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Abstract— A microcantilever at the end face of an inte-
grated optical fiber is reported, fabrication is uniquely achieved
using a precision dicing saw. The methodology is a single-step
rapid process, capable of achieving trenches with high aspect
ratio (>10:1). The platform on which fabrication is made is a
monolithic, integrated optical fiber. This integrally fuses optical
fiber to a planar substrate using flame hydrolysis deposition and
high temperature consolidation (>1000 °C). This paper is the first
report of a fiber-tip cantilever using the technique and this inte-
grated platform. As an approach to quantify the optical response
of such a multicavity arrangement, a method using Mason’s
rule is presented. This is used to infer the spectral responses
of individual cavities formed and through physical actuation,
an estimation of the cantilever’s spring constant is made.

Index Terms— Integrated optics, optical fiber devices, optical
fibers, optical interferometry, optical sensors.

I. INTRODUCTION

OPTICAL alternatives to Microelectromechanical Sys-
tems (MEMS) are becoming of increasing interest to sci-

ence and technology due to their immunity to electromagnetic
interference, inherent safety in flammable environments and
compatibility with optical-fiber. Recent developments in form-
ing cantilevers at the tip of optical fibers have opened-up excit-
ing new opportunities for miniaturized optical sensors [1]–[3].
In particular measurements of fluidic flow [4], bio-mechanical
characterization [5], [6], Atomic Force Microscopy (AFM)
imaging [7], and chemical sensing [8] have all recently
demonstrated using this format. Typically these systems use
Fabry-Pérot (FP) interferometry for monitoring, largely due
to the inherent cavity formed between the fiber and can-
tilever. The spectral response from such cavities gener-
ally has a low-finesse due to the weak Fresnel reflections
from the silica-air interfaces. However, in some fabrication
methodologies finesse can be enhanced through use of addi-
tional coatings. The physical fabrication approaches reported
thus far have included picosecond-laser machining [4],
focused ion beam [9], wire-cut micromachining [6] and
photolithography [10].

This work reports cantilever fabrication solely through the
use of physical micromachining [11]. The technique has the
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Fig. 1. Scanning electron microscope image of a physically micromachined
integrated optical fiber-tip cantilever.

advantages of removing large amounts of material (mm3)
quickly (minutes) whilst still maintaining a vertical form
factor. The platform chosen on which to demonstrate this
technique is a novel Integrated Optical Fiber (IOF) [12], [13],
illustrated in Figure 1. IOF uses Flame Hydrolysis Deposi-
tion (FHD) to robustly form a miscible alloy between the
optical fiber and the planar substrate. IOF offers superior
mechanical strength and has advantages associated with inte-
gration including thermal homogeneity and the ability to
fabricate multiple components upon a single compact chip.

It must be stressed that the fabrication approach reported
solely uses physical micromachining and is therefore different
to other reports that use a combination of physical machining
and wet-etching [14].

II. FABRICATION TECHNIQUE

IOF adapts the commercial glass deposition technique
FHD, which is commonly used for the fabrication of Array
Waveguide Gratings (AWGs) and other silica based Planar
Lightwave Circuits (PLCs). The adaptation made involves the
pre-layering of an optical fiber to a planar substrate. In this
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Fig. 2. Schematic side view of fabricated cantilever.

instance a 1 mm thick silicon wafer with a 15 μm thick
thermal oxide is used as the substrate. Following glass soot
deposition, a consolidation is undertaken at high tempera-
ture (1250°C), forming a miscible glass alloy between the
optical fiber and thermal oxide. This results in a mechanically
robust integrated platform that has the ability to optically guide
both in the fiber and the FHD layer(s). It must be noted that
in this demonstration the IOF is used solely for its mechanical
properties, as all light is guided in the fiber.

Fabrication of the cantilever was achieved with the
use of a precision dicing saw (Loadpoint Microace)
and a nickel bonded synthetic diamond blade (DiscoTech
ZH05-SD4800-NI-50-GG). The depth of cut chosen was
800 μm; rotation speed of 25 krpm and cutting speed
of 0.1 mm/s. In total five cuts were made, two parallel and
three orthogonal to the fiber. The orthogonal cuts formed
air cavities of 59 μm (single cut) and 147 μm (dual cut)
respectively and a glass cavity of 65 μm, as shown in Figure 2.
To form a distal cantilever this structure was cleaved, which
left only a single air and glass cavity.

The Sa surface roughness (which is an arithmetic mean
height calculation) of the air-glass interfaces was measured to
be 29 nm using a white light interferometer. This is larger
than some previously reported results [15], which used a
dicing blade containing much smaller grit (5000 grit size
used not 4800). It must be noted that in order to achieve the
depth-of-cut desired (800 μm) it was necessary to use the
more course grit due to commercial availability at the time
at which this script was written. Improved interface surface
quality should be achievable without compromising sensitivity
if further developments of commercial blades are made.

To understand the optical spectra resulting from these cav-
ities a multi-cavity solution was formulated using signal flow
graph analysis and Mason’s rule.

III. SIGNAL FLOW GRAPHS AND MASON’S RULE

Optomechanical cantilevers with optical fiber readouts are
nowadays routinely interrogated via reliable, low noise inter-
ferometers, which guarantee linear response over large dis-
placements and accessing a frequency bandwidth of several
tens of kHz without compromising the overall performance.
The following approach uses spectrally broadband data and

Fig. 3. Graphical representation of light transmitting and reflecting through
a glass-air-glass-air cavity.

signal flow graph theory. It is not intended to be a method of
optical measurement but rather a method of optical character-
ization and a route to infer spring constant of this and similar
fiber-tip cantilever constructs, e.g. as part of design iteration
and quality control assessment.

Signal flow graph analysis of layered media is consid-
ered to explain the spectral characteristics of the fabricated
cavities. Using Mason’s rule a graphical representation of a
dynamic system of linear equations can be represented [16].
Figure 3 represents the pathway of light through a glass-
air-glass-air interface. This technique can also be expanded
to three cavities as in the pre-cleaved structure (shown in
Figure 2) or indeed multiple cavities. With respect to nomen-
clature, t correspondence to transmission coefficient, r the
reflection coefficient and θ is a phase term defined as:

θ = 2π(nef f l)

λ
(1)

ne f f is the effective refractive index and l the propagation
distance. Each node in the flow graph corresponds to the wave
mode amplitude at an interface and the arrows define coupling
terms from one node to another. The resultant closed loops
being the cavity resonances. It is important to note that Masons
rule yields the reflectance via inspection.

The amplitude transmitted through the structure can be
obtained by summing all the different paths from source node
to output node. Mason’s Rule expresses this transfer function
of the system as:

T =
∑

k
Pk�k

�
(2)

where the summation is made over all k-paths connecting the
input to output node. � is the determinant of the system [16],
Pk is the kth forward path gain (product of gains found
through traversing a succession of branches in the direction
of arrows with no node passed more than once) and �k is the
determinant of the kth forward loop.

IV. RESULTS

The back reflected spectra of the fabricated cavity was
measured using a broadband SLED (Amonics, ASLD-
CWDM-5-B-FA) and an Optical Spectrum Analyzer (OSA)
(Ando AQ6317B). The observed spectra prior to cleav-
ing (treble cavity) and after cleaving (double cavity) is illus-
trated in Figure 4. The spectral resolution of the OSA was
set to 0.1 nm.
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Fig. 4. Measured back reflection from the physically machined integrated
fiber prior and post cleave.

Fig. 5. The Fourier Transform of the measured spectral response pre and
post cleave.

To highlight the periodic features from this optical spectra
a Fourier transformation was made, shown in Figure 5, which
compares the spectra before and after cleaving. This is com-
pared to a theoretical frequency distribution calculated using
Mason’s rule, illustrated in Figure 6. It must be noted that the
theoretical model also accounts for dispersion effects through
use of accepted Sellmeier coefficients for silica, however the
contribution of this term only marginally improved the fit.

From Figure 5 and Figure 6 it is evident that the main
resonance features appear comparable in both the measured
and theoretical model. It is noted that variation in amplitude,
|Y(f)|, between the theoretical and measured model is consis-
tent with diffraction effects and recoupling in the air cavity
sections. Additionally, there are also scattering losses at the
interfaces between cavities. These parameters were not directly
accounted for, but it is understood that divergence at an air gap
of ∼60 μm reduces fringe visibility by ∼25% [17].

A. Force Calibration

Lateral force calibration was made using a KLA Tencor
P16 stylus profiler. The forces applied are presented schemat-
ically in Figure 7. In the arrangement the stylus was translated
such that its leading edge was the only point of contact with
the chip. The stylus was scanned in the direction of forward

Fig. 6. The Fourier Transform of the theoretical spectral response pre and
post cleave.

Fig. 7. Configuration of the stylus profiler and the components of applied
force.

light propagation and off to one side of the fiber, such that it
did not touch the fiber.

The following treatment assumes that the cantilever was
level and the stylus does not deflect or twist to a significant
degree. The velocity of translation is assumed to be constant
and therefore the system to have no net force.

The two forces acting on the stylus are the vertical load,
Fload , and horizontal applied load, Ftran , that enabled a
constant positive velocity, v, along the x ′ component. For each
applied load the velocity was kept at a constant 10 μm/s.
To vary the force in the lateral component the preset values of
vertical load were varied. The spectral data for this was taken
and interpreted into cavity length changes using Masosn’s rule.

Variation in optical path lengths for the air and glass cavities
were interpreted through fitting Mason’s rule to the reflected
spectra. In this case an ASE was used for interrogation (with
a bandwidth ranging from 1530 nm to 1570 nm). The spectral
response from these respective cavities with respect to applied
load is shown in Figure 8. As expected, the air cavity has
the greatest response to applied force, with a sensitivity of
0.17 ± 0.01 pm/nN. The error bars presented in Figure 8 are
calculated from a 5 data point standard error for that load.

A reduced chi-square calculation, χ2, of 7.64 (2.d.p) was
observed for the fiber cavity trend. This equates to a chi-square
per degree of freedom (df=9) of 0.76 (2.d.p). Interpretation of
this relates to a 57% chance of obtaining a set of measurements
at least this discrepant from the model, assuming the model
to be true. As they form part of the same spectrum, it is not
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Fig. 8. Variation in optical path lengths of the air and glass cavities subject
to mechanical actuation.

improbable that the measurements have an element of cross
talk due to the nature of fitting.

An optical path length change (in the air cavity) and applied
load can be interpreted in terms of the cantilever’s end-tip
displacement for a set lateral force. From these two values an
estimation of spring constant can be made.

B. Estimating Spring Constant
The spring constant, k, for a cantilever is defined as the

normal force, Fx , required for a unit normal displacement at
the end-tip, �x . The optical path length change in the air
cavity, lair , is approximately equal to the normal displacement
of the cantilever’s end-tip, for this considered geometry. The
normal force along the x-component, Nx , can be derived as:

Nx = mg

1 − μk
√

3
(3)

where μk is the constant for kinetic friction, approximated
to be 0.115 [18] between silica (FHD layer) and diamond
(profiler head), m is the set load mass and g is gravitational
acceleration (9.81ms−2). Using the definition of spring con-
stant, the gradient measured in Figure 8 and Equation 3 the
following can derived:

k = Fx

�x
≈ 1

1 − μk
√

3

(
d�air

d Fload

)−1

(4)

This gives an estimation of 740 ± 40 N/m for spring constant.
Considering the simplified geometry of a purely silicon

cantilever beam, without the optical fiber or FHD element.
An analytical solution using the equation:

k = Ewt3

4L3 (5)

can be used, where Young’s modulus, E , for silicon is taken to
be 130 GPa; the width of the cantilever, w, 501 ± 1 μm; the
thickness of the cantilever, t , 65 ± 1 μm and the cantilever
length, L, 806 ± 5 μm. This calculated estimation gives a
spring constant, k, equal to 850 ± 40 N/m.

This simplified approximation is an overestimation of
the value inferred through measurement. It is noted how-
ever that the displacements measured at the fibre core are

Fig. 9. Changes in optical path lengths of the air and glass cavities subject
to thermal variation.

62.5 μm (radius of fibre) above the position at which normal
force is calculated, relating to an 8% underestimation of the
measured value (horizontal difference trigonometrically equal
to vertical difference 62.5/806 = 8%). This corresponds to a
modified measured estimate of 790 ± 50 N/m, which over-
laps the analytical approximation, with that inferred through
profiler actuation.

C. Thermal Calibration

The thermal response of the cantilever is shown in Figure 9.
The respective cavity responses were 2.3 nm/°C and 1.1 nm/°C
for the air and glass cavities respectively.

It is noted that the glass cavity has a significantly smaller
thermal response than the air cavity. The reason for this is
two-fold. Firstly the air cavity is dominated by the thermal
expansion of the underlying silicon, which is approximately
an order of magnitude greater than that of silica. Secondly the
change in optical path length brought about through thermal
expansion is opposed by silica’s strain-optic coefficient.

V. DISCUSSION

Mason’s rule enables an approach for multi-cavity analysis.
Most authors simulate FP cavities by either analyzing first- and
second-order reflections [19], or through use of the S/T-matrix
approach that inherently calculates the infinite amount of
reflections occurring at the boundaries [20]. Mason’s method
arguably sits between these, enabling effective calculation of
the visibility factor of the cavities. It needs to be stressed that
the interrogation method presented here is intended only to
be a tool for spectral and physical calibration. Dynamic mode
methods shall be the consideration of future work.

The empirical estimation for spring constant was
790 ± 50 N/m, which was comparable to that expected
for a cantilever of this dimension. This may be considered
slightly stiff for some applications, such as those associated
with AFM, where typically spring constants range between
300 N/m to 0.01 N/m. It should be noted that the spring
constant of such a cantilever could feasibly be reduced further
through fabrication if required. For example, considering
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Equation 5, thickness and length have a significant influence
on the value. Using a combination of a thicker wafer and
a blade capable of a deeper depth of cut, dimensions of
up to 2 mm are feasible, which would give a (2/0.8)3 ≈
16-fold reduction from the 0.8 mm depth of cut made in
this demonstration. The thickness of the cantilever could also
be reduced by half, giving a further 8-fold reduction. The
width of the cantilever is 501 μm, through using a smaller
diameter fiber and dicing it smaller this can be reduced to
60 μm width, giving a reduction of approximately 8-fold.
Furthermore silica could be used instead of silicon, which has
a Young’s modulus of 73 GPa and so would approximately
half the spring constant. In combination spring constants
below 1 N/m are entirely feasible, which is approaching the
highest performance end of commercial AFMs.

It was shown that through using two distinct optical cavities
a degree of thermal compensation can be made. However,
in this particular configuration thermal compensation does
not have the precision of alternative approaches such as
Fiber Bragg gratings (FBGs) [12], [13]. Future work will
therefore consider architectures that enhance this thermal
response or use the technique in combination with FBGs. The
solution dictated largely by the application e.g. at elevated
temperatures the use of FBGs may not be possible.

VI. CONCLUSIONS

The first demonstration of a fiber-tip cantilever in an
Integrated Optical Fiber (IOF) platform has been shown.
IOF is proven to be a robust method capable of withstand-
ing the mechanical rigors of physical micromachining. The
microstructured cantilever is optically monitored and thus
has immunity to electromagnetic interference and considered
safe in flammable environments. This is the first reported
demonstration that uses only physical micromachining to
achieve microstructures, all other approaches reported have
been in combination with other cleanroom toolsets such as
wet etching.

The use of Mason’s rule to interpret multicavity spectra was
demonstrated. Through the interpretation deflection monitor-
ing of the cantilever can be made. This is a useful tool to
infer spectral shifts and to estimate the spring constant if the
cantilever simultaneously undergoes known force actuation.
A spring constant of 790 ± 50 N/m was empirically estimated
using this technique. Through further development of design
parameters the stiffness could be reduced further making it
comparable to AFM gold standards.

It was demonstrated that thermal variation could be inferred
through monitoring spectral features associated with the glass
cavity. However, this may only be of significance over other
techniques at elevated temperatures.
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