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Estimating the Longitudinal Center of Flotation of a
Vessel in Waves Using Acceleration Measurements

Nana O. Abankwa, James Bowker, Steven J. Johnston, Mark Scott, and Simon J. Cox

Abstract— The location of a vessel’s center of flotation during
operation at sea plays an important role in the vessel’s longitu-
dinal stability. The ability to accurately estimate the location of
the center of flotation improves safety monitoring as it indicates
how changes in the distribution of weight affect the vessel. In this
paper, we propose a novel method for estimating the longitudinal
location of a vessel’s center of flotation in waves using acceleration
readings taken simultaneously at different locations along the
length of the vessel. Specifically, we recorded accelerations of an
autonomous surface vehicle (ASV) in a towing tank. The ASV
was operated in head and following regular waves, which were
kept at a constant wave height of 0.12 m while the wave frequency
was increased from 0.5 to 0.8 Hz at increments of 0.1 Hz. The
results show that multiple acceleration measurements can be
used to correctly determine the center of flotation of a vessel in
waves. In this experiment, the estimated location of the center of
flotation varied as expected based on the longitudinal asymmetry
of the ASV and the difference between head and following
waves, demonstrating the effectiveness of the proposed method.
In addition, the results were validated using the vessel’s recorded
pitch motion.

Index Terms— Qualisys, accelerometers, center of rotation,
center of flotation, vessel safety, vessel stability.

I. INTRODUCTION

URING operation at sea, knowledge of essential vessel
parameters such as the location of the center of flota-
tion, allows operators to objectively make informed decisions
regarding vessel stability and safety. Stability is affected by
factors including a vessel’s weight distribution and the shape
of its hull [1]. The continuous redistribution of fuel and water
weight during normal operation [2] continuously changes a
vessel’s trim about its center of flotation [3]. The center of
flotation is defined as the center of gravity of a vessel’s
waterplane area [4].
The interaction of the forces of gravity and buoyancy on
a vessel determine its center of rotation. There have been
a number of studies investigating the point about which a
vessel rotates due to the resultant forces on it during operation
[5], [6]. This location is important for many reasons including
its effect on a vessel’s capsizing probability [7]. Considering
the dynamics of rotational motion, a study [8] found the center
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of rotation when a vessel is pitching or rolling to coincide
with the dynamical definition of a vessel’s metacenter. The
dynamical definition of the metacenter has been shown [6] to
coincide with Dupin’s [9] and Bougeur’s [10], [11] definitions
of the metacenter. The use of the metacenter as the center
of rotation of a vessel assumes that the center of flotation
is fixed [8]. This is not true as the submerged area and the
center of this area are constantly changing when a vessel is
pitching or rolling. Therefore, in this paper, we will assume the
center of oscillatory movement of a vessel pitching or rolling
is at the center of flotation [5].

Accelerometers have been applied to a wide range of prob-
lems including human activity classification [12], structural
vibration monitoring [13] and tilt sensing [14]. A previous
study [15] proposed a method for estimating the center of
gravity of an aerial vehicle using accelerometers arranged in
rings. The chosen approach was validated using a simulation
modeling an object subjected to various forces and torques.
The proposed method showed the importance of having suffi-
cient angular motion for robust estimation of the location of
the center of gravity. This study also demonstrated that more
accelerometers improve the estimation. This approach had the
disadvantage of requiring knowledge of the aerial vehicle’s
moment of inertia, mass, and torque. Another study [16] used
an approach also involving accelerometers but not arranged in
rings to determine the center of gravity of a spacecraft. Both
methods mentioned identified the need for the precision of all
accelerometers used to be very high, and for there to be suffi-
cient angular motion. They were also both based on the five-
term acceleration equation for determining the acceleration of
a particle in a rotating reference frame [17]. Even though
methods have been developed for determining the center of
rotation of spacecrafts and aerial vehicles using accelerometer
readings, none have been experimentally applied to a vessel
in waves.

Knowledge of significant changes in the center of flotation’s
location is important because it informs an operator of safety-
related issues such as trapped water on deck, which can be
dealt with by opening freeing ports. This knowledge can also
be used to improve ship handling [18], [19]. The center of
flotation is important when loading and unloading a vessel
because for a load to have no effect on the vessel’s trim, it must
be added or removed at the center of flotation [3]. This paper
aims to develop a method for applying the five-term acceler-
ation equation to finding the center of flotation of a vessel in
waves. The methodology is tested using acceleration readings
at multiple points on an autonomous surface vehicle (ASV)
in a towing tank. An optical motion capture system is used to
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Fig. 2. Wavemaker capability of towing tank [27].

measure the accelerations, and the estimated center of flotation
is validated by comparing the maximum and minimum pitch
motions computed using the estimated location of the center of
flotation with maximum and minimum pitch motions recorded
by the optical motion capture system.

The focus of this paper is on the demonstration of a novel
data implementation technique for determining the center of
flotation of a vessel in waves, which is independent of the
data’s acquisition method. The proposed method is applicable
to acceleration measurements whether they are recorded by
optical motion capture systems [20], [21], traditional accelero-
meters [22]-[24] or a global positioning system [25], [26].

II. EXPERIMENTAL SETUP

The data collection process was conducted in the University
of Southampton Bolderwood Campus towing tank (Figure 1).
The tank is 138 m long, 6 m wide and 3.5 m deep, and has a
wavemaker that can model sea states up to 0.7 m significant
wave height (Figure 2).

The particulars of the free-running vehicle used are given
in Table I. The autonomous surface vehicle, which had two
submerged foils for propulsion along the towing tank [28],
was tested in head and following regular waves, which were
kept at a constant wave height of 0.12 m. The wave frequency
was increased from 0.5 Hz to 0.8 Hz at increments of 0.1 Hz
as summarized in Table II.
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TABLE I
PARTICULARS OF THE AUTONOMOUS SURFACE VEHICLE

Parameter Value Units
Length, L 2.27 m
Beam, B 0.30 m
Draft, T 0.10 m

Displacement, A 52.00 kg
Chord, ¢ 0.23 m
Span, s 1.00 m
Foil type NACAO0012 -

Foil arm, a 0.40 m

TABLE 11

SUMMARY OF DETAILS OF RUNS

Run Vessel direction Wave Wave
number with respect Amplitude (m) | Frequency (Hz)
to wavemaker
1 Towards 0.06 0.50
2 Away 0.06 0.50
3 Towards 0.06 0.60
4 Away 0.06 0.60
5 Towards 0.06 0.70
6 Away 0.06 0.70
7 Towards 0.06 0.80
8 Away 0.06 0.80

The ASV was stationed at the carriage 30 m from the
wavemaker and progressed towards the wavemaker in head
waves before being turned around and tested in following
waves. The period for each run varied from 60 to 180 seconds
depending on the forward speed of the ASV and the wave
reflection from the opposite end of the tank. During each
run, the optical motion capture system (Qualisys) recorded
the vessel’s pitch and heave displacements and accelerations.
The optical motion capture system consisted of eight Oqus
500+ cameras and captured the ASV’s motions in six degrees
of freedom (DOF) at a rate of 60 Hz. Each camera had a
maximum capture distance of 25 m and a 49° horizontal field
of vision [29].

As shown in Figure 4, all eight cameras were placed in a row
along one side of the towing tank due to practical mounting
restrictions. Eight cameras were used to ensure a long coverage
volume. This enabled the ASV to remain within the view of
the cameras for a sufficient amount of time while it traveled
along the length of the towing tank. With the trajectory of the
ASV 3.5 m from the cameras, each camera with a horizontal
view of 49° covered a length of 3.2 m. Since each unit length
was viewed by at least two cameras, the system covered a total
length of 12.8 m.

The cameras were daisy-chained and connected to a laptop
running the Qualisys Track Manager software (v2.12). This
software’s graphical user interface (GUI) enables the user to
control the cameras’ settings, start and stop recording, calibrate
the system, and playback recorded runs. A summary of the
camera marker settings and video settings used in this setup
are presented in Table III.

The Qualisys software computed 3-dimensional (3D) and
6 DOF data from 2-dimensional (2D) marker data. With a
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TABLE III

QUALISYS CAMERA SETTINGS. (a) MARKER SETTINGS.
(b) VIDEO SETTINGS

(a)
Property Value
Capture rate 60 Hz
Exposure time 0.0005 s
Marker threshold 15 %
Marker type Passive
Sensor mode 4 MP at 179 Hz

(b)
Property Value
Capture rate 13 Hz
Exposure time 0.076903 s
Flash time 0.002 s
Gain 4
Sensor mode 4 MP at 179 Hz

measuring volume of 1 x 5 x 10 m, the system pro-
vides angular accuracy of 0.05 degrees and spatial accuracy
of 0.25 mm [30]. In order for the software to properly compute
3D data from 2D camera images, a wand calibration tech-
nique was used to determine the orientations of the cameras.
This method used 2 objects to calibrate the optical motion
capture system. These objects were an L-shaped structure
with 4 markers and a wand with 2 markers. The wand was
moved through as many different positions and orientations
as possible through the volume the ASV was expected to
operate in, with the cameras recording at 100 Hz. The L-frame
was fixed throughout the experiment to determine the ref-
erence frame. Once the calibration was completed, when
tracking markers, the system determined the 3D location
of a marker [Xworld Yworld Zworld I]T from the 2D camera

image [xcamera Yeamera I]T using the pin-hole camera model
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Experimental setup showing the 8 mounted cameras, the location of the wavemaker, and the position of the markers on the ASV.

Fig. 4.

Arrangement of cameras in towing tank.

[31]-[33] represented in Equation 1.

Xworld
Xcamera Yworld
Yeamera | = K X [R ] 1] X Zwor (1)
1 world
1

where
K, is a 3 x 3 intrinsic camera property matrix,
R, is a 3 x 3 extrinsic rotation matrix,
t, is a 3 x 1 extrinsic translation matrix, and
X, indicates the cross product of 2 matrices.

The optical motion capture system’s reference frame is
shown in Figure 3 with the positive x-direction being towards
the wavemaker, the positive y-direction being towards the
mounted cameras, and the positive z-direction being upwards.
Figure 3 also shows the location of the five markers which
indicate the locations of the acceleration readings. The
markers were placed asymmetrically to enable the optical
motion capture system to better distinguish between them,
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Fig. 5. A translating, rotating reference frame (a vessel, XPYPZP) in a fixed
reference frame (flat non-rotating Earth, XYZ)

and for unique definition of the ASV’s orientation. Two of the
markers were placed at each end of the ASV (the longitudinal
limits of the location of the center of rotation). This ensured
that there was at least one marker on either side of the center
of flotation. Five markers were used in total as four markers
are recommended for redundancy, with at least three required
to define the ASV as a rigid body [34].

III. UNDERLYING THEORY

The method for estimating the center of rotation of a vessel
in waves using accelerometers is based on the concept of
the acceleration of a point in a rotating coordinate system
[35], [36]. Figure 5 shows the general case of a rotating
coordinate system centered at point O (a vessel, X?YPZP) and
a fixed coordinate system (flat non-rotating Earth, XYZ) being
related by translation and rotation.

The measurements of an accelerometer at point P can be
calculated as:

ap=ap + (& x rp) + @ x (w X r}i) + Q2@ x V2) + ab —Fex

)

where
ap, is the inertial acceleration of point P,
ap, is the inertial acceleration of point O,
®, is the angular velocity of the body,
®, is the angular acceleration of the body,
r};, is the displacement from point O to point P,
alf,, is the acceleration of point P relative to point O,
Vlf,, is the velocity of point P relative to point O,
X, indicates the cross product of 2 vectors, and
Fex¢, is any additional acceleration due to external forces
such as gravity.
Assuming point O and point P do not move within the
body, there is no relative acceleration and no relative velocity
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between point O and point P in the translating, rotating
reference frame (a'f, =0 and v'f, = 0). Equation 2 is reduced to

ap=ao—|—(d)xI'B)-i-wx("’Xrllg)_FeXt S

Equation 3 is simplified by replacing the cross product
operation with the equivalent skew-symmetric matrices [37].

ap = a0 + (H; + Ho)rp — Fey )
where

0 -0, oy
Hl = d)Z 0 _d)X

|~y @x 0

_—(a)§ + @?) Ox Wy WxWy
H, = wx Oy —(a))% + cu%) Wy,

Wy, Wy, —(a),% + co%)

If all accelerations due to external forces on a rotating,
translating body are known, the inertial acceleration at point
P on the body can be determined using Equation 4 if the
acceleration at point O on the body, the displacement between
the two points, the angular acceleration and the angular
velocity of the body are known.

In this experimental setup, H; and H, are common to
all of the marker locations since markers 1, 2, 3, 4 and 5
are all on the same body. Using Equation 4 and only
accelerometer information from a single marker to estimate the
location of the center of rotation is impossible as this requires
knowledge of all external forces, the acceleration at the center
of rotation, the angular velocity, and the angular acceleration
measurements used in calculating H; and H>.

In order to simplify the problem and eliminate the require-
ment of knowing all the external forces on the ASV, the accel-
eration measurements at points 2, 3, 4, and 5 are subtracted
from the acceleration measurements at point 1 as depicted in
Equation 5.

ay—a = (H; + H)(r? — 1)

aj—a; =H@?—rD) i=23,4,5 (5)
From Equation 5, H can be determined since the acceleration
measurements and positions of the 5 markers are known.

Equation 5 is solved using an ordinary least squares regression
[38] without an intercept when rewritten as

-1

r; —r; =H '(a; —aj)

b_ b e T O e
x%_xib h111 h121 h131 XX
TV T h211 hzzl h231 YL =N
T hay hyy hazd Lo~

Relative position = Coefficient x Relative acceleration (6)

An alternative approach to solving for the location of the
center of flotation using accelerometer readings is to refor-
mulate the regression problem as a linear state-space model,
solved using Kalman filters [39], [40].

Equation 6 assumes that the x, y, and z components of the
relative acceleration need to interact with each other to produce
significant relationships with the X, y, and z components of the
relative position. However this is not true because there was
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Fig. 6. Raw unfiltered acceleration measurements of markers

1, 2, 3, 4 and 5.

minimal roll motion so the problem will be considered as a
set of simple regression equations.

P —xP=nyl G -5

X —xP=hiy G- H)

X —xP=ny G —7)
—1 e .

¥ =y =h3 - (i — )
b b h_l ( D

Yi— Y n W Vi)
1 . ..

o=y =h3 G- %)

D= =hn3 G- )

b= =h3) -G =)
b_ b _ -1 T

2] i = h33 . (Zl Zl) (7)

For a given location on the vessel, Equation 7 shows
that to estimate the X, y, and z components of a point’s
position relative to marker 1, a significant relationship is
required with only the X, y, or z component of the point’s
relative acceleration. Once the coefficient 4;; ! i=1,2,3 and
j = 1,2,3) is known, using Equation 7, the difference in
acceleration between two points can be used to compute the
relative displacement between the two points.

IV. RESULTS AND DISCUSSION

The data from Run 1 (head seas, 0.06 m, 0.50 Hz) is used
to illustrate how H™!' was found and the center of flotation
was computed starting with the raw unfiltered acceleration
measurement at points 1, 2, 3, 4 and 5 (Figure 6).

Figure 6 shows that there was high-frequency noise in
the acceleration measurements. A high-order low-pass But-
terworth filter was used to reduce the noise and remove
outliers [41]. After filtering, the noise was reduced as seen
in Figure 7. As seen in Equation 5, the method for estimating
the center of rotation of the ASV using only accelerometer
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measurements involves considering the difference between
acceleration measurements at different positions on the
ASV.

The filtered acceleration measurements for all markers were
subtracted from the measurements from marker 1 to obtain
data corresponding with Equation 5 (Figure 8).

In Figure 8, as expected the relative accelerations at
point 1 were 0. Figure 8 shows that at certain moments in
time, all the positions had the same acceleration measurements
(relative acceleration = 0). To ensure that the data used in
estimating the center of flotation included only times when
there was sufficient rotational motion, a peak finding algorithm
[42] was used to find peaks in the relative acceleration
measurements. Data was selected to include only the times at
which the peaks occurred since we only wanted measurements
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Fig. 9. Peak detection - Marker 2 relative acceleration measurements.

at times when the acceleration measurements were different
due to rotational motion. In the z component of the computed
relative accelerations, the peaks corresponded to when the
ASV was at its maximum pitch angle upwards and the troughs
corresponded to the maximum pitch angle downwards.

The peak identification algorithm can be utilized on the data
from any of the markers as the peaks occurred at the same time
in all the marker positions. Figure 9 shows the peaks identified
in the data from marker 2 in Run 1.

Figure 9 shows that the largest values of relative acceleration
were in the z-axis. The identified peaks, when the ASV was at
its maximum pitch angles, were used to estimate the location
of the center of flotation by using the set of simple regression
equations shown in Equation 7 to compute the coefficient
values in H™!. The coefficient values in H™! obtained from
the regression are presented in Table IV.

In Table IV, the adjusted r-squared column shows how
well the regression approximated the real data and was used
together with the t-value to select which values in H™!' were
used in estimating the center of rotation. These values were
also useful for statistically evaluating the solution. The results
reflected conclusions in earlier studies showing that when
using Equation 3 to estimate the center of flotation, angular
motion is required. Since the vessel was in head waves, there
was very little roll and yaw angular motion. Pitch motion
occurred about the y-axis and was the major source of angular
motion, resulting in all hg ! values found involving the y
components of relative position being poor estimates. Since
the regression results showed a poor relationship between
all relative acceleration values and the y components of
relative position for this experimental setup, only the x and z
components of the relative position of the center of flotation
were estimated using hl_31 and h3_31 respectively as seen in
Equation 8.

b

Xp—xp =hiy G- 7)
B =ny G -7 (8)

(@
Dependent H Independent | Coefficient | Standard Error
! X — ki -93.7342 3515
xb-xP | ) $i - % -23.3992 1.218
hd 21— % -1.9340 0.017
hy! ¥ - % -1.7533 0.604
yo-y> | ) ¥1 - i -1.8936 0.211
h Zi-% -0.1430 0.014
hy! £ - % 0.2081 0.090
2 —zP h3) $1 - i -0.1665 0.053
hs 1 -% -0.0931 0.001
(b)
Dependent H Independent t Adjusted
R-Squared
! F1 - %; -26.670 0.932
xb-xP |y Y1 - % -19.203 0.876
il i1 =4 -112.870 0.995
;! &1 - % -12.829 0.759
yo-y? | hy Y- -8.969 0.604
% G- -10.460 0.629
3! F1 - % 2.317 0.078
D-z | hy, Y1 =i -3.116 0.143
% 21— % -90.629 0.992

In order to estimate the location of the center of rotation,
the acceleration measurements from marker 2 were used
since this marker had the largest acceleration measurements.
Assuming the center of flotation was at a point, C, Equation 8
is rewritten as

XD —xQ =hy - (- %)
25—z = hyy - (G2 — o) ©)

To calculate the position of the center of flotation using
Equation 9, we needed to know the acceleration at the center of
flotation. To achieve this the following points were considered
about the vessel:

e The rotational motion at the center of rotation was
always zero.

e In the z-axis, the maximum and minimum acceleration
readings at the center of rotation occurred when all
points on the ASV had the same acceleration.

e In the z-axis, the acceleration of the center of rotation
of the ASV was zero when the absolute relative accel-
eration between two locations on the ASV were at a
maximum as shown in Figure 10.

Based on the stated points, we deduced that the times when
the acceleration of the center of rotation was temporarily
zero coincided with when the peaks in relative acceleration
occurred (the difference in acceleration measurements at two
ends of the body were at a maximum).

Using the deduced times when the acceleration at the center
of flotation was zero and Equation 9, the average location of
the center of flotation when the ASV was at its minimum angle
was calculated as 103.1 cm % 13.9 cm behind marker 2 in the
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TABLE V
SUMMARY OF PITCH ANGLES CALCULATED USING DISTANCE OF CENTER OF FLOTATION FROM MARKER 2 ASSUMING
UNCORRELATED AND RANDOM ERRORS. (a) HEAD SEAS. (b) FOLLOWING SEAS
(@)
Minimum pitch Maximum pitch
angle of ASV[deg] angle of ASV[deg]
Computed from Calculated by Computed from Calculated by
Run relative positions . . relative positions . .
Number between marker 2 optical motion between marker 2 optical motion
and centre of flotation capture system and centre of flotation capture system
1 -2.222 + 0.008 -2.220 + 0.050 2.754 + 0.006 2.734 + 0.050
3 -2.680 + 0.005 -2.455 + 0.050 2.962 + 0.007 3.226 + 0.050
5 -2.172 + 0.005 -1.689 + 0.050 2.172 + 0.006 2.658 + 0.050
7 -1.213 + 0.005 -0.859 + 0.050 1.383 + 0.005 1.670 = 0.050
Average -2.064 + 0.003 -1.806 + 0.025 2.325 + 0.003 2.572 + 0.025
(b)
Minimum pitch Maximum pitch
angle of ASV[deg] angle of ASV[deg]
Corr}puted Afr.orn Calculated by Con.lputed .fr.om Calculated by
Run relative positions optical motion relative positions optical motion
Number between marker 2 between marker 2
and centre of flotation capture system and centre of flotation capture system
2 -2.406 + 0.006 -2.970 + 0.050 3.778 + 0.008 3.209 + 0.050
4 -2.795 + 0.015 -3.465 + 0.050 3.992 + 0.009 3.465 + 0.050
6 -2.270 + 0.011 -2.914 + 0.050 2919 + 0.013 2.597 + 0.050
8 -1.243 + 0.010 -1.825 + 0.050 2.020 = 0.011 1.617 = 0.050
Average -2.163 + 0.005 -2.794 + 0.025 3.194 + 0.005 2.722 + 0.025
Z - Accelerations relative to pl TABLE VI
% E; SUMMARY OF THE CENTER OF FLOTATION’S POSITION RELATIVE TO
S — p3 MARKER 2 FOR EACH RUN. (a) HEAD SEAS. (b) FOLLOWING SEAS
s — pa
':; Es (a)
§ At minimum pitch angle At maximum pitch angle
40 a1 V) a3 1 5 46 a7 a8 Run xg - xg zg - zg xg - xg zg - zg
Time [5] Number [cm] [cm] [cm] [cm]

7 - Accelerations 1 103.1 £ 139 | -40+0.6 | 126.8 £10.7 | 6.1 £ 0.6
= 3 1239 + 58 | -5.8 £ 0.6 123.7 + 83 | 6.4 +0.8
é 5 1292 + 48 | -49 £ 0.6 1292 + 8.0 | 49 +0.7
8 7 1322 +77 | 28 £0.6 1325 +62 | 3.2+0.7
é Average 1221 + 44 | -44+£03 128.1 +42 | 52 +04
£

(b)
Time [s]
At minimum pitch angle At maximum pitch angle
Eig. 10. Acceleratioq and relative acce}eratior_l measurements vyith Run b b b o— Db
times when the acceleration at the center of flotation was zero (vertical 2 C 2 *C 2 C 2 *C
dashed line) Number [cm] [cm] [cm] [cm]
2 116.6 + 3.7 | -49 + 0.7 1045 £ 62 | 69 +0.7
4 1065 £ 155 | -52 + 1.4 1175 £ 7.5 82 +09
x-axis and 4.0 cm % 0.6 cm below marker 2 in the z-axis. The 6 1110+ 154 | -44+1.0 | 111.8 +10.7 | 5.7 = 1.4
computed average location of the center of flotation when the 8 110.6 + 20.0 | -2.4 = 1.0 | 110.6 = 18.0 | 3.9 + .1
ASV was at its maximum angle was 126.8 cm £ 10.7 cm Average | 1112+75 | -42+£05 | 111.1+£58 | 62+05

behind marker 2 in the x-axis and 6.1 cm £ 0.6 cm above
marker 2 in the z-axis. The uncertainties associated with these
values were calculated as the standard errors of prediction of
the regression [43] and the uncertainties in the averages are
calculated according to error propagation rules [44].

Table VI shows the estimated location of the center of
flotation during the eight runs at the maximum and minimum
pitch angles. The variations within the uncertainties between

the runs were affected by the goodness of fit of the regression
to the data in each run. This varied depending on factors
including the number of peaks identified, and the range of
relative accelerations and positions.

For this experimental setup, the vertical position of the cen-
ter of mass was not determined because this does not affect the
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vessel’s longitudinal stability aspect of trim. Considering the
center of mass was 129 cm behind marker 2, the results
in Table VI show that on average the center of flotation
was further behind marker 2 and closer to the center of
mass of the ASV in head seas compared to following seas.
In Run 7 and Run 8 the z component of the relative position
was comparatively low due to the ASV’s wave encounter
frequency. This reduction in distance was due to a relatively
smaller pitch angle as the encounter frequency increased with
the wave amplitude remaining constant.

The results were given with respect to a marker rather than
the center of mass because during a vessel’s operation at
sea, the center of mass changes as weights change on board.
On the contrary, the locations of acceleration measurements
on a vessel remain fixed and serve as an appropriate reference
point. These results were validated by using the computed
displacement between the center of flotation and marker 2 to
calculate the ASV pitch angle using Equation 10.

b b
_ Zn — 2

0 = tan~! ﬁ (10
2 *C

The errors associated with the distances, 2123 — zg and xlzJ — xg,

were assumed to be uncorrelated and random [44]. These
values were compared with the angles measured by the optical
motion capture system as shown in Table V. In head seas,
the minimum pitch angles from the optical motion capture
system were lower than the computed angles and the maxi-
mum pitch angles from the optical motion capture system were
higher than computed. The opposite was observed in following
seas. Upon examination of the experimental setup this was
found to be due to a systematic error from the L-frame,
which determined the optical motion capture system’s refer-
ence frame. The L-frame was not absolutely parallel to the still
water surface. With the L-frame angled slightly upwards (less
than 1 degree) towards the wavemaker, Qualisys overestimated
the upwards pitch when the ASV was heading towards the
wavemaker and underestimated the downwards pitch. This was
opposite when the ASV was heading away from the wave-
maker; the upwards pitch was underestimated and the down-
wards pitch was overestimated.

The results are comparable and show that the absolute value
of the maximum pitch was usually greater than the absolute
value of the minimum pitch. This is expected due to the
longitudinal asymmetry of the hull causing a difference in
the submerged volume when the vessel pitches positively and
negatively [45].

V. CONCLUSION AND FUTURE WORK

This paper presented a novel technique for estimating the
longitudinal center of flotation of a vessel in waves. The
proposed method was based on acceleration measurements
along the length of the vessel. Table IV showed the importance
of sufficient angular motion to robust estimation of the location
of the center of rotation. Additional markers can be used to
improve the precision of the proposed method for computing
the location of the center of flotation.
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The proposed solution presented has many potential applica-
tions since knowledge of the position of the center of flotation
is essential for ensuring proper distribution of weights on
a vessel and stability. Compared to approaches for vessels
not in waves which assume the center of flotation is fixed,
the proposed method does not require knowledge of positions
and quantities of weights on board a vessel. This solution
can also be developed to assess a vessel’s static stability by
estimating its metacentric height, similar to previous work
applying smartphones to ship stability experiments [46].

A similar experimental setup with roll motion rather that
pitch motion can be used to estimate the transverse location
of the center of flotation. The acceleration measurements
recorded using the optical motion capture system can also
be compared with measurements from low-cost off-the-shelf
accelerometers. This will enable the presented method to be
used at sea with a network of accelerometers without requiring
a shore-based setup.
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