
3028 IEEE SENSORS JOURNAL, VOL. 18, NO. 7, APRIL 1, 2018

Delay-Efficient Energy-Minimized Data Collection
With Dynamic Traffic in WSNs

Byungseok Kang, Phuc Nguyen, and Hyunseung Choo, Member, IEEE

Abstract— Data collection is one of the most important applica-
tions in wireless sensor networks where sensed data are gathered
from sensor nodes to the base station. Reporting redundant data
leads to the wastage of time and energy, the sensors therefore
report only meaningful information to the base station, which are
independent and distinct with the lasted ones. This assumption
leads to unpredictable changes of data traffic over different
sampling intervals in data collection process. In this paper,
we first formulate the tight constraints of the problem and
then propose a delay-efficient traffic adaptive (DETA) scheme
for collecting data from sensor nodes with minimum energy
consumption. The DETA scheme minimizes data collection delay
by constructing delay-efficient, collision-free schedule, and by
using a special mechanism to enable every node to self-adapt
with the changes of data traffic. We also conducted simulations
to evaluate the performance of the proposed scheme, and the
results shown that the proposed scheme significantly decreases
data collection delay and energy consumption compared with the
existing schemes.

Index Terms— Wireless sensor networks, data collection,
dynamic traffic, scheduling.

I. INTRODUCTION

IN DATA collection wireless sensor networks (WSNs),
energy efficiency and delay efficiency are two major con-

siderations which have attracted great attention in recent years.
To obtain these objectives, constructing efficient scheduling
strategy is one of common ways. An efficient schedule would
exploit time spaces and therefore reduces latency and energy
consumed by data collection. Most of recent research efforts
have investigated for full traffic data collection WSNs where
the set of reporting nodes remains unchanged over different
sampling intervals [32], [33]. In contrast, real monitoring
applications are usually operating under the assumption of
dynamic traffic scenario where a sensor node only reports its
sensed data only if a set of predefined thresholds have been
reached. For example:
• To reduce the energy and time of storage and computation

caused by data redundancy, the sensor only updates

Manuscript received December 14, 2017; accepted December 23, 2017.
Date of publication January 1, 2018; date of current version March 9, 2018.
This work was supported in part by MOE and MSIP, South Korean Gov-
ernment, through the G-ITRC support program under Grant IITP-2017-2015-
0-00742, in part by ICT Research and Development program under Grant
B0101-15-1366, and in part by the Development of Core Technology for
Autonomous Network Control and Management through IITP and PRCP
under Grant NRF-2010-0020210. The associate editor coordinating the review
of this paper and approving it for publication was Prof. Okyay Kaynak.
(Corresponding author: Hyunseung Choo.)

B. Kang is with the Department of Data Science, Sejong University,
Seoul 05006, South Korea (e-mail: bskang@sejong.ac.kr).

P. Nguyen and H. Choo are with the College of Information and Commu-
nication Engineering, Sungkyunkwan University, Suwon 16419, South Korea
(e-mail: nvp2803@skku.edu; choo@skku.edu).

Digital Object Identifier 10.1109/JSEN.2017.2788409

new sensing values with the base station if the new
sensed value is different considerably with the previous
ones [1], [2].

• To meet the nature constrain of monitoring applications,
a sensor only reports its data if the sensed value satisfied
the predefined conditions. For example, the sensors in
volcano [3] and structural damage [29] monitoring appli-
cations only report to the base station if seismic or dam-
age signals have been detected.

In such situations, the scheduling algorithms constructed
for full traffic lead to high latency, low throughput, espe-
cially when data traffic on the network is progressively light.
Obviously, one straightforward approach is to identify the
data distribution and then re-construct a new schedule if the
data traffic has any change. However, in most cases, it is
an inefficient solution due to the costs of extra energies and
latency overheads. To solve this problem, Zhao and Tang [4]
propose a scheduling algorithm, called Traffic Patterns Obliv-
ious (TPO), which effectively deals with dynamic traffic data
collection problem. However, in TPO, the nodes closer to
the sink cannot report their data earlier than its descendant
even there is no violation of the interference. Therefore,
unnecessary delays still occur during data collection process
according to the drawback of the scheduling algorithm.

In this paper, we introduce a scheme for delay-efficiency
and energy-efficiency in dynamic traffic data collection WSNs.
The following lists our key findings and contributions:

• An efficient data collection schedule. We propose a
scheduling algorithm to assign time slots to sensor nodes
respecting interference constraints to minimize data col-
lection delay and energy consumption. This algorithm
enables sensor nodes and their descendants to send
data simultaneously if the collision-free conditions are
satisfied.

• Traffic adaptive mechanism. We design an adaptive mech-
anism to allow schedule algorithm dealing with dynamic
traffic. This mechanism enables sensor nodes to reduce
their idle listening by identifying the end of transmission
performed by the sending node and then stop listening
without any risk of missing data. More importantly,
the schedule results from the algorithm also make sensor
nodes effectively deal with dynamic traffic scenario.

The remainder of this paper is organized as follows.
In Section 2, we briefly review the related work. The problem
formulation is provided in Section 3. In Section 4, we describe
the proposed scheme. The performance evaluation is shown
in Section 5. Finally, we conclude the paper in the last
section.

1558-1748 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KANG et al.: DELAY-EFFICIENT ENERGY-MINIMIZED DATA COLLECTION WITH DYNAMIC TRAFFIC IN WSNs 3029

II. RELATED WORK

For data collection WSNs, a routing infrastructure has to
be constructed to transport data from sensor nodes to the
base station due to a limited transmission range. A common
practice is to organize the sensor nodes into a tree structure
root at the base station [16], [17]. We call it as tree-based
data collection problem in WSNs. This problem consists
of two types: non-aggregate data collection and aggregate
data collection. In non-aggregate data collection, the base
station collects all data packets from sensor nodes individually
without any aggregation process. An internal node in the
data collection tree needs more transmission slots than any
of its descendants. Because it has not only to send its own
data but also to relay all the data received from its descen-
dants to its parent [4], [7]–[12]. In aggregate data collection,
the sensor node compresses the data from all its children
and its own data and then sends the aggregated data to its
parent [18]–[23], [28].

In this paper, we consider non-aggregate data collection
problem in WSNs. Among papers in non-aggregate data
collection, researchers usually investigate how fast informa-
tion can be collected from all sensor nodes to base sta-
tion over tree-based structure. They have proposed numerous
scheduling algorithms with the aim of minimizing the number
of time slots required to complete data collection process
under various scenarios and assumptions. As an example,
Zhao and Tang [4] design a schedule algorithm based on
colouring approach, in which the number of used colour is
equal to the number of used time slot for data collection.
Moreover, schedule algorithm is also effected by different
assumptions of the problem like buffer limitation, battery
lifetime etc. For example, Yeoum et al. [30] also proposed
a scheduling algorithm for data collection by which the buffer
of each sensor node contains at most two data packet in
a whole data collection process. In [8], there are several
solutions such as time slot assignment, channel assignment
scheduling, tree-construction algorithms in data collection are
provided and discussed solidly for solving scheduling prob-
lem either in non-aggregate or aggregate scenarios. Similarly,
Chen et al. [9], [10] study the lower bounds of data collection
delay in arbitrary networks. They are considered as state-
of-the-art schemes for solving non-aggregate data collection
problem for arbitrary WSN.

However, those efforts have only been investigated for static
traffic where the set of reporting nodes remain unchanged
over sampling interval. As mentioned in introduction section,
a schedule designed for a light traffic is not suitable for a
heavy traffic and vice versa. Therefore, above studies are
inefficient in dynamic traffic scenario due to extra ener-
gies and latency overheads of identifying the new traffic
and constructing new schedules over the sensor network.
Zhao and Tang [4] proposed a solution for data collection
problem with dynamic traffic in WSNs. The authors first
assume all sensor nodes have data to sent to the base station
and design a scheduling algorithm to assign collision-free
transmission slot for them. Note that the salient feature of
TPO schedule is that it enables all available data are always
sent in subsequent scheduled transmission slots starting from

the first one. The authors then proposed an adaptive traffic
mechanism to exploit that feature and makes sensor nodes
self-adapt to current data traffic. Nevertheless, this proposed
schedule leads to much unnecessary delay due to its tightly
constrain —the parent nodes have to send their data later
than its descendant even that constrain is only required for
aggregate-data collection. To solve the problem, we introduce
a novel scheduling scheme which obtains better data collection
delay for full traffic and also works effectively in dealing with
dynamic traffic scenario.

III. PRELIMINARIES

A. Assumptions

A given sensor network is modeled as a graph G = (V , E),
where the set of sensor nodes is represented by the set of
vertices V in G, and the set of communication links between
nodes is represented by the set of edges E in G. A communi-
cation link between two nodes exists if they are located within
the transmission range of each other. Assume that there is a
single base station (BaseStation) in the network, which collects
sensory data from sensor nodes once per sampling interval.
The same as [16] and [17], sensor nodes are assumed to be
organized in a data collection tree T(BaseStation) = (VT , ET)
rooted at the base station BaseStation, where VT = V and
ET ⊆ E .

For each sampling interval, a sensor node is assumed to
generate one packet of sensory data with a certain probability
and transmit it to the BaseStation in a multi-hop manner.
Time is partitioned in timeslots, indexed from 1 to m, where
m is the last timeslot BaseStation may still receive some
data from its children. Obviously, m is the total number of
timeslots required for collecting all the data at BaseStation;
and it reflects the delay of the data collection process. Each
timelot is long enough for a node to either send or receive
a single data packet. Clocks of sensor nodes are assumed to
be synchronized by a separated protocol. A node has a buffer
with sufficient capacity for storing all received data before
being able to forward the data to the next hop.

For non-aggregated data collection, besides reporting its
own data, each internal node of a data collection tree has to
forward all received data from its descendants to its parent
without any aggregation process. For the sake of simplicity,
we use the same collision model as in [4], according to which
a collision occurs when a node sends its data at the same time
as any other node within its 2-hop neighbors in the tree. The
set of 2-hop neighbors of a node v is called the collision set
of v, denoted by CS(v). We summarize the frequently used
notations in the Table I.

B. Problem Formulation

In a given data collection tree T , each node v requires
multiple sending timeslots to send its own data and to forward
data of its descendants to its parent, if any. To guarantee
a successful data collection at the BaseStation without any
data loss, the number of required sending timeslots of a node
must be sufficient and the schedule must be collision-free.
Accordingly, the set of sending timeslots ST(v) allocated for

3030 IEEE SENSORS JOURNAL, VOL. 18, NO. 7, APRIL 1, 2018

TABLE I

FREQUENTLY USED NOTATIONS

node v should follow the constraints below.
∣
∣ST(v)

∣
∣ ≥

∑

x∈Ch(v)

∣
∣ST(x)

∣
∣, ∀ u ∈ V (1)

ST(v) ∩
⋃

x∈CS(v)

ST(x) = φ, ∀ u ∈ V (2)

The objective of the problem is to find a schedule for all
nodes in a given data collection tree to collect and transmit
the sensory data to the base station such that the delay of data
collection is minimized. A solution for the problem should be
applicable in two different cases, full data traffic and dynamic
data traffic. In full data traffic, every node has some data to
send, while only some random nodes have data to send in the
case of dynamic data traffic. For the case of full data traffic,
every leaf node of the data collection tree is scheduled exactly
one timeslot for sending its own data. It means the following
constraint should also be satisfied when solving the problem.

∣
∣ST(v)

∣
∣ = 1, ∀ v ∈ V ∧ Ch(v) = φ (3)

Without loss of generality, the objective of the problem
under the condition of full data traffic can be restated as the
minimization of the last timeslot m until which the base station
should wait to receive data. It is apparent that m depends on
the schedule ST(v),∀v ∈ V . Therefore, the problem can be
formulated as follows.

min max
v∈V

(ST(v))

subject to: Equation (1) and Equation (2)

and Equation (3) (4)

Consider an example illustrating the problem given by (4).
With the given data collection tree shown in 1(a), there are two
different solutions to the problem presented in 1(b) and 1(c).
As observed, under the condition of full data traffic, the delay
of the data collection process given by the schedule A as
in 1(b) is 16, while that of the schedule B as in 1(c) is 15.
The improvement is achieved by allowing node A to transmit
its data packet at early as possible (at timeslot 1 in this case)
instead of waiting to receiving and forwarding the data from
its children first. As a result, the schedule B is selected as the
best solution for the problem.

Because the change of data traffic is unpredictable, the solu-
tion to the problem for full traffic is desirable in any circum-
stance. To achieve the goal of minimizing the delay under
the condition of dynamic traffic, it is necessary to identify

Fig. 1. Scheduling for a given data collection tree. The number attached
to each edge represents the sending timeslot(s). (a) A simple topology.
(b) A valid schedule A. (c) A valid schedule B.

the timeslots at which a node finishes its data transmission.
Such an identification enables the base station to terminate the
collection process as earlier as possible to shorten the delay,
and also enables internal nodes to save energy by putting the
nodes in the sleeping mode.

Consider the two data collection schedules as shown
in Fig. 1. Under the condition of dynamic traffic, assume that
there are half of nodes in the network have data to send. More
specifically, only three nodes A, C, and F are assumed to have
data to transmit toward the base station. According to the two
schedules shown in Fig. 1, the transmissions are presented
in Fig. 2. With the schedule A and under the dynamic
traffic condition, the 2(a) shows that BaseStation receives no
data at timeslot 14; hence, it will finish the data collection
process at the end of this timeslot. It means the delay of
the schedule A is 14 timeslots. A better result is obtained by
applying the schedule B under dynamic traffic. It achieves the
delay of 13 timeslots as shown in 2(b). Furthermore, node B
is put in sleeping mode at timeslots 9 ∼ 10 in both two cases
to save energy after receiving no data at timeslots 3 and 5.

IV. THE PROPOSED SCHEME

A. Overall Approach

Without loss of generality, assume that the set of sending
timeslots of a node is in ascending order. Let txi(v) denote the
i th transmission slot in the set of scheduled sending timeslots
ST(v), i.e. ti(v) ∈ ST(v), 1 ≤ i ≤ |ST(v)|. It can be drawn a
characteristic of the scheduling method A presented through
the 1(b) as follows.

ti(v) > ti(u), ∀ u ∈ Ch(v) (5)

KANG et al.: DELAY-EFFICIENT ENERGY-MINIMIZED DATA COLLECTION WITH DYNAMIC TRAFFIC IN WSNs 3031

Fig. 2. Schedule of nodes in case of dynamic data traffic. The numbers
denote the sending timeslots. A black cell represents a timeslot at which a
node is scheduled to transmit its data, and a white one represents a timeslot
at which a node does not have any data to send. (a) The result obtained by
applying schedule A. (b) The result obtained by applying schedule B.

In fact, the scheduling method A was the key idea of the
best-known TPO scheme [4], which has been the best-known
solution to the dynamic traffic data collection problem (4).
TPO applied the method A with the aim at the utilization
of successive timeslots for nodes to transmit their data. With
successive transmitting timeslots, it is easy to realize that if a
node has no data to send at a certain timeslot, it will never
transmit any data at later ones. This is the stop condition which
empowers a node to terminate its tasks of data collection and
transmission earlier (within a sampling interval) for energy
saving in the case of dynamic data traffic. However, it is
observable that the proposed method A introduces a higher
delay in data collection than the method B because of the
utilization of successive timeslots.

Our DETA scheme strikes this deficient out by enabling
a node to collision-freely send its buffered data as early as
possible to reduce the delay. In addition, DETA deals with the
dynamic data traffic by a more adaptive mechanism. Thanks to
the smaller delay in data collection, the adaptive mechanism
is also able to enable nodes to terminates its data collection
process earlier according to the data traffic to reduce the delay
and save the energy. As a result, DETA is both delay and
energy-efficient.

The proposed scheme, DETA, is designed with two phases
as follows:
• Phase 1. Data Collection Scheduling: constructs a

schedule for each node to transmit data toward the base
station under the condition of full data traffic.

• Phase 2. Adaptive Data Transmission: defines a crite-
rion based on which a node can adaptively stop its data
collection task in a sampling interval in accordance with
the dynamic data traffic.

B. Data Collection Scheduling

Under the full data traffic, every node has a data packet to
send. Therefore, DETA scheduling algorithm has to produce

a full schedule for every node in the network to transmit its
own data and recursively forward the data of its descendants in
the tree rooted at the node. The algorithm works in iterations
until every node is allocated enough transmitting timeslots to
accomplish its task. More specifically, the number of allocated
timeslots for a node v must satisfy the constraint (1).

For each iteration, the algorithm starts with the set of
nodes whose descendants are fully allocated timeslots for
data transmissions. Such a node is called a ready node.
It means initially all the leaf nodes of the data collection tree
are scheduled. Each node is assigned only one timeslot per
iteration. A timeslot allocated for a node v is following two
principles: (i) the timeslot for transmitting the data packet of
v can be selected from 1; and (ii) the timeslot for forwarding
the data packet generated by a descendant of v has to be
after the timeslot at which v receives the packet. Note that
timeslot assignment for nodes must satisfy the constraint (2).
For a formal presentation, allocable timeslots for a node are
categorized into two types as described below.

1) The first type of timeslot (type-1) is assigned to a node
for transmitting the data it generates in a sampling inter-
val. Each node requires only one transmission timeslot
of this type per interval. The algorithm assigns such a
timeslot to the node if it is a ready node in a particular
iteration. Because data generated by the node is in
place, the transmission (timeslot) for the data should be
scheduled as early as possible with the condition that no
collision occurs. In the iteration k, the sending timeslot
stk(v) of this type is given by:

stk(v)← min{ t | t > 0

∧ t /∈ ST(v) ∪ (⋃

y∈CS(v)

ST(y)
) } (6)

2) The second type of timeslot (type-2) is used for a node
to forward data from its descendants to its parent in
the data collection tree. Since a node is responsible for
forwarding the data of all its descendants, the number
of timeslots of this type demanded by the node is equal
to the number of its descendants. For each iteration,
only one timeslot is allocated for a node, and it has to
be greater (later) than the one assigned to any child of
the node. Note that a node may have multiple children.
In case all children of a node v have acquired all
demanded timeslots at iteration k, the timeslots allocated
for node v at iterations i > k should be greater than
max{stk(x),∀x ∈ Ch(v)}. Accordingly, the sending
timeslot of node v in the iteration i ≥ k, sti (v), of this
type is given by:

sti (v)← min{ t | t > max{stk(x), ∀x ∈ Ch(v)}
∧ t /∈ ST(v) ∪ (⋃

y∈CS(v)

ST(y)
) } (7)

It is obvious that to obtain a full schedule, the number of
iterations performed for a node should be equal to the number
of its descendants plus one. The first iteration is to allocate
a type-1 timeslot for each leaf node to send its generated
data packet, and to allocate type-2 timeslots for other nodes

3032 IEEE SENSORS JOURNAL, VOL. 18, NO. 7, APRIL 1, 2018

Fig. 3. An example execution of DETA.

to forward these data packets to the parent nodes. Timeslots
allocated in the first iteration are call anchor timeslots. The
anchor timeslot is the point at which an internal node is
supposed to have (in its buffer) the data of its farthest descen-
dant in the subtree rooted at the node if any. Data sent by
other descendants should arrive at the node earlier. Therefore,
every internal node should wait to receive data until its anchor
timeslot regardless of the traffic pattern before performing the
adaptive mechanism presented in subsection IV-C. In later
iterations, a node is able to allocate an earlier timeslot than
the anchor timeslot for transmitting any data which is stored in
its buffer. The timeslot assigned to a node in the last iteration
is assumed to be used for transmitting data generated by
the node. In general, with the assumption that nodes adopt
the store-and-forward technique in data communication, after
being establishing a full schedule, a node can send a data
packet stored in its buffer at any timeslot in its schedule.

We first assume that each sensor node has one data packet
to send to the base station and use an example shown in Fig. 3
to explain the algorithm. Besides recycling the terminologies
introduced in the previous sections, we present some new
notations:

— p(u): parent node of u
— bu f f (u): the number of available data packets in the

memory of u
— cnt (u): the number of assigned transmission slot to node

u in a certain schedule round

More specifically, in the first iteration, considering node u
has three children v1, v2 and v3, as in Fig. 3, and node u is
only scheduled after all these children nodes −v1, v2 and v3−
have been scheduled.

So, the scheduling process starts from the smallest sub-trees,
where only the leaf nodes and its parent are included. The
parent node is scheduled right after all its children have been
finished their schedule.

The procedure is repeated upstream towards to the sink.
In the next iteration, the nodes that have been assigned enough
the required time slots will not be evolved. Algorithm starts a
new iteration from the node that all its children have been fin-
ished the schedule, the same operation as in the first iteration.
Algorithm stops when all the children of the sink are assigned
enough the required number of transmission slots. The pseudo-
code of DETA schedule is provided in Algorithm 1 and 2.

There are two types of time slot that a sensor node can be
obtained in each schedule iteration.

Two types of scheduled time slots are assigned to a node u
by Sch-node(u) algorithm. As mentioned, the first type is a

Algorithm 1 Aggregation-Tree-Traversal
Input: Tr = {p(v), Ch(v), cc(v),∀v ∈ Tr}, root, L
Output: L
1: for each v ∈ Ch(root) do
2: Aggregation-Tree-Traversal(Tr, v, L)
3: cc(root)← cc(root)+ |Ch(v)|
4: end for
5: L ← L ∪ {root}

Fig. 4. An example network topology.

single value which greater than the maximum obtained time
slots of all its children as in step 1 of algorithm 3. The second
type of time slot contains all reuse values of time slot outside
collision zone which enable sensor to send all data in its buffer
as in steps 4 − 14 of Algorithm 3. The amount of assigned
time slots is equal to the number of data packets that the node
has to send. This type of time slot is always smaller than the
last obtained value of type 1. Note that the time slots belonged
to type one is always possible to obtain whenever a node is
involved in a certain scheduling iteration, but the second type
sometimes cannot be obtained due to collision constraints and
the limited number of required time slots reserved by each
sensor node.

Considering a example network topology as in Fig. 4, and
Fig. 5 illustrate the results obtained by DETA and TPO for
this network topology. Note that we do not consider dynamic
traffic scenario at this moment, thus the data collection delay
is reflected by the maximum value of used time slots, which
are 30 with TPO schedule and 25 with DETA schedule.

C. Adaptive Network Traffic Mechanism

Note that Algorithm 2 produces a full schedule for every
node in the network. Under the dynamic traffic condition,
a node may receive data at just some timeslots in its full
schedule. Hence, it may not need to be active for data reception
till the last timeslot of the schedule. This subsection discusses
the adaptive mechanism that enables every sensor node to
detect the completion of its mission of data collection. The
objective of such a detection is to minimize both the delay
and the number of transmissions of the whole data collection
process.

As per the discussion in subsection IV-B, the anchor times-
lot of each node is supposed to use for forwarding the data

KANG et al.: DELAY-EFFICIENT ENERGY-MINIMIZED DATA COLLECTION WITH DYNAMIC TRAFFIC IN WSNs 3033

Fig. 5. An example execution of scheduling results from DETA and TPO algorithms for the network topology in Fig. 4. (a) The results by applying TPO
scheme for the network in Fig. 4, the latency of data collection for full traffic (all nodes have data to report) and dynamic traffic (only nodes A, B, C, D, E,
G, Q and R have data to report) are 30 slots and 19 slots, respectively. (b) The results by applying DETA scheme for the network in Fig. 4, the latency of
data collection for of full traffic (all nodes have data to report) and dynamic traffic (only nodes A, B, C, D, E, G, Q and R have data to report) are 25 slots
and 14 slots, respectively.

Algorithm 2 DETA-Scheduling
Input: Tr = {p(v), Ch(v), cc(v),∀v ∈ Tr}, root
Output: ST(v),∀v ∈ Tr
1: L ← ∅
2: for each v ∈ L do
3: cc(v)← 0
4: ST(v)← ∅
5: end for

6: Aggregation-Tree-Traversal(Tr, root, L)

7: while L
= ∅ do
8: for each v ∈ L do
9: if |ST(v)| < cc(v) then

10: slot ← min{ t | t >
max{last-scheduled-slot(ST(x)), ∀x ∈ Ch(v)} ∧ t /∈
ST(v) ∪ (⋃

y∈CS(v) ST(y)
) }

11: else
12: slot ← min{ t | t > 0 ∧ t /∈ ST(v) ∪

(⋃

y∈CS(v) ST(y)
) }

13: L ← L \ v
14: end if
15: ST(v)← ST(v) ∪ {slot}
16: end for
17: end while

of the farthest descendant on the subtree rooted at the node.
In case the farthest node has no data to send, at anchor timeslot
the node will forward any other data which have been stored
in its buffer if any. It is worth noting that the data stored in

the buffer could be of other descendants or the node itself.
In other words, at anchor timeslot if there is no data buffered
at the node, all the node’s descendants and itself have no data
to send.

As a result, with the full schedule provided by Algorithm 2,
under a dynamic traffic pattern, a node can conclude its data
collection at any timeslot starting from the anchor one onward.
At the anchor timeslot, if a node has no data in the buffer to
send, the node will no longer receive and send any data. Based
on the discussion, the mechanism of adaptive data transmission
is designed, in which every node performs a check on its buffer
for any data as of the anchor timeslot. If the buffer is empty,
the node may immediately switch to the sleep mode in the
current session of data collection to save energy. Moreover,
with this mechanism, the base station can conclude the data
collection earlier, thereby improving the total delay.

We describe an adaptive mechanism that enables sensor
nodes to detect the completion of data transmissions in their
sub-tree. Note that in the same round of the DETA schedule,
the first type time slot which is assigned to the parent is
always greater than of all its children. Moreover, the first
type of transmission slot that is assigned to a node is greater
than the remaining type in each schedule round. Therefore,
if the parent node v does not receive any data from node
x at any st1(x) ∈ ST1(x), and st1(x) is greater than the
maximum value in ST2(x), node v can go into sleep mode
in all subsequent receiving transmission slots in ST1(x). The
base station, instead of listening until the end of schedule,
concludes data collection once it infers that all its chil-
dren have finished transmission, thereby reducing collecting
delay

3034 IEEE SENSORS JOURNAL, VOL. 18, NO. 7, APRIL 1, 2018

For example, suppose that only nodes A, B, C, D, E, G,
Q and R generate packets to send. The actual transmissions
occur as in Fig. 5(a) and Fig. 5(b) for the DETA and
the TPO scheme, respectively. It is clear that our approach
can significantly reduce the number of transmission slots
for data collection according to the change of traffic. The
DETA scheme spends only 10 transmission slots to collect
all available data instead of the 16 transmission slots spent
by TPO. As a result, base station S concludes that the data
collection process has completed at the end of time slot 14
when no data comes from E. However, if we apply the TPO
scheme, base station S can only conclude data collection until
the end of time slot 19 when there is no data coming from
node A.

Proof: Before discussing about the correctness this mech-
anism, we review again the way of time slots selection. There
are two types of transmission slots, ST1(v) and ST2(v). In the
same round,
• ST1(v)← ST1(v)∪{st1(v)}, where st1(v)← min{r |r >

0, r > st1(x),∀x ∈ Ch(v), r /∈ ST (C S(v))}.
• ST2(v)← ST2(v) ∪ {z}, where ∀z < st1(v)}.
The idea of this mechanism is that since st1(x) is the upper

bound when we try to find ST2(x). Therefore, if there is no
data come to v at st1(x), it implies that x has no remaining
data to send to v. Note that the temporal order of transmission
slots of node x is: z1(x) < z2(x) < z3(x) < ... < st1

1 (x) <

zi−1(x) < zi (x) < stk
1 (x) < stk+1

1 (x) < ... < st j
1 (x), where

z ∈ ST2(x), st1(x) ∈ ST1(x). Therefore, it is guaranteed that
if there is no data to send at time slot st1(x), node x would
not have anything to send to its parent v after st1(x). Then, v
can go to sleep mode at all subsequent receiving transmission
slots in ST1(x) after st1(x). Hence, the correctness of adaptive
traffic mechanism is proven.

D. Distributed Implementation of DETA

In this section, we describe how to implement DETA
scheduling algorithm in a distributed manner. This algorithm
is considered as a distributed implementation of Algorithm 2,
thus there is no different from the results by applying two
approaches. We will not distinguish between these two version
of DETA in the rest of this paper. We first assume that each
sensor node u knows its parent p(u), its children Ch(u), its
grandparent gp(u) and the size of its sub-tree rooted based on
the information from the tree construction step (not discuss in
this paper). In distributed DETA algorithm, each sensor node
u keeps the following local variables:

— ST (u) contains all the set of sending time slots assigned
to node u. Initially, ST (u) = φ.

— ST C(v) contains the sending time slots of each child
v ∈ Ch(u). Initially, ST C(v) = φ,∀v ∈ Ch(u).

— C S(u) contains all the nodes that conflict with v and
have not been assigned the required numbers of trans-
mission slots. Initially, C S(v) = φ.

— bu f f (u) is the number of available data packets in the
memory of node u.

— cnt (u) is the number of assigned transmission slot to
node u in a certain schedule round.

Fig. 6. State diagram of DETA Algorithm.

Algorithm 3 Distributed-DETA-Sch(s): Algorithm Executed
by the Base Station s
1: s sends a Sch_req message
2: while ∃u ∈ Ch(s), State(u)
= Finished do
3: if s receives all Sch_done msg. its Ch(s) then
4: s sends new Sch_req msg.;
5: end if
6: end while

We define four states that the sensor node u can be kept
during scheduling process, as in Fig. 6:
• Ready: all children of node u have finished their schedule.
• Wait: there is a children or descendant of node u that

does not finish its schedule.
• Scheduled: node u has just been assigned the time slot

in Ready state.
• Finished: node u has assigned enough the amount of its

required time slot.
We design two algorithms for two targeted sensors nodes in the
network: sink node and reporting node, and they elaborate each
others to make the scheduling algorithm works into iterations.
For the sink node, its duty is to initialize the scheduling
process as well as identifies the end of that process. The sink
first generates a Sch_req message and broadcasts to all its
neighbour to inform that the algorithm has been started. The
Sch_req message has the format 〈serial, tag〉, where serial
is the number represented for the index of current iteration,
tag is a value to distinguish this control message with others.
The pseudo-code of DETA distributed algorithm for the sink
node can be shown in Algorithm 3

For other node u, all the leaf nodes are in Ready state,
other nodes are in Wait state at the first iteration. When node
u receives the Sch_req message from the sink, there are a
set or subsequent procedures as:
• When a node u in Ready state, if it receives the Sch_req

from its parent, it will check that whether it has highest
ID compared with other nodes in C S(u) which are in
Ready state or not. If so, it will select the sending time
slots. After selecting its sending time slots, the node will
broadcast the Sch_done message to two-hop neighbors.
The format of Sch_done message will be presented later.

• When node u is in Wait state, if it receives Sch_req
message from its parent it checks whether receives all the

KANG et al.: DELAY-EFFICIENT ENERGY-MINIMIZED DATA COLLECTION WITH DYNAMIC TRAFFIC IN WSNs 3035

Sch_done messages from all of its children, considering
the children who did not finish the schedule. If so, its
state will change to Ready. Otherwise, node u keeps it
at Wait state and then forwards Sch_req message to all
its children.

• When node u is in Scheduled state, if it receives Sch_req
message from its parents, it will change its state to Ready
if all of its children are in Finished state. Otherwise, its
state will be changed to Wait after receiving Sch_req
message.

The algorithm stops when the base station detects that all
of its children have finished their scheduling by observing
the received Sch_done message. After finishing scheduling
process, each sensor node u would know its sending slots
ST (v) and its receiving time slots ST C(v),∀v ∈ Ch(u). The
pseudo-code of DETA distributed algorithm for each node u
can be shown in Algorithm 4.

The Sch_done message sent by u has the form of
Sch_done〈ST1(u), ST2(u), bu f f (u), cnt (u), src, tag〉, where
ST1(u), ST2(u), bu f f (u), and cnt (u) have been described
above; src the ID of node that sent this message; tag is
a boolean value which indicates whether the receiving node
has to continue broadcasting this Sch_done message or not.
Initially, the value of tag is true. When a node receives
Sch_done message from its neighbours with the tag value
is true, it will change tag value to false and broadcast this
message to all its neighbours. If a node receives Sch_done
message with tag is false, it will not broadcast this message
any more.

V. PERFORMANCE EVALUATION

A. Simulation Environment

We develop a simulation to illustrate the effectiveness and
superiority of the DETA scheme compared with the existing
schemes. We simulate WSNs with two different shapes of
sensing area: square and rectangle. In reality, the square shape
can be used for the monitoring applications of WSNs over a
large area such as a city and a military zone, the rectangle
shape is for simulating the border monitoring applications
like barriers or boundaries monitoring. The characteristics of
sensor node are remained unchanged during the simulation,
each sensor node have identical transmission range of 15m.
In the data collection process, when a receiving node is
scheduled to receive data from a sending node, there is no
other node which is allowed to be scheduled for sending data
to that receiving node in the same time slot. Sensor node wakes
up at its scheduled transmission slots to send and receive data
and goes to sleep after finishing its transmission. We conduct
a Breadth-First Search (BFS)) tree rooted at the base station
for data collection. Even though there are many other ways to
construct better structures for data collection like [16] and [17],
since our primary objective is to design an efficient scheduling
strategy which is independent to network structure, BFS tree
makes evaluation process much simpler and more effective.

1) Sensing Area: We first randomly distribute 100 nodes in
a square region of 100m× 100m. An example network topol-
ogy and corresponding data collection tree in this simulation

Algorithm 4 Distributed-DETA-Sch (u): //Algorithm Exe-
cuted by a Sensor Node u
1: bu f f (u) = 1
2: if u is a leaf node then
3: State(u) ← Ready;
4: else
5: State(u) ← Wait;
6: end if
7: while |ST (u)| < d(u) do
8: switch State(v) do
9: case Ready

10: if u receives Sch_req msg. then
11: if I D(u) > I D(v), State(v) = Ready, ∀v ∈

C S(v) then
12: cnt (u) = 0
13: Sch-node(u, bu f f (u), cnt (u));
14: State(u)← Scheduled;
15: u broadcasts Sch_done msg.;
16: end if
17: end if
18: case Wait
19: if u receives Sch_req msg. then
20: if ∃v ∈ Ch(u), State(v)
= Finished then
21: u broadcasts Sch_req msg.;
22: end if
23: end if
24: while u receives Sch_done msg. from v, v ∈

Ch(u) do
25: ST C(v) = ST (v);
26: bu f f (u) = bu f f (u)+ cnt (v);
27: if State(v) = Scheduled|Finished , ∀v ∈

Ch(u) then
28: State(u)← Ready;
29: end if
30: end while
31: case Scheduled
32: if u receives Sch_req msg. then
33: if State(v) = Finished , ∀v ∈ Ch(u) then
34: State(u) ← Ready;
35: else
36: State(u) ← Wait;
37: end if
38: end if
39: end while

has been shown in Fig. 7. We then evaluate the performance
of four state-of-the-art schemes DETA, BFA [10], FDC [7],
TPO [4]. As discussed, network traffic is dynamically changed
over sampling intervals. To implement this, we randomly
generate 100 sets of nodes whose size varies from 1 to 100 at
the beginning of each sampling interval. Each set contains a
random number representing the IDs of nodes that do not have
data to send to the base station at that sampling interval, and
data collection process only conduct for the rest nodes.

Moreover, one of the salient features of DETA is that it
enables parallel transmissions between the internal nodes and

3036 IEEE SENSORS JOURNAL, VOL. 18, NO. 7, APRIL 1, 2018

TABLE II

FREQUENCY USE SYMBOLS

Fig. 7. An example square sensing area and its corresponding data collection
tree.

Fig. 8. An example rectangle sensing area and its corresponding data
collection tree.

its descendants to reduce data collection delay as presented in
the previous presentation, therefore the DETA is more suitable
for WSNs in border monitoring applications. We evaluate the
performance of our scheme over a sensing area with rectangle
shape where the collection paths are usually longer than that
in the square shape. To simulate this environment, we vary the
length:width ratio of sensing area from 5, 10, and 15.

2) Energy Model: We conduct energy model based on
Bluetooth 4.1 standard [27], and similar with energy model as
in [4] and [26]. We first introduce some variables that would
be used in this presentation as in Table II.

The value of ξtotal can be calculated as:

ξtotal = ξset up + ξtx_rx + ξidle + ξsleep, (8)

Since ξ = t .P , t is duration time and P is power consump-
tion, the E.q. (13) can be rephrased as:

ξtotal = ξset up +
{

ttx_rx.Ptx_rx
}+ {

tidle.Pidle
}

+ {

(tinterval − ttx_rx − tidle).Psleep
}

, (9)

In addition, to support for above calculation, the Table III
summarizes the values of variables calculated from [17], [26].
We assume that each time slot has a length of 625μs.

TABLE III

VALUES OF VARIABLES

B. Simulation Results

1) Results of Square Sensing Area: We have experienced
with many random network topologies and have obtained
similar trends of performance. In this experiment, for each
set of parameter settings, the reported results are the average
of 200 runs on random network topologies.

Fig. 9(a) and Fig. 9(b) show the data collection delay
and energy consumption of DETA, TPO [4], FDC [7], and
BFA [10] when network traffic varies from 100% nodes to
no node that has data to send in each sampling interval. The
collection delay of the DETA is always smaller than the other
schemes. As FDC and BFA are designed for the static network
traffic, they are not able to adapt to the drastic change of
traffic over different intervals. They become inefficient when
the traffic is lighter, especially since the number of nodes have
data to report is less than 80%.

The DETA achieves up to 32.4% improvement in terms of
data collection delay compared with the TPO. A disadvantage
of the DETA is that we spend a little more energy for idle
listening when some nodes do not have their own data to send
at re-use transmission slots. However, because we used smaller
amount of time slot for data collection process, the sensor
node could go to sleep earlier and save energy of sleep state.
Even the energy consumed in sleep state smaller than idle
listening but if it would be considerable if all sensor nodes in
the network can save certain amount of sleep energy right after
it finished data transmission at the last scheduled time slot.
Fig. 9(b) also shown that we obtain up to 5.4% improvement
of energy consumption compared with the TPO.

2) Results of Rectangle Sensing Area:
a) Impact of the Sensing Area: As can we seen from

the previous simulation, the FDC [7], and BFA [10] are not
candidates for solving dynamic traffic data collection problem,
thus in this section we only simulate the TPO [4] together

KANG et al.: DELAY-EFFICIENT ENERGY-MINIMIZED DATA COLLECTION WITH DYNAMIC TRAFFIC IN WSNs 3037

Fig. 9. Results of varying traffic patterns. (a) Data collection delay.
(b) Energy consumption.

Fig. 10. Performance improvement compared with TPO when varying the
area of sensing field.

with DETA to evaluate their performance. The simulation
verifies the performance of DETA and TPO when varying the
lengh:width ratio of the sensing area and the varying of data
traffic. In this parameter settings, we assume that all sensor
nodes have data to report to the base station and run TPO and
DETA algorithm for different sensing area with length:width
ratio vary from 5, 10, 15, and 20. Each simulation runs
through 200 network topologies. The Fig. 8 shown an example
of network topology and corresponding data collection tree
with the length:width ratio is 10. The results of simulation
is presented in the Fig. 10. As can be seen from the Figure,
our proposed has significant improvement in terms of data
collection delay when the depth of data collection tree is
greater than 5. The DETA continues achieving better results
along to the increment of the depth of collection tree up
to 37%.

3) Impact of Dynamic Traffic: To verify the impact of
dynamic traffic over rectangle data collection area, we fix the

Fig. 11. Varying traffic from 0% to 100% nodes have data to send. (a) Data
Collection Delay. (b) Energy consumption.

length:width is 5, 10, and 15, and then vary the percentage
of nodes have data to send from 0% to 100% in each of
those settings. The similar results could be obtained as in the
square shape. Nevertheless, since data collection in border line
applications has longer depth, thus the DETA could achieve
much more improvement in terms of delay. The results of
simulation can be seen in Fig. 11(a) and Fig. 11(b). It is
clear from the figures that the bigger value of length:width,
the better performance DETA scheme could obtain compared
with the TPO in either data collection delay and energy
consumption. Therefore, one small conclusion could be drawn
here, the DETA scheme is more suitable for barriers or bound-
aries monitoring applications, in that the sensors are deployed
over a long distance from the source.

VI. CONCLUSION

In this paper, we have presented scheduling algorithm to
schedule sensor nodes in the network to send their data to the
base station with minimum delay. In addition, we designed
an adaptive mechanism to allow each sensor node to go to
sleep early according to the current data distribution of a
sampling interval, thereby reducing data collection delay and
energy consumption. The simulation results show that our
proposed scheme achieves better performance than the existing
schemes. As mentioned, our scheme would be more benefits
with boundaries monitoring applications because the amount
of sensor nodes that could send data simultaneously is bigger.

REFERENCES

[1] D. Wang, J. Xu, J. Liu, and F. Wang, “Mobile filtering for error-bounded
data collection in sensor networks,” in Proc. IEEE 28th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jun. 2008, pp. 530–537.

3038 IEEE SENSORS JOURNAL, VOL. 18, NO. 7, APRIL 1, 2018

[2] N. Xu et al., “A wireless sensor network for structural monitoring,”
in Proc. ACM 2nd Int. Conf. Embedded Netw. Sensor Syst. (SenSys),
Nov. 2004, pp. 13–24.

[3] R. Szewczyk, A. Mainwaring, J. Anderson, and D. Culler, “An analysis
of a large scale habitat monitoring application,” in Proc. SenSys, 2004,
pp. 214–226.

[4] W. Zhao and X. Tang, “Scheduling sensor data collection with dynamic
traffic patterns,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 4,
pp. 789–802, Apr. 2013.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[6] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in
sensor networks: Distributed edge coloring revisited,” in Proc. IEEE
INFOCOM, Mar. 2005, pp. 2492–2501.

[7] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi, “Fast
data collection in tree-based wireless sensor networks,” IEEE Trans.
Mobile Comput., vol. 11, no. 1, pp. 86–89, Jan. 2012.

[8] Y. Zhang, S. Gandham, and Q. Huang, “Distributed minimal time
convergecast scheduling for small or sparse data sources,” in Proc. IEEE
RTSS, Dec. 2007, pp. 301–310.

[9] S. Chen, M. Huang, S. Tang, and Y. Wang, “Capacity of data collection
in arbitrary wireless sensor networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 23, no. 1, pp. 52–60, Jan. 2012.

[10] S. Chen, Y. Wang, X.-Y. Li, and X. Shi, “Data collection capacity of
random-deployed wireless sensor networks,” in Proc. IEEE GLOBE-
COM, Nov. 2009, pp. 1–6.

[11] T. Liu, T. Li, and Y. Chen, “A distributed TDMA-based data gath-
ering scheme for wireless sensor networks,” IEICE Trans. Inf. Syst.,
vol. E96-D, no. 9, pp. 2135–2138, 2013.

[12] A. Q. Zhao, Y. N. Weng, Y. Lu, and C. Y. Liu, “Research on
dynamic routing mechanisms in wireless sensor networks,” Sci. World J.,
vol. 2014, Apr. 2014, Art. no. 165694.

[13] W. Zhao and X. Tang, “Scheduling data collection with dynamic
traffic patterns in wireless sensor networks,” Proc. IEEE INFOCOM,
Apr. 2011, pp. 286–290.

[14] C.-T. Cheng, C. K. Tse, and F. C. M. Lau, “A delay-aware data collection
network structure for wireless sensor networks,” IEEE Sensors J.,
vol. 11, no. 3, pp. 699–710, Mar. 2011.

[15] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo,
“The collection tree protocol,” TinyOS Enhancement Proposals, vol. 123,
pp. 1–7, Dec. 2007.

[16] B. Yu, J. Li, and Y. Li, “Distributed data aggregation scheduling
in wireless sensor networks,” in Proc. IEEE INFOCOM, Apr. 2009,
pp. 2159–2167.

[17] Y. Li, L. Guo, and S. K. Prasad, “An energy-efficient distributed algo-
rithm for minimum-latency aggregation scheduling in wireless sensor
networks,” in Proc. IEEE ICDCS, Jun. 2010, pp. 827–836.

[18] A. Ghosh, O. D. Incel, V. S. A. Kumar, and B. Krishnamachri,
“Multi-channel scheduling algorithms for fast aggregated convergecast
in sensor networks,” in Proc. IEEE Int. Conf. Mobile Adhoc Sensor Syst.,
pp. 363–372, Oct. 2009.

[19] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum lifetime data
gathering and aggregation in wireless sensor networks,” in Proc. IEEE
Int. Conf. Netw., Aug. 2002, pp. 685–696.

[20] X. Xu, X. Li, X. Mao, S. Tang, S. Wang, and X. Lin,
“A delay-efficient algorithm for data aggregation in multihop wireless
sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1,
pp. 163–175, Jan. 2011.

[21] Y.-C. Kuo and J.-W. Chen, “A power-saving data aggregation algorithm
for byzantine faults in wireless sensor networks,” IEICE Trans. Com-
mun., vol. E92-B, no. 6, pp. 2201–2208, Jun. 2009.

[22] S. Cho, “Proactive data filtering algorithm for aggregation in wire-
less sensor networks,” IEICE Trans. Commun., vol. E91-B, no. 3,
pp. 742–749, Mar. 2010.

[23] E. Lee, S. Park, F. Yu, and S.-H. Kim, “On selection of energy-
efficient data aggregation node in wireless sensor networks,” IEICE
Trans. Commun., vol. E93-B, no. 9, pp. 2436–2439, Sep. 2010.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 1992.

[25] J. Ma, W. Lou, Y. Wu, X.-Y. Li, and G. Chen, “Energy efficient
TDMA sleep scheduling in wireless sensor networks,” in Proc. IEEE
INFOCOM, Apr. 2009, pp. 630–638.

[26] J.-C. Cano, J. M. Cano, E. González, C. Calafate, and P. Manzoni,
“How does energy consumption impact performance in Bluetooth?”
ACM SIGMETRICS Perform. Eval. Rev., vol. 35, no. 3, pp. 7–9, 2007.

[27] Bluetooth Specifications. Accessed: Nov. 2017. [Online]. Available:
https://www.bluetooth.org/en-us/specification/adopted-specifications

[28] B. Kang, P. K. Ha, V. Zalyubovskiy, and H. Choo, “A distributed delay-
efficient data aggregation scheduling for duty-cycled WSNs,” IEEE
Sensors J., vol. 11, no. 17, pp. 3422–3437, Apr. 2017.

[29] B. Kang, S. Myoung, and H. Choo, “Distributed degree-based link
scheduling for collision avoidance in wireless sensor networks,” IEEE
Access, vol. 4, no. 3, pp. 7452–7468, Sep. 2017.

[30] S. Yeoum, B. Kang, J. Lee, and H. Choo, “Channel and timeslot
co-scheduling with minimal channel switching for data aggregation in
MWSNs,” Sensors, vol. 17, no. 5, p. 1030, 2017.

[31] X.-Y. Liu et al., “CDC: Compressive data collection for wireless
sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8,
pp. 2188–2197, Aug. 2014.

[32] T. Wang, Y. Li, G. Wang, J. Cao, M. Z. A. Bhuiyan, and W. Jia,
“Sustainable and efficient data collection from WSNs to cloud,” IEEE
Trans. Sustain. Comput., in press.

[33] Y. Yao, Q. Cao, and A. V. Vasilakos, “EDAL: An energy-efficient, delay-
aware, and lifetime-balancing data collection protocol for heterogeneous
wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 23, no. 3,
pp. 810–823, Jun. 2015.

Byungseok Kang received the B.S. degree in com-
puter engineering from Sejong University, South
Korea, in 2006, the M.S. degree in electrical
and electronics engineering from Korea University,
South Korea, in 2008, and the Ph.D. degree in elec-
tronics and computer science from the University of
Hertfordshire, U.K., in 2015. From 2015 to 2017, he
was a Post-Doctoral Researcher with Sungkyunkwan
University. He is currently an Assistant Professor
with the Department of Data Science, Sejong Uni-
versity. His research interests include cloud comput-

ing, IoT, wired/wireless networking, sensor networking, mobile computing,
network security protocols, and simulations/numerical analysis.

Phuc Nguyen received the B.S. degree in electronics
and telecommunications engineering from the Ho
Chi Minh City University of Science, Vietnam,
in 2010, and the M.S. degree from the Department
of Electrical and Computer Engineering, College
of Information and Communication Engineering,
Sungkyunkwan University, South Korea, in 2014.
His research interests include delay and energy-
efficient scheduling algorithms in wireless sensor
networks and wireless communication protocols.

Hyunseung Choo (M’17) received the B.S. degree
in mathematics from Sungkyunkwan University,
South Korea, in 1988, the M.S. degree in computer
science from the University of Texas at Dallas,
USA, in 1990, and the Ph.D. degree in computer
science from the University of Texas at Arlington,
USA, in 1996. From 1997 to 1998, he was a
Patent Examiner with Korean Industrial Property
Office. Since 1998, he has been with the College
of Information and Communication Engineering,
Sungkyunkwan University, where he is currently an

Associate Professor and a Director with the Convergence Research Institute.
Since 2005, he has been a Director of the Intelligent HCI Convergence
Research Center (eight-year research program) supported by the Ministry
of Knowledge Economy, South Korea under the Information Technology
Research Center support program supervised by the Institute of Information
Technology Assessment. He has authored or co-authored over 200 papers in
international journals and refereed conferences. His research interests include
wired/wireless/optical embedded networking, mobile computing, and grid
computing. He is currently a Vice President with Korean Society for Internet
Information (KSII). He has been an Editor-in-Chief of the Journal of KSII
for three years and a Journal Editor of the JOURNAL OF COMMUNICATIONS

AND NETWORKS, ACM Transactions on Internet Technology, International
Journal of Mobile Communication, and Springer-Verlag Transactions on
Computational Science Journal, and an Editor of the KSII Transactions on
Internet and Information Systems since 2006. He is a member of the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

