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Amplifying the Signal of Metal Oxide Gas Sensors
for Low Concentration Gas Detection

Xinyuan Zhou, Ying Wang, Jinxiao Wang, Zheng Xie, Xiaofeng Wu, Ning Han, and Yunfa Chen

Abstract— Nowadays, detection of trace concentration gases
is still challenging for portable sensors, especially for the low-
cost and easily operated metal-oxide-semiconductor (MOX) gas
sensors. In this paper, a widely applicable amplification circuit
is designed and fabricated to evidently enhance the signal of
the MOX sensors by adding a field effect transistor (FET) into
the conventional circuits. By optimizing the FET parameters
and the loading resistance, this amplification circuit enables the
commercial Figaro TGS2602 toluene sensors response effectively
to the highest permissive limit (0.26 ppm) of toluene in indoor air
of cars, with the detection limit of ~0.1 ppm. Furthermore, this
circuit can also make the commercial Hanwei MP502 acetone sen-
sors and MQ3 ethanol sensors response to the 1-2-ppm acetone
in breath of diabetes and 2-ppm ethanol for fast and effectively
drinker driver screening. The mechanism is investigated to be
the gate voltage induced resistance change of the FET, with
the highest theoretically estimated and experimentally measured
magnification factor of 5-6. This FET amplifier can effectively
enable the ppm level commercial MOX sensors response to sub-
ppm level gases, promising for MOX gas sensor integration and
also for other kind of resistive sensors.

Index Terms— Environment and health, field effect transistor,
amplifier, low concentration, metal oxide semiconductor sensor

I. INTRODUCTION

UE TO the easy fabrication, facile operation and rela-

tively high sensitivity, metal oxide semiconductor (MOX)
gas sensors have been widely adopted as inflammable and
explosive gas alarms, which are working for gases at relatively
high concentration of percent per million (ppm) to percentage
levels. In recent years, people are aiming at detecting the low
concentration gases at sub-ppm levels for health, environment
and so on [1]-[6]. For example, many countries all over
the world recommend the highest permissive concentration
of volatile organic compounds (VOCs) should be in the
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sub-ppm level in cars. For example toluene should be less
than 1.0 mg/m? (~0.26 ppm) because it is stimulus to the
skin, eyes, and respiratory system even at low concentrations
(e.g. Vehicle Interior Air Quality, VIAQ and Chinese guide-
line GB/T 27630-2011). On the other side, disease analyses
show that the diabetes would exhale acetone with criteria of
1-2 ppm because of the disability of metabolism, and drinker
drivers will exhale ethanol of several to hundreds of ppm in
their breath [7]-[9]. In these cases, the MOX sensors should
have higher sensitivity, i.e. lower detection limit at ppb-ppm
level, in order to response effectively to those typical trace
content gases. However, except for some laboratory results,
it is still a challenge for commercial MOX sensors to have
such low detection limit, and thus many researches are focused
on improving the gas response of MOX sensors.

The general method is to improve the gas response of
MOX sensing materials such as SnOj;, InpO3, ZnO, etc.,
by ways such as doping with other elements [8], [10]-[12],
surface functionalization [13]-[17], heterojunction [18]-[20],
core/shell structure [21]-[23], Micro-Electro-Mechanical Sys-
tem fabrication [24], [25], and so on. For example, Guan et al.
found that the Zn doped SnO, had 3.2 times higher response
(resistance ratio Ra/Rg of the sensor resistance in air Ra and in
gas Rg) to ethanol (14.4 to 100 ppm) compared with the pure
SnO; [10]. Zou et al. found that Au, Ag, and Pt surface func-
tionalization would not only enhance the gas response of In,O3
nanowire sensors, but also increase the selectivity to CO,
ethanol and H, [15]. And toluene gas sensing performance
is also greatly improved by rational material design such as
Sn0,/SnO; yolk-shell structures (28.6 to 20 ppm) reported by
Bing et al. [26], rGO/Co0304 composites (11.3 to 5 ppm) by
Bai et al. [27], Pt decorated SnO-ZnO core-shell structure
(279 to 0.1 ppm) by Kim et al. [22]. Though these researches
pushed the MOX gas sensors to step forwards greatly, there
are still limited commercial sensors with acceptable responses
to the trace content gases. For example, commercial toluene
gas sensors (TGS2602, Figaro, Japan) have detection limit of
~1 ppm with response of ~ 3, which cannot yet effectively
response to the toluene at concentrations of ~ 0.26 ppm
recommended by VIAQ.

Though the sensor signal can also be enhanced by external
integrated circuits using operational amplifier, special care
should be taken to the offset adjustment and noise filtering
etc. [28]-[31], and the complicated circuit design would degen-
erate the low-cost advantage of the MOX sensors. In this study,
a widely applicable sensor signal amplification method is
developed by adding a field effect transistor (FET) to increase
the responses of MOX sensors and thus lower the detection
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Fig. 1. Principle of the designed amplification circuit: (a) comparison of the
conventional and the designed amplification electric circuit of gas sensors by
adding FET; (b) the voltage output comparison. Points a and a’ are baseline
voltage in air, and g and g’ are response voltage in detectants without and with
FET; (c) the resistance change of FET with its gate voltage. In air, RpgT is
small at a’ point compared with Ry, at a point. But RpgT increases a lot in
detectants at point g’ as compared with the fixed resistance of Rp, at point g.
The increased Rpg is the main principle of the voltage amplification circuit.

limits. To show the effect and make the technology more
general, commercial toluene sensors (Figaro TGS2602, Japan),
acetone sensors (Hanwei MP502, China) and ethanol sensors
(Hanwei MQ3, China) are adopted as the examples with
signal amplified by the commercial FETs (K series, Japan).
The amplification method decreases the detection limit of
TG2602, MP502 and MQ3 to ~0.1 ppm toluene, <2 ppm
acetone and <2 ppm ethanol, which can be readily used for
large scale integration into portable alarms. It should be noted
that this response amplification method can also be applied
to other kind of resistance sensors, showing the promise of
this technology for MOX gas sensors for detection of trace
concentration gases and also for other resistive sensors to
effectively amplify the signal.

II. PRINCIPLE OF THE AMPLIFICATION CIRCUIT

Taking n-type MOX sensor in detection of reductive gases
for an example, the MOX gas sensor (Rg) is traditionally
working with a tandem connection to a load resistor (RL)
as shown in Fig. la. After a voltage (Vcc) is biased, the
partial voltage of the Ry is taken as the sensor signal (Vour)-
The Rp is normally well chosen so that Voyr in air is low
behaving as the baseline. When the sensor gets in contact
with detectants such as toluene, the sensor resistance Rg will
decrease, resulting in increase of Voyt and thus generating a
voltage signal as shown in Fig. 1b. It is obvious that the signal
is merely produced by the Rg change.

In our proposed circuits in Fig. la, an n-type FET
(red color) is connected with Ry and Rg with source (S)
and drain (D) electrodes. The gate electrode (G) is then
connected to the lower potential side of Ry generating a
minus gate voltage for the FET. The value of Ry is well
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chosen so as to make the FET work at ON state in air
(e.g. 102Q at point a’ in Fig. lc). Similar to the traditional
circuits, Voyur will also increase when the sensor contacts
reductive gases, and so does the absolute gate to source voltage
(Vgs) of the FET. At the same time, the increased |Vgs| drives
the FET to OFF state (qualitatively being point g’ in Fig. Ic,
10° Q), meaning its resistance will increase sharply. The
increased FET resistance gives feedback to the circuit again to
enhance the Vour, which finally equilibrates to a maximum
far higher than that without the FET. It should be noted that
this FET signal amplification is in distinguishingly distinct
with conventional operational amplifiers which is aiming at
enhancing the Vour in traditional circuits.

Quantitatively, the conventional output voltage VoyT can be
calculated as:

Vour = VecRL/(RL + Rs) = Vee/(1 + Rs/Rr). (1)

where it is clear that Voyr will increase with decrease of
Rs when contacting detectants. Similarly, in the proposed
amplification circuit, Voyr can be written as:

Vour = Vec/[1+ Rs/(Rr + Rrer)]. 2

It is therefore, Vout will be enhanced greatly if Rpgr increase
together with the Rg decrease, meaning amplifying the voltage
output.

From (1), it is easy to derive the conventional response of
MOX sensors as:

Rs,,/Rse = Vce/Vour,a — 1)/(Vee/Vour,g —1). (3)

where Vour,a and Vour,, are the output voltage of the
conventional circuit in Fig. la. The apparent response of the
FET circuit is also calculated in the same way, as derived
from (2):

Rs ,/Rs¢ X (R + RrET,¢)/(RL + RFET,0)
= (Vee/Vour,a — 1/(Vec/Vour,g — 1). 4

Therefore, the magnification factor (MF) can be easily derived
by (3) and (4) to be (RL+Rger,¢) / (RL + Rpgr,a), ie.
resistance change of the load (RL+ Rpgr), which will be
discussed in detail in the discussion.

ITI. EXPERIMENTAL

Commercial gas sensors are bought from the market, which
are toluene sensor (Figaro TGS2602, Japan), ethanol sensor
(Hanwei MQ3, China) and acetone sensor (Hanwei MP502,
China). Commercial FETs are also bought from the market,
which are K168, K514 and K544 (Sanyo, Japan). All the
electronic devices are used without any modification. The gas
sensing property is measured using static measurement system
designed for sensor products (Hanwei WS-30A, China) as
details reported in the literature [7], [10], [27], [32]. Load
resistance card is the standard accessary of the system, and
the FET is soldered onto the resistance card with D, S, and G
electrodes shown in Fig. la. Toluene, ethanol and acetone
gases with difference concentrations (> 1 ppm) are generated
by dropping certain amounts of the liquid with a micro syringe
onto an evaporator in the test chamber (total volume 18 L).
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Fig. 2. Response comparison of toluene sensor with and without FET.

(a) output voltage of the toluene sensor with R, = 1.0 kQ with and without
FETs, (b) response of the toluene sensor calculated from (a), (¢) Ips-Vgs
curves of the FETs K168, K514 and K544, and (d) magnification of the
amplification circuit with three types of FETs.

Toluene gases with 0.1 and 0.3 ppm are produced by adding
certain volume of 50 ppm standard gas into the chamber.
Response is defined as the resistance ratio Rsa/Rsg of the
sensor resistance (Rg) in air and in detectants in the con-
ventional circuit and was calculated by equation (3). The
apparent response of the sensor in FET amplification circuit
is calculated by equation (4) assuming a fixed value of Rpgr
at the ON state in air on the baseline. The I-V curves of the
FET are measured by Keithley 4200 semiconductor analyzer.

IV. RESULTS AND DISCUSSION
A. Toluene Sensor

The toluene sensor TGS2602 is used as a proof of concept
of this proposed signal amplification circuit. According to the
manual, Vcc is 5 V and Ry, should be > 0.45 kQ. The voltage
output is shown in Fig. 2a by using Ry, = 1.0 kQ with toluene
concentration varying from 1 to 20 ppm. It is clear that all
the FET circuits can enhance the voltage output, with the
maximized amplification effect of K544. The corresponding
response and apparent response are calculated in Fig. 2b.
It is noticed that the response to 1 ppm toluene is 2-3,
in accordance with that of the manual though there would
be device-device variations and gas concentration variations.
However, when K544 FET is connected into the circuit as
proposed, the response can be enhanced to ~5 showing the
amplification effect. From the transfer curves (Ips - Vgs) in
Fig. 2c, the K544 FET has the largest Ips-Vgs slope (the
smallest subthreshold swing). The largest slope makes K544
the most sensitive to the gate voltage change, leading to the
largest amplification effect. The magnification factor (MF, ratio
of apparent response with FET and response without FET) of
K544, K168 and K514 are shown in Fig. 2d, where it is clearly
shown that K544 works better than the other two FETs. The
MFs are 2-4 depending on the gas concentrations, because the
varied gas concentrations would generate different gate voltage
on the FET and thus make FET work on different resistances.

From the working principle, the Vgs of FET is the partial
voltage of the resistor load Ry, which should therefore be
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Fig. 3.  Amplification effect of toluene sensor using FET K544. Output

voltage by connecting resistor of (a) R, = 1.0 kQ, (b) R = 2.0 kQ,
(¢) Rp = 4.7 kQ, (d) magnification of the response by FET amplification
circuit, (¢) and (f) comparison of output voltage and response to low
concentration toluene using amplification circuit FET K544 connecting 2.0 kQ
resistor.

optimized to get a maximum amplification. In our study, Ry, is
set as 0.5, 1.0, 2.0, 3.0 and 4.7 kQ, and the typical response
curves with and without FET K544 are shown in Fig. 3a-c and
in Fig. S1 in supporting information. It is obvious that output
voltages are all enhanced greatly by the FET amplification
circuits. The resultant amplifications are shown in Fig. 3d by
testing at least 5 sensors, where it is obvious that a maximum
MF of ~35 is obtained using the 2.0 kQ resistor. The optimized
circuit is then used to test the response to toluene with lower
concentration such as 0.1 and 0.3 ppm as shown in Fig. 3e.
A significant voltage response can be seen in the curve with
the K544 FET. Otherwise, the voltage change is neglectable
to 0.1 and 0.3 ppm toluene in the conventional circuit. The
responses are calculated in Fig. 3f, where it is clear that
responses of 1.5, 2.5 and 7.2 are obtained to 0.1, 0.3 and
1 ppm toluene, which are much higher than those without FET.
VIAQ and many countries recommend a maximum permitted
limit of 1.0 mg/m3 (0.26 ppm) toluene in indoor air of a
car, which is emitted by the decorations. Therefore, whether
the toluene concentration is above the standard in cars can
be easily assessed using the FET amplification circuit with
detection limit of ~0.1 ppm. And more importantly, all the
electronics can be readily purchased from the market and be
integrated easily onto a board.

B. Acetone and Ethanol Sensor

In order to extend the amplification circuit to other MOX
sensors, commercial acetone and ethanol sensors are adopted
in this study. According to the disease analyses, the diabetes
will exhale acetone in the breath with the criteria of 1-2 ppm
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Fig. 4. Signal amplification of acetone sensors: (a) output voltage with
and without FET K544, (b) the calculated response curves, (c) the response
comparison of the sensor with and without FET, and (d) magnification effect
of the acetone sensor at different concentrations by the new electric circuit
with FET K544.

because of metabolism disability. Therefore, there are many
reports on highly sensitively acetone sensing materials, such as
In, O3, ZnFe; 04 etc. [7], [33]. However, the commercial MOX
acetone sensors (Hanwei MP502) have relatively low response
to acetone at such low concentration, e.g. ~0.1 V response to
2 ppm as shown in the response curve in Fig. 4a. On the
other side, the response is greatly enhanced using K544 FET
amplification circuit, with ~1.0 V voltage response to 2 ppm at
the optimized load resistance of 14.7 kQ in Fig. 4a. Therefore,
this amplification circuit enhances the detection limit of the
acetone sensor, which is suitable for diabetes analysis by
detecting the 1-2 ppm acetone concentration in the breath.
The response curve is further calculated in Fig. 4b, where one
can clearly see the response to 2 ppm using FET is already
similar to that to 10 ppm without FET. The responses are
then compared as shown in Fig. 4c, showing a great response
enhancement MF, which is 3-6 magnification as calculated
in Fig. 4d.

In the meanwhile, the drinkers are prohibited from driving
all over the world, and a blood ethanol concentration of
10-80 mg/100 ml is recommended by world health
organization and other countries (e.g. Chinese guideline
GB 19522-2010). The breath ethanol concentration serves as a
fast detection method, with the exhale concentration of ethanol
of 20-170 ppm. Commercial ethanol sensor (Hanwei MQ3)
can detect ethanol at this concentration as shown in Fig. 5a.
However, using the amplification circuit again, the responses
are enhanced greatly with the detection limit of < 2 ppm,
providing more opportunity for the ethanol detectors to work
well on the fast screening of drinker drivers. The responses
are calculated in Fig. 5b and ¢ with a MF of 2-6 as shown
in Fig. 5d.

Therefore, the FET amplification circuit can effectively
enhance the response of MOX sensors, and thus the detection
limit is greatly extended to trace concentrations. Though the
responses are still lower than some of the laboratory ones as
compared in Table I, these commercial sensors with the FET
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Fig. 5. Signal amplification of ethanol sensors: (a) output voltage with
and without FET K544, (b) the calculated response curves from (a), (c) the
response comparison of the sensor with and without FET, and (d) magnifica-
tion effect of the ethanol sensor at different concentrations by the new electric
circuit with FET K544.

TABLE I

COMPARISON OF THE TYPICAL TOLUENE, ACETONE
AND ETHANOL GAS SENSORS

Sensor type Conc. Response Reference
(ppm) (Ra/Rg)
Toluene
TGS2602 1 ~3 Manual
1 ~ 7 with FET This work
rGO/Co;04 5 11.3 [27]
Pt-Sn0,/ZnO 0.1 279 [22]
a-Fe,03/NiO 5 8.8 9]
Acetone
MP502 10 ~4 Manual
10 ~ 17 with FET This work
Il’le3/Au 10 ~6 [7]
W-NiO 8 ~13.5 [34]
C-WO; 5 ~8 [8]
Ethanol
MQ3 50 ~6 Manual
50 ~ 35 with FET This work
ZnO nanorods 50 ~30 [35]
Al-doped NiO 50 ~10 [36]
Pt-SnO, 5 ~ 1400 [37]
IHQO_‘;/AU 5 ~12 [7]

amplification circuits are already ones of the highest responses
and most importantly, they can be readily used for trace
concentration gas detection integrated in a large scale. In the
meanwhile, the response and recovery times are not influenced
by the FET circuit, which are seconds as the original ones
as shown in Figs. 3-5. Therefore, this signal amplification
circuit is promising for the fast and effective detection of
environmental VOCs and people breath compositions.

C. Mechanism

We study the mechanism how the FET K544 amplified
the apparent response of toluene sensors (Figaro TGS2602,
Japan). From the FET viewpoint in Fig. 1a, the Voyr can be
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calculated by the gate voltage and drain voltage as (5):

Vour = —Vss + Vbps. (5)

Therefore, the Vout can be estimated by the voltage charac-
teristics of the FET. Then the Ips— Vps curves of FET K544
at different Vgg are measured as shown in Fig. 6a. In air, the
current can be estimated by the bias voltage (5 V) and the
resistance of the circuit (Rg , ~ 18.0 k€, and R, ~ 2.0 kQ),
which is about 0.25 mA. Then the Vgs of the FET is -0.25 mA
x 2.0 kQ = -0.5 V. The Vps can thus be estimated from
Fig. 6a at the point of Ipg = 0.25 mA and Vgs = —0.5 V to
be Vps ~ 0.06 V. Therefore, Vour in air is 0.56 V. Then the
Vourt — I curves can be drawn by varying the current and R,
as shown in Fig. 6b. As a comparison, the Vout — I curves of
the Ry, without FET are also drawn, where one can clearly see
a sharp Vour increase, especially with the large Ry, of 4.7 kQ.
However, the MF is the highest using Ry, = 2.0 kQ in Fig. 3,
because MF should be calculated by (RL+ Rpgrg) / (RL+
RFET,2) as discussed above. Then (Ry, + Rpgr) is calculated
by Vour / I using the data in Fig. 6b, which is shown in
Fig. 6¢. The value of (RL+ Rpgr,a) can be estimated by the
intersection point with the curve (Rp+ Rpgr) = 5/1 — Rg 4,
as shown in Figure 6¢ with typical Rg , of 18 kQ. On the other
side, the FET could reach the saturation current seen from
Fig. 6a, as the increased current will enhance Vgs (Vgs =
I x Ry) which on the contrary will depress current as shown in
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TABLE II

THEORETICAL AND ACTUAL MAGNIFICATION FACTORS (MF) OoF K544
FET WITH DIFFERENT LOAD RESISTANCES Ry, TO 20 PPM TOLUENE

R. Re +Reer.”  Ri+Reerg?  Theoretical Measured
kQ kQ kQ MF MF
0.5 0.62 3.08 5.0 49
1.0 1.14 5.39 4.7 4.0
2.0 230 12.86 5.6 5.1
3.0 3.99 16.12 4.0 42
4.7 17.06 28.98 1.7 1.4

(1) Ry + Rygr. o is calculated by the intersection point similar to Fig. 6c¢.
(2) Re + Rygr. ¢ is calculated by the fitted curves in Fig. S2.

Fig. 2c. The (RL + RpgT) - I curves of the amplification circuit
with FET are fitted to calculate the R+ Rggr, ¢ as shown in
Fig. S2. According to fitted formulas, we could compute the
Rp+ Rpgt,¢ value when a maximum current value is put in the
corresponding formula as shown in Table II. It should be noted
in Fig. 6c¢ that the Rp. 4 Rpgr,a value (about 2.3 kQ) is similar
to that without FET (2.0 kQ). This is the main reason why this
FET amplification circuit will not amplify the noise because
the baseline in air is similar to the case without FET amplifier
as shown in Figs. 2-5. Then MF can be easily estimated by the
resistance change, as shown in Table II. It is noticed that the
estimated theoretical MF is in good consistence with those
observed. Therefore, the FET amplification circuit can now
work well for the MOX sensors from both mechanism and
technological aspects, with the largest MF of 5-6 for all the
three sensors to different gases in Figs. 3-5. It should also be
noted that the load resistance can well selected from Fig. 6¢
to get a maximum MF. For example, if Rg is about 20 kQ, the
load resistance Ry, should be about 2 kQ to obtain a low Ry +
RFET,2, and thus a high MF. Otherwise, if Ry, is selected as
4.7 kQ, RL+ Rpgr,a is high while R_+ Rpgr,g is the same,
meaning low MF as shown in Fig. 3.

From the above experimental results and theoretical analy-
ses, the advantages of the FET amplification circuits can
be summarized and compared with conventional operational
amplifier circuits. Firstly, this FET circuit is simple using
only one transistor while several operational amplifiers and
resistors/capacitors are needed traditionally. Therefore, the
volume and power consumption would be far lower for FET
amplifiers. Second, the FET amplifier enhances only signal
but not baseline or noise, while careful design and parameter
optimization should be taken for operational amplifiers to
adjust offset and filter noise.

V. CONCLUSION

A signal amplification circuit using field effect transis-
tor (FET) is designed and integrated for metal oxide gas
sensors for the detection of gases at low concentrations. For the
proof of concept, Japanese Figaro TGS2602, Chinese Hanwei
MP502 and MQ3 sensors are adopted to detect toluene,
acetone and ethanol at low concentration of sub-ppm and
ppm levels. The FET is optimized to be K544 with ideal
subthreshold slop, and the load resistance is optimized to be
2.0 kQ for toluene sensor, 14.7 kQ for acetone sensor and
1.0 kQ for ethanol sensor. The amplification mechanism is
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found to be the resistance change of the FET by applying the
gate voltage, and the theoretical magnification is estimated
to be in good agreement with that measured. This signal
amplification circuit shows the advantage in low concentration
gas detection in environment and health, which can be readily
integrated using the commercial electronics. And this circuit
design is also promising in other kind of sensors to extend the
detection limit to low concentrations.
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