are informative of general usage but post-
processed advanced insights lag real-time system changes. A light-
weight novelty filter is implemented onboard rural handpumps
to identify subsets of data as potential infrastructure failure.
The “intelligent” summaries of these data subsets are sent to
a cloud-based system, where more advanced machine learning
approaches are applied to increase the fidelity of potential
failure predictions. The proposed method was tested on three
independent data sets and found that the on-pump novelty filter
could predict failure with up to 61.6% in situ. Incorporating
more advanced machine learning methods on the cloud-based
platform increased the classifiers’ positive predictive value by at
least an additional 10%–73%. This novel method has proven that
it is possible for rural operating, resource-constrained devices
to use lightweight, onboard machine learning approaches to
perform anomaly detection in the embedded system. Distributed
inference between the embedded system at the rural node and
powerful cloud-based machine learning algorithms offers robust
information without the need for expensive hardware or sensors
embedded in situ—making the possibility of a large-scale (and
perhaps even continent-wide) monitoring system feasible.

Index Terms— Distributed inference, embedded systems,
remote condition monitoring, machine learning, rural
development.

I. INTRODUCTION

RURAL infrastructure, such as manual handpumps, play
an important role in improving quality of life as well as

driving economic growth, particularly in developing countries
where rural areas account for the larger part of the geograph-
ical regions [1]. However, sustainable provision of reliable
infrastructure hinges on the high standard of both installation
and maintenance, the latter of which is often under invested
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in or completely neglected [2]. Downtime due to system failure
in rural settings is often even greater than in urban settings
due to the practical challenges in the supply of spare parts
combined with a lack of local skills. In sub-Saharan Africa,
it is estimated around one third of the one million handpumps
used daily by nearly 200 million people are not working at
any time and often remain broken for up to 30 days [3].

Predictive health monitoring is widely used in engineer-
ing applications to detect damage to infrastructure as early
as possible. Forecasting failure rather than merely detecting
failure once it occurs helps to reduce the downtime of systems,
and, ideally, performing predictive maintenance can avoid
downtime completely. With this approach already widely used
in many fields from commercial and military jet engines [4],
through to patient monitoring in health systems [5], it can
be directly extended to monitoring the condition and use of
rural infrastructure, such as off-grid solar home systems [6]
or, in the case discussed in this paper, handpumps [7]–[9].

Despite the importance of rural infrastructure and the poten-
tial impact of predictive monitoring, the implementation of
remote condition monitoring systems in these extreme rural
settings has historically been limited to data loggers [10], [11].
This is largely due to the technical and logistical challenges,
such as battery life, data-transmission bandwidth limitations
and long or expensive maintenance cycles, associated with
operating in such remote locations. This necessitates the use
of sensors that are robust, reliable, low-power and low-cost.
These considerations may compromise performance leading to
data that is lower frequency, more coarsely quantised or with
a poor signal-to-noise ratio, in turn making advanced data
analysis challenging but increasingly important [12]. This is
in stark contrast to, sophisticated in-home patient monitoring
systems using advanced machine learning techniques operating
in a benign environment with ready access to grid power
and wireless broadband that satisfy intense processes and data
transfers [13], [14].

Wilson et al. [15] demonstrated that the use of ensemble
machine learning in remote monitoring of rural handpumps,
when combined with a preventive maintenance service model,
could increase the uptime in rural handpumps to 99 per
cent. Although such performance improvements can trans-
late directly into positive health impacts for local communi-
ties [16], the proposed model sacrifices prediction sensitivity
(51.0%) over specificity (99.3%) when identifying independent
failure events. However, when considering the failures as
a series of “failure days”, the proposed method correctly
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identifies 24 out of 25 events. Since failures are novel events,
a low sensitivity would lead to an extremely high number
of false alerts that have a direct cost associated to it when
performing rural monitoring, unlike when a supervisor needs
to walk for only a few minutes to inspect the alert on a
production line or at a patient bed. The advantage of the
approach proposed in this paper is that the in situ novelty filter
greatly reduces the data from statistically healthy handpumps,
which in turn increases the sensitivity of the classifier and
thereby reduces the number of costly false alarms.

The importance of rural infrastructure and the lack of
adequate advanced remote monitoring systems suggests that
the implementation of a robust, automated and continuous
condition monitoring system for rural infrastructure could
be of great significance for rural development. While usage
monitoring is a crucial first step to increase transparency
of tracking metrics for the UN Sustainable Development
Goals [17], it does not address the local users’ need for a
sustainable and reliable water, transport, or energy supply
network.

To bridge this gap, we propose a system designed for the
needs of rural infrastructure. This uses lightweight machine
learning techniques, in the form of a logistic regressor (LR)
novelty filter, applied at the nodes to perform initial processing
of the raw observations prior to transmission to a cloud-based
platform. The on-board novelty threshold will then determine
the proportion of the original data to be transmitted based
on the on-board assessment of the condition of the node.
More advanced machine learning methods can then be applied
at the cloud-based platform, where power and processing
requirements are not limited by the factors mentioned earlier.
We will demonstrate how this can be implemented using rural
handpumps as nodes.

II. METHODS

The processing sequence for distributed inference in pre-
dicting handpump failure is shown in Figure 1. The algorithm
consist of four steps: accelerometry feature extraction at
the sensor node on-board the handpump, lightweight novelty
filtering on-board, transmission of smaller data packages,
and the heavyweight processing in the cloud. The following
sections will describe the proposed labeling protocols, the data
sets used to train and validate the algorithm, the on-board
data preprocessing procedure, and each step of the proposed
distributed inference condition monitoring system.

A. System Design Requirements

The distributed condition monitoring system should aim to:
(i) use low-cost, embedded sensors to acquire accelerometry
data from the routine daily use of handpumps, (ii) perform
on-pump condition monitoring and pre-processing of data,
(iii) analyze the resulting data in situ to produce informative
assessments of the equipment condition [18], (iv) communi-
cate with a cloud-based platform via the local mobile telecom-
munications network, and (v) perform more advanced machine
learning techniques on the cloud-based system to increase
the accuracy and certainty of the classified condition of the

Fig. 1. Example of a distributed inference condition monitoring system:
(A) Node with related embedded sensors, (B) On-board lightweight novelty
filter producing data summaries, and (C) Gateway node and heavyweight
cloud-based computing and analytics.

TABLE I

ESTIMATED POWER CONSUMPTION OF ESSENTIAL COMPONENTS IN PRO-
POSED EMBEDDED SYSTEM OPERATING AT 25◦C

monitored equipment [19], [20]. An overview of the proposed
system can be seen in Figure 1 with three main sections:

A. Sensor node contains the sensor, battery, and data trans-
mitter. In this study, the embedded system attached
to the handpump handle to record vibrations consists
of three essential elements: (a) an IC-based, 96 Hz
accelerometer; (b) an 8-bit microprocessor; and (c) a
GSM modem. The estimated power consumption of this
node in run and sleep mode is compared in Table I.
Alternatively, nodes could make provision for other
sensors depending on the infrastructure type that is being
monitored, like power meters in home solar units, heart
rate monitors in patients or temperature and humidity
sensors in agriculture. This network could contain hun-
dreds of nodes in a small geographical region covered
by the local telecommunications network and managed
by the local maintenance delivery team.

B. On-board novelty filter performs real-time pre-
processing of the data acquired during use, like
pumping, and analyses the data using a LR novelty
filter to produce “intelligent” data summaries that aim
to flag potential infrastructure failure.
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TABLE II

DESCRIPTION OF THE MECHANICAL CONDITION AND SHORT-TERM
WATER QUANTITY CLASSIFICATION LABELS ASSIGNED TO EACH

RECORDING

C. Cloud-based platform as base station performs more
complex processing of the data summaries using
advanced machine learning methods to increase predic-
tion fidelity. A web application with a bespoke user
interface could be used to access and setup data trans-
mission and user alert protocols.

B. Defining Functionality and Labeling Data

Unlike patient-monitoring, there are no standardized label-
ing protocols for rural infrastructure conditions. Following
interviews with domain experts and an in-depth literature
review of handpump functionality in West- and East-Africa
[21]–[24], we introduced two main attributes to classify hand-
pump functionality according to their conditions:

1) Short-Term Water Quantity: a handpump is either
classed as normal (C1) or abnormal (C0). A handpump
is considered normal when water flows from the spout
while pumping and abnormal when no water flows from
the spout while pumping.

2) Mechanical Performance: ten sub-categories, shown
in Table II, are used to identify the mechanical attributes
that describe the functionality and physical condition of
the handpump.

The data was labeled using notes collected during in-person,
contemporaneous observations. This level of labeling is limited
in that it allows for only two classes. It is clear that certain
conditions, like those with average or low flow, are not entirely
normal nor entirely abnormal. However, for this initial proof of
concept, it is assumed that the proposed labels are adequately
descriptive.

C. Sensor Nodes and Data Collection

To determine the condition of a node, we measured the
vibrations of an operating Afridev handpump [25] by retro-
fitting a sensor, containing a consumer grade accelerometer
with a sampling frequency of 96 Hz. Each sensor was housed
in a waterproof casing and mounted with tamper-proof bolts
inside the handle at a position closest to the handpump body,
as shown in Fig. 2a, without interfering with the range of
motion of the handle. The accelerometer operates in three
orthogonal axes, the Y-axis being along the line of the hand-
pump handle. A 5 s interval of data from a handpump in a

Fig. 2. (a) A diagram showing the experimental set-up of a vibration sensor
attached to a handpump and the relevant orthogonal axes of accelerometry
with a 5 s interval of unprocessed gravitational force (g) accelerometer data
of the same handpump in a (b) normal and (c) abnormal condition in the X,
Y, and Z dimensions (upper to lower plots, respectively) for the same user.

normal and abnormal condition is shown in Fig. 2b and 2c,
respectively. Following 5 min of inactivity, the loggers switch
to a low power state to preserve battery life, restarting after
10 s of continuous motion. For a regularly used handpump,
operating nearly constantly for 8 to 12 hours per day, this
translates to about 1 gigabyte of data per handpump per
month. All of the handpumps in the original study region are
located in areas with sufficient network coverage to transmit
the data via the telecommunications network. However, for
this initial study, to preserve battery and cost of data trans-
mission, the data was stored locally on a micro-SD card and
downloaded manually.

D. Data Sets

We consider three data sets collected from pumps in our
study site in Kwale, Kenya. Data sets contain high-frequency
(96 Hz) three axes accelerometery readings from a logger
mounted inside the handle of handpumps. For this study we
report results on data from the Y-axis, which has shown to
be the most informative for this initial analysis. While we
observed a significant difference in the spectra of deep and
shallow handpumps, as illustrated in Fig. 3, we focused mainly
on data collected from deep wells, operating at depths greater
than 25 m. In our study area, deep handpumps are typically
located at greater elevations where other groundwater sources
tend to be sparse, often making them the primary source of
drinking water for the nearby communities and households.
However, the greater weight of water and handpump rods
being lifted, combined with the increased level of use, lead
to more frequent breakdowns of these handpumps compared
to those located at shallower wells. Failures at deeper wells
are more labor intensive and time consuming to repair. This,
together with their more inaccessible locations, result in longer
downtimes at deeper wells, making remote condition monitor-
ing and timely repair even more important.

The first data set, Dm , represents a general inter-handpump
system consisting of twelve different handpumps of varying
operating depths ranging between 6 m to 53 m, and was
included to establish the baseline performance of a general
classifier. The second data set, Dd,1, represents a deep-
operating inter-handpump system consisting of eight different
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Fig. 3. Median amplitude of the spectral data for (a) deep and (b) shallow
operating handpumps.

handpumps operating at depths between 33 m to 54 m.
The third data set, Dd,2, represents a deep-operating intra-
handpump system of one handpump operating at 54 m.
Although the implementation of a region-wide intra-handpump
system is unfeasible, this data set was selected to investigate
the influence of different failure types, while controlling for
the handpump.

The data set contained recordings from eight different com-
mon handpump failure types. All the data sets were balanced
and randomly divided into a training-and-validation set (80%)
and a test set (20%).

E. On-Board Pre-Processing Procedure

Data pre-processing consisted of: peak and trough detection,
high-pass filtering, windowing in the time-series domain, and
transforming to the frequency domain.

First, the peaks and troughs from the pumping waveforms
were determined. For waveforms on the Y-axis, we considered
periods with a difference greater than 0.25 s between the peaks
and troughs. This was done to eliminate measurements from
children playing with the handpumps.

Next, we applied high-pass filtering to the signal. Our
hypothesis is that changes in handpump conditions are not
affected by the component of the signal caused by the relative
low-frequency motion of the user moving the handpump
handle. As such, we use a high-pass filter (HPF) to remove
the low-frequency components associated with the pumping
tempo that are not indicative of handpump failure, and which
retains an estimate of the fast-moving trend components of the
noisy vibrations.

Due to the resource constraints, such as an 8-bit micro-
processor and limited battery, we use a phase-corrected 4-point
moving average (MA) finite impulse response (FIR) filter to
represent the shape of the recording, which is then removed
from the original signal. The filter calculates the average of a
number of points from the input signal such that each point
of the output signal, y, is calculated as [26]:

y[i ] = 1

M

M−1∑

j=0

x[i + j ] (1)

where x is the input signal and M is the number of points
used in the moving average.

Finally, Fast-Fourier transforms [27] are used to decompose
the signal into a sum of sinusoidal basis functions used to

describe the frequency content within the time-series wave-
form. The recordings were partitioned into 1.3 s windows with
50% overlap. This creates 128 samples per window, equivalent
to 64 frequency components with a resolution of 0.75 Hz per
component for a sampling frequency of 96 Hz. To account for
truncated waveforms with discontinuous endpoints resulting
from the finite windows [28], a 128-point Hamming window
function is applied [29]. The final result after FFT is a feature
vector with 64 frequency components per window, up to the
Nyquist rate.

We then selected a subset of 20 features by uniformly sam-
pling across frequency bins 3 to 60, discarding low frequency
components, equivalent to 0 to 2.25 Hz, which represent the
pumping motion of the user, where a full handpump stroke has
a median period of 1.1 s. Artifacts of this pumping motion can
be seen in Fig. 3.

F. Lightweight On-Board Novelty Filter

As a first layer of condition monitoring, the on-board
classifier should be quick to train and fast to classify unknown
records, such that it is suitable for applications with limited
processing power and bandwidth. In machine learning, logistic
regression can be used to model the posterior probability of
input variables, X, being associated with a class by fitting a
linear model to the feature space. As a linear classification
method it is used to categorize the dichotomous dependent
variable and predict the probability (0,1) of membership of
one class (e.g., True/False) in a two-class setting, making it
suitable for this lightweight approach.

1) Logistic Regression (LR): The LR model was formulated
using the sigmoidal hypothesis function, h(xn), with a proba-
bility that a given example is of class 1:

P(�n = 1|xn, w) = h(xn) = 1

1 + e−wT xn
(2)

where w is a set of weights assigned to each input feature, xn .
The decision threshold, T , is used to assign a given example
to class 1 based on whether the hypothesis function is greater
than or less than T . This threshold was varied to change the
size of the data subsets that was subsequently transmitted to
the offline classifier. As the value of T is decreased, the size
of the subset s increases, as more of the novelty scores are
deemed abnormal.

The LR model was trained using 5-fold cross-
validation (CV), where each training set, Dt , was randomly
subdivided into 5 equal subsets to construct 5 independent
training-and-validation sets. The LR regularization parameter,
λ, for each independent LR model was optimized by
maximizing the area under receiver operator curve (AUROC)
on the held-out validation sets.

G. Heavyweight Cloud-Based Classifier

The next stage of condition monitoring involved performing
heavyweight machine learning processing on the subsets of
data flagged by the lightweight on-board novelty filter. In addi-
tion to LR, we considered support vector machine (SVM) [30]
and random forest (RF) [31] classifiers for the cloud-based



1824 IEEE SENSORS JOURNAL, VOL. 19, NO. 5, MARCH 1, 2019

processing. The on-pump novelty filter is used to ensure that
under normal operating conditions the vast majority of data
is not transmitted and only as the on-pump model suspects
the condition is degrading will data be transmitted to the
cloud, which means that in most cases the cloud-based system
will only be receiving data for novelty-filtered data related
to abnormal conditions. To simulate this operating scenario,
the cloud-based classifiers are trained using data which contain
both normal and abnormal examples and tested using data
which only contain examples flagged as abnormal by the on-
pump novelty filter. However, in reality, these test examples
may contain both normal and abnormal examples given that
the on-board novelty filter is likely to misclassify some pro-
portion of data.

1) Logistic Regression (LR): For comparison, we repeated
the LR model method on the novelty filtered data, using the
same method described in section II-F.1.

2) Support Vector Machines (SVM): The SVM classifier
model was trained using the radial basis function, exp(−γ �x−
x��2), to project the individual scores from the novelty filter
where two classes may be linearly separable. The SVM
model was also trained using the 5-fold CV method, using
different training and validation sets. The SVM hyperpara-
meters: the kernel bandwidth, γ , and penalty cost factor,
C , were optimized using grid search, where γ = 2a for
a ∈ [−10,−9, . . . 5] and C = 2b for b ∈ [−5,−4, . . . 10],
by maximizing the sum of all AUCs over all CV folds. The
grid search was done independently for each CV fold. Once
this was completed, we repeated the process to perform a fine
grid search, where aopt ∈ [aopt − 1, aopt − 0.75, . . . aopt + 1]
and bopt ∈ [bopt − 1, bopt − 0.75, . . . bopt + 1]. The refined
hyperparameters, γ ∗ and C∗, from the fine grid search was
used to train the SVM models from the training sets from
each of the data sets.

3) Random Forest (RF): The RF classifier model was
trained using a random selection of a subset of features,
�k , and a random subset of the training data, D(t), to grow
each decision tree, T . At each node, t , of the tree, the split
st = s∗ to separate the input vector, X, was chosen to minimize
the impurity, i(t), in class labels [32] by minimizing the
misclassification such that iE (t) = 1 − max{pc}, where pc

is the probability of a class C . The importance of the variable
input feature X for predicting the output is based on their
weighted impact on decreasing the impurity of that node for
all NT trees in the forest:

Imp(Xm) = 1

NT

∑

T

∑

t∈T :v(st )=Xm

Nt

N
�i(st , t) (3)

where vs is the variable used in split st .
The RF hyperparameters: the number of threes, NT ,

the number of feature vectors in each decision tree, and the
proportion of training data to be bootstrapped were again
optimized using a grid search.

H. Condition Estimation

Following the analysis above, we produced a condition
score in situ at the remote node, Qn,i , on-board operating

handpumps. Due to the lightweight processing requirement
of the on-board classifier used during this feasibility study,
the temporal dependence of the accelerometer observations
were not considered at the node. This was done during post-
processing by aggregating the classifier scores over consecu-
tive examples to varying degrees by applying a moving average
(MA) window and increasing the size of the window from
7 s to 27 s. This produced three lightweight condition scores,
Qn,i , per data set with i = 1 . . . 3 equivalent to [Raw on-board
score, 7 s MA window score, 27 s MA window score].

The in situ condition score, Qn,1, was then used to filter the
transmitted data such that data summaries sent to the cloud-
based classifier contain only abnormal examples, as labeled
by the on-board novelty filter. Finally, we produced condition
scores for each of the three offline classifier methods (LR,
SVM, RF) using the novelty filtered data.

I. Evaluation Method

The ability of our on-pump novelty filter and subse-
quent cloud-based classifier to verify CM reliability was
assessed using the receiver operating characteristic (ROC) to
compare the performance. This metric compares the actual
and predicted outputs for each class. The true positive
rate (TPR), or sensitivity, of a classifier is defined to be the
probability of detection such that, TPR =

∑
True Positive∑

Condition Positive
and the false positive rate (FPR), or fall-out, is defined
to be the probability of a false alarm such that, FPR =∑

False Positive∑
Condition Negative . Optimizing the area under the ROC (AUC)

will maximize handpump failure detection while simultane-
ously minimizing false alarms, which can be costly in real-
life. In the ideal case, the classifier would be very sensitive
(TPR = 1) with no false alarms (FPR = 0).

For the on-pump condition classification, we compared the
the performance of Qn,i , to a baseline control score, Qn,lab,
generated in the lab using the same original data but assuming
no processing or power constraints as would be experienced
on-board the local novelty filter.

III. RESULTS

A. Performance of On-Pump Novelty Filter

Table III shows that the intra-handpump classifier, {Qn,i ,
Dd,2} pairs, performs substantially better than the inter-
handpump classifiers, {Qn,i , Dm / Dd,1} pairs, achieving up to
86.2 per cent AUROC compared to 65.7 per cent. However,
the performance of the general inter-handpump classifier is
sufficient to use as a lightweight novelty filter since the large-
scale implementation of pump-specific classifiers would be too
costly and unrealistic to roll-out across entire region-wide rural
water supply networks.

In all three cases, the lab generated scores, Qn,lab, outper-
forms those generated by the on-pump classifier, Qn,i , by 7.5
to 12.1 per cent. Given the limitations of the embedded system,
it was expected that the accuracy of the on-pump classifiers
would suffer compared to the lab-simulated results. Due to the
lightweight processing requirement of the on-board classifier,
the temporal dependence of the accelerometer observations
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TABLE III

RESULTS FOR FIELD-BASED, Qn,i , AND LAB-SIMULATED, Qn,lab, ON-
BOARD CONDITION CLASSIFICATION SCORES, GIVEN THE MEAN AUC

OF 20 ITERATIONS (ONE STANDARD DEVIATION)

have not been considered. However, post-processing of the
ROC scores indicate that the classifier performance improves
when temporal correlation is incorporated by aggregating the
classifier scores over consecutive examples (to varying degrees
as the moving average window size is increased 7 s to 27 s).
This type of post-processing is fairly lightweight and can be
easily implemented on-board the handpump to improve on-
pump novelty scores, which will bring it nearly on par with
the lab-simulated results.

Fig. 4 compares the receiver operator curve (ROC) scores
for (a) a general classifier, (b) a depth-specific inter-handpump
classifier, and a depth-specific intra-handpump classifier with
two different failure types, (c) a broken handpump rod and
(d) a leaking rising main. The curves for the general and depth-
specific inter-handpump classifiers look almost identical. This
is likely a result of the underrepresentation of data from
shallow handpump failures in the training and test sets of
the general classier. Given that deep handpumps are likely to
break more frequently and repairs are more time- and labor-
intensive, the need for such classifiers are more important for
deep operating handpumps.

The case studies shown in Fig. 4 demonstrate two key find-
ings: (i) general on-board classifiers may perform sufficiently
well as not to necessitate the need for depth-specific classifiers,
as shown in Fig. 4a and 4b; and (ii) it may be possible
to identify specific failure types if the system has a priori
knowledge of the handpump operating depth. However, certain
extreme failure types that are physically located closer to
the sensor, like a broken handpump rod shown in Fig. 4c,
are easier to detect than less severe failures located further
away from the sensor, like a leak in the rising main 43 m
down the borehole shown in Fig. 4d. It may also confirm
the limitations in the classification labels of our data, such
as labeling low water flow caused by a leak in the rising main
as abnormal when in reality it is neither entirely normal nor
entirely abnormal but rather indicative of an imminent failure
event than a failure in itself.

B. Performance of Offline Novelty Filtered Classifier

The next stage of condition monitoring involved performing
more advanced machine learning methods on the data flagged
by the lightweight on-pump algorithm.

Table IV shows that in all three cases the LR classifier
is sufficiently lightweight in that it reaches the optimum
classification accuracy by using only 6 to 15 per cent of the
flagged data from the on-pump novelty filter, compared to 89
to 98 per cent required by the RF classifier and 97 to 100

Fig. 4. ROC comparing the on-pump novelty filter classifier performance
trained using different data subsets for: (a) a general classifier trained using
Dm , (b) a depth-specific inter-handpump classifier trained using Dd,1, (c) a
broken handpump rod in a depth-specific intra-handpump classifier trained
using Dd,2, and (d) a rising main leak in a depth-specific intra-handpump
classifier trained using Dd,2.

TABLE IV

RESULTS FOR LAB SIMULATED CLOUD-BASED CONDITION CLASSIFI-
CATION OF ON-PUMP PROCESSED DATA, GIVEN THE MEAN AUC

OF 20 ITERATIONS (ONE STANDARD DEVIATION)

per cent for the SVM. In all three cases, the RF classifier
outperforms the LR and SVM classifiers.

As before, the LR classifier shows little difference in
performance between a general, Dm , or depth-specific, Dd,1,
inter-handpump data set. The RF classifier does marginally
better for depth-specific,Dd,1, data set. Both the LR and RF
classifier performance benefit from processing in the cloud.

Unlike, the RF and LR classifiers, the SVM classifier
performance benefits more from the depth-specific data set,
Dd,1, than the general data set, Dm . The SVM classifier
performance is likely to increase as we continue to collect
more depth-specific data. This is suggested by the significant
reduction in variance for the SVM classifier as the proportion
of data is increased.



1826 IEEE SENSORS JOURNAL, VOL. 19, NO. 5, MARCH 1, 2019

Fig. 5. AUROC comparison of the offline classifier using novelty filtered
data subsets for: (a) a general classifier trained using Dm , (b) a depth-specific
inter-handpump classifier trained using Dd,1, and (c) a depth-specific intra-
handpump classifier trained using Dd,2.

Fig. 5 compares the AUROC scores for the three types of
classifiers trained using the three different proposed data sets.
In all three sets, the offline LR classifiers benefits the least
from the addition of an increase in the subset used for testing.
However, the standard deviation in the predictive accuracy
of the LR model does reduce as the test set size increased.
Conversely, however, in all three cases the RF classifier
achieves the highest overall accuracy, with relatively little data,
and benefits minimally from more data both in improving
prediction accuracy or decreasing prediction variance.

Overall, more advanced cloud-based machine learning
methods offer a 10 per cent improvement from the raw
on-pump generated condition scores, Qn,i . The three cases
show that there is a trade-off between accuracy and specificity.
Whilst the RF classifier may offer a higher overall prediction

Fig. 6. Comparison of the classifier prediction run times as the proportion
of data transmitted from the handpump varies for: (a) inter-handpump and (b)
intra-handpump condition monitoring systems.

accuracy, both LR and SVM can dramatically reduce the
variability in predictions as the proportion of data supplied is
increased. This is an important trade-off to note for the final
system design since it may have a direct impact on operational
cost of the final condition monitoring system.

C. Improving Real-Time Performance

To ensure the system is suitable for real-time implemen-
tation within the constraints of the limited resources, such as
battery life and data transmission, two additional design factors
were considered that would lead to make the final model leaner
without affecting the overall system performance.

For optimizing the run time cost model of operating such
a large-scale distributed system, we considered the impact of
potentially distributed run time plans and the machine learning
characteristics of each classifier as a direct trade-off of its
overall prediction accuracy.

1) Prediction Run Time: Time implementation of com-
plex, region-wide monitoring systems should aim to optimize
machine learning approaches by being sensitive to memory use
and parallelism. Fig. 6 shows a comparison of the prediction
run times for each classifier for the intra- and inter-node
systems. In both cases, the prediction time for the LR and RF
classifier remains constant as the proportion of data increases
while SVM prediction time increases linearly. As the most
lightweight method, the LR classier shows the fastest run time,
irrespective of the system type.

2) Number of Features: As another method of reducing
the transmission of data, we considered the additional gain
of increasing the number of features on the misclassification
rate of the different classifiers, shown in Fig 7. In both cases,
the intra- and inter-handpump condition monitoring systems
gain very little predictive accuracy from using more than
8 or 10 features, respectively. This suggests that the cost of
data transmission during implementation can be reduced by
nearly half by reducing the size of the data packages required
by the cloud-based system.

While these factors may seem trivial when considered
independently, the trade-offs between the different classifiers
and respective prediction times along with the number of
features transmitted as part of the “intelligent” data summaries
transmitted from the rural node are important design consider-
ations for the implementation of the final distributed system,
without sacrificing the performance of the system.
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Fig. 7. Comparison of the classifier performance for varying number of
features on two deep well data sets for (a) inter-handpump and (b) intra-
handpump condition monitoring systems.

IV. DISCUSSION

The current work demonstrates that a distributed inference
condition monitoring system for rural infrastructure offers
a number of advantages over existing condition monitoring
system that are both energy and bandwidth heavy; however,
further exploration of dynamic threshold variation of the on-
board novelty filter is still required.

A. Summary of Main Points

Existing condition monitoring systems are not suitable for
monitoring rural infrastructure that often operate in harsh
environments and with constraints on data-transmission and
battery life. We have described an appropriate set of labels
that can be used for handpump condition monitoring (Table II)
based on the recent definition of functionality [23]. We have
shown that low-cost, lightweight machine learning methods
can be implemented on-board with minimum bandwidth and
battery requirements to apply novelty filtering (Fig. 4 and
Table III). Furthermore, incorporating more advanced condi-
tion monitoring methods on a cloud-based platform have been
shown to increase the system’s overall positive predictive value
by at least 10 per cent when “intelligent” subsets of flagged
data from the rural node is transmitted (Fig. 5 and Table IV).

We defined a novel remote condition monitoring system for
rural infrastructure that optimizes the limited resources in these
operating conditions while taking advantage of the predictive
power of advanced machine learning methods. Our algorithm
resulted in a trade-off between increasing prediction accuracy
and reducing prediction specificity. However, our method
greatly improves the remote monitoring of rural infrastructure
that is currently limited to usage.

We concluded that distributed inference using logistic
regression on-board the rural node followed by random forests
at the cloud-based server provided the best performing condi-
tion monitoring system for rural infrastructure while optimiz-
ing limited resources. We found that the combination of LR
and RF provides the optimal prediction run time and can both
be successfully implemented with less than half the number
of features to be transmitted to the cloud-based platform.

B. Advantage of the Proposed Method

Dynamically combining a lightweight on-board and heavy-
weight cloud-based system not only increases the specificity
of the novelty detection, but more importantly, optimizes the

allocation of limited computational resources by strategically
scheduling new measurements and data transmission. This
is important because the need for low-cost sensing in these
rural applications can result in low signal-to-noise ratio of
the processing hardware which severely compromises the
performance of machine learning methods fitted to this type
of data.

The system design is proposed in a way that can easily make
it generalizable to other rural infrastructure types, such as off-
grid home solar systems or agriculture monitoring systems.
Furthermore, the proposed system provides a framework to
tune both the type and the size of data to be transmitted
from the node to the cloud. The cloud has the ability to pro-
actively request more data, but also more detailed data, such
as requesting feature vectors or raw accelerometer data rather
than novelty scores. Our current experiments are limited to
one-way communication; however, since the proposed system
can perform interactive two-way communication this can eas-
ily be implemented in real-time.

C. Challenges and Future Work

There are two critical components required to perform
predictive maintenance: (1) a health monitoring system that
flags imminent failure, and (2) a service delivery model that
performs the timely maintenance once the alert has been
triggered. We have presented a condition monitoring system
without clear guidelines for the alert protocols, since these
should be defined by the integrated service delivery model
rather than the technology itself.

Furthermore, a “plug-and-play” cloud-based platform would
enable the translation of the system to other hand-
pump or infrastructure types as well as other geographical
regions. However, expanding this system to other infrastructure
would require large amounts of time and data to train the on-
board novelty filter. Future work should investigate methods
that can reduce training time and allow transfer learning.

V. CONCLUSION

The present work describes the development of a distributed
inference condition monitoring system for rural infrastructure.
We use the example of failure detection of rural handpumps,
the large-scale implementation of which could have significant
health impacts for rural communities who rely solely on
handpumps for their daily water supply [16].

The interaction between the on-board LR novelty filter and
cloud-based RF processing is a novel research field, which
is applicable to other cognate fields. The model was trained
with a subset of general and depth-specific data and verified
using another independent subset of data from the same study
region. The results showed that it is possible to use lightweight
machine learning methods to classify the condition of a rural
node in situ with limited resources. It also showed that subsets
of flagged data summaries from the node can be processed at
a cloud-based platform to further improve prediction fidelity.
This work marks an important milestone in the application of
machine learning in rural condition monitoring as a tool for
tracking rural development. However, further validation of the
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proposed method will follow the collection and analysis of
a long-term large-scale data set, as well as further exploring
other time- and frequency-domain features.
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