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Microphone-Array Ego-Noise Reduction Algorithms
for Auditory Micro Aerial Vehicles

Lin Wang and Andrea Cavallaro

Abstract— When a micro aerial vehicle (MAV) captures sounds
emitted by a ground or aerial source, its motors and propellers
are much closer to the microphone(s) than the sound source,
thus leading to extremely low signal-to-noise ratios (SNR),
e.g., —15 dB. While microphone-array techniques have been
investigated intensively, their application to MAV-based ego-noise
reduction has been rarely reported in the literature. To fill this
gap, we implement and compare three types of microphone-
array algorithms to enhance the target sound captured by an
MAV. These algorithms include a recently emerged technique,
time-frequency spatial filtering, and two well-known techniques,
beamforming and blind source separation. In particular, based
on the observation that the target sound and the ego-noise usually
have concentrated energy at sparsely isolated time-frequency
bins, we propose to use the time-frequency processing approach,
which formulates a spatial filter that can enhance a target direc-
tion based on local direction of arrival estimates at individual
time-frequency bins. By exploiting the time-frequency sparsity of
the acoustic signal, this spatial filter works robustly for sound
enhancement in the presence of strong ego-noise. We analyze in
details the three techniques and conduct a comparative evaluation
with real-recorded MAV sounds. Experimental results show
the superiority of blind source separation and time-frequency
filtering in low-SNR scenarios.

Index Terms— Acoustic sensing, ego-noise reduction, micro
aerial vehicles, microphone array.

I. INTRODUCTION

ITH the ability of hovering above the terrain and

moving in 3D, multi-rotor micro aerial vehicles (MAV)
are an ideal mobile sensing platform that can be equipped
with cameras, laser scanners, ultrasonic radars and micro-
phones [1]. While visual sensing has already attracted consid-
erable attention for search and rescue operations, personal and
professional video capturing [2]-[6], acoustic sensing using
microphones mounted on the MAV is a new and emerging
topic. When deploying MAVs in search and rescue operations,
acoustic sensing is desirable in order to detect sound-emitting
targets especially with low visibility or visual obstacles (e.g. in
case of a victim underneath debris) [7]-[12]. Moreover, MAVs
for multimedia broadcasting could stream both audio and
video signals to remote terminals [13], [14].
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The main obstacle for effective MAV-based acoustic
sensing is the strong ego-noise generated by motors and pro-
pellers [15], which masks the target sounds and degrades the
recorded signal significantly [16]. Microphone-array ego-noise
reduction techniques are needed to enhance the target sound.
Since the motors and propellers are closer to the microphones
than the target sound source, an MAV sound recording usually
presents an extremely low signal-to-noise ratio (SNR), which
considerably degrades the performance of most microphone-
array signal processing algorithms. The spectrum of this
nonstationary ego-noise depends on the rotation speed of each
motor, which changes over time. Moreover, the microphones
move with the MAV thus leading to a dynamic acoustic mixing
network. Finally, natural and motion-induced wind increases
the noise components captured by the microphones.

While microphone-array techniques have been investigated
intensively in the last decades [17]-[20], most algorithms
were developed for indoor speech processing. Moreover, the
application to extremely low-SNR scenarios (e.g. < —15 dB)
has been rarely reported [21], [22]. In addition to this,
only a few works have specifically addressed the challenging
MAV-based ego-noise problem [13], [16], [23]-[27]. These
works can be categorized as supervised and unsupervised
approaches.

Supervised approaches need additional sensors to estimate
or to predict the ego-noise. Two types of supervised meth-
ods have been proposed for ego-noise reduction, namely
template-based [23] and reference-based [13], [26], [27].
Template-based methods build a noise template database from
which the spectrum [23] or the correlation matrix [28] of
the ego-noise can be estimated corresponding to the motor
rotation speed and the MAV behaviour. The estimated ego-
noise information can be used to design single-channel spectral
filters [23] or multichannel adaptive beamformer [29], [30]
for ego-noise reduction, and can also be applied to noise-
robust source localization [28]. To avoid using monitoring
sensors, non-negative matrix factorization can be employed
to learn noise bases from pre-recorded training data and
then to estimate the noise spectrum online from the noisy
recording. While this approach has already been applied to
ground robots [31], [32], its performance for MAV ego-noise,
which is nonstationary and stronger, has not been reported yet.
Reference-based methods use reference microphones installed
close to the propellers to pick up motor noises and then
cancel them out with an adaptive filter [13], [26], [27].
Insulation materials are necessary to prevent the reference
microphones from picking up the target sound. Overall, the
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need for dedicated monitoring sensors limits the versatility of
supervised approaches.

Unsupervised approaches perform ego-noise reduction
using only the signals captured by the microphones. To
date, only two types of unsupervised approaches have been
applied to MAVs, namely fixed beamforming [24], [25]
and blind source separation [16]. Delay-and-sum (fixed)
beamforming enhances the sound from a desired location
by coherently delaying and summing multichannel micro-
phone signals. Fixed beamforming relies only on the array
geometry and the target sound location, and is robust to
low SNRs and MAV movement. However, to obtain sat-
isfactory noise reduction performance, this approach usu-
ally requires a large-size array, e.g. 16 microphones in an
octagonal array with a diameter of around 2 m [24], [25].
Blind source separation (BSS) recovers unknown source
signals from the observed mixture by blindly estimating a
demixing network [33]. BSS suppresses the ego-noise without
knowing the locations of the microphones and the target sound
source [16]. However, the performance of BSS degrades in a
dynamic scenario with a moving MAV.

To fill the gap between the extensive work in microphone-
array signal processing and the new applications to MAVs,
after introducing the problem formulation in Section II, we
present in Section III three types of unsupervised microphone-
array algorithms that can be used for ego-noise reduction:
time-frequency spatial filtering (a recently emerged technique),
beamforming and blind source separation. The time-frequency
processing approach was originally proposed for indoor speech
processing, which formulates a spatial filter by exploiting the
time-frequency sparsity of speech signals [34], [35]. Based on
the observation that the captured acoustic signals usually have
sparsely concentrated energy in the time-frequency domain,
we propose to apply this technique to MAV-based sound
processing. Moreover, we build a hardware prototype to test
and compare the algorithms, as discussed in Section IV.
Finally, Section V draws conclusions.

II. PROBLEM FORMULATION

Let a circular array with M microphones mounted on
a multi-rotor MAV capture the sound emitted by a tar-
get source (Fig. 1(a)). The locations of the microphones
in a 2D coordinate system, as shown in Fig. 1(b), are
R = [ry, - ,ry], where r,, = [rmx,rmy]T is the location
of the m-th microphone and the superscript (-)T denotes the
transpose. The target sound source is in the far field and emits
sound with direction of arrival (DOA) ;. The microphone

signal, x(n) = [x1(n), - -- , xp(n)]7, contains both the target

sound, s(n) = [s1(n), - - - , spr(n)]T, and the ego-noise, v(n) =
[01(n), -, om(m)]T, ice.

x(n) =s(n) +v(n), (1

or, written in the short-time Fourier transform (STFT) domain:

x(k, 1) = sk, [) +v(k,1), (2)

where k and [ are the frequency and frame indices, respec-
tively. Let K and L be the total number of frequency bins and
time frames, respectively.
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Fig. 1. (a) A hovering multi-rotor MAV with a microphone array capturing
a target sound. (b) Geometrical configuration for microphone-array signal
processing. (c¢) Time-frequency spectrum of the ego-noise recorded from an
operational MAV. The ego-noise consists of harmonic components and broad-
band noise. (d) Time-frequency spectrum of the noisy recording composed of
ego-noise and a target sound (speech), which occurs during 5-15 s with SNR
—15 dB. The target sound is almost fully masked by the background noise.

Given x(n), R and 6;, we aim to design a spatial filter

w(k,l) = [wi(k, 1), ,wpk, D]T that extracts the target
sound from the noisy recording via
ke, 1) = w(k, Dx (k, ), 3)

where the superscript (-)H denotes the Hermitian transpose.
Fig. 1(c) shows an example of the ego-noise recorded from
an operational MAV. The ego-noise consists mainly of narrow-
band harmonic components and broadband noise. The har-
monic noise is the mechanical sound generated by the rotating
motors, with energy peaks at isolated frequency bins. The
braodband noise is generated by the rotating propellers cutting
the air, with its energy spreading uniformly throughout the
frequency spectrum. The fundamental frequency (pitch) of the
harmonics usually varies with the motor rotation speed [23],
leading to nonstationarity of the ego-noise. For instance, the
ego-noise shown in Fig. 1(c) was produced when the motor
speed increased monotonically in the first 7.5 s (seconds), then
remained stable during 7.5-15 s, and finally decreased in the
last 6 s. The pitch of the harmonics varies similarly to the
motor speed. We modelled the ego-noise in [16] as the sum
of multiple directional point-source noises, which show high
correlation at harmonic frequencies, plus one diffuse noise,
which shows low correlation at high frequencies but high
correlation at low frequencies. Microphone-array techniques,
which exploit the correlation of the acoustic signal among
microphones, are thus suitable to address this ego-noise reduc-
tion problem. Fig. 1(d) shows an example of noisy recording
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with a target sound (speech) present during 5-15 s with SNR
—15 dB. Comparing Fig. 1(c) and Fig. 1(d), only minor
differences can be observed as the target sound is masked
by the background noise and is almost invisible.

In the following section we discuss microphone-array
algorithms that are appropriate for MAV-based noise reduc-
tion, assuming that the MAV hovers stably while recording
the sound from a static source (i.e. the locations of the
microphones and the sound source are fixed). We assume a
low-reverberant environment, as MAVs are mainly deployed
outdoors, and we do not take into account the noise produced
by natural wind.

III. MICROPHONE-ARRAY ALGORITHMS FOR MAVs
A. Beamforming

Beamforming is a widely used microphone-array technique
for directional sound acquisition [17]. A fixed beamformer
enhances the sound from a specific direction by coherently
delaying and summing the signals from multiple microphones
based on the transmitting delays from the sound source to the
microphones:

M
1 .
yor(k, 1, 0a) = = > x(k, Del2efrhmo), “
m=1
where f; denotes the frequenc at the k-th bin,

lrmy— erH 7 m; rﬂd

t(my,mo,07) = is the delay between
two microphones m; and mz with respect to the sound
coming from 6y, rg, is the location of the far-field sound
source with DOA 6,, and c is the velocity of sound. The
performance of a fixed beamformer is mainly determined
by the geometrical configuration of the array and the sound
source (i.e. R and 0;), and usually is not related to the
acoustic signals received by the microphones.

Adaptive beamformers analyze statistical characteristics of
the microphone signal to enhance the target sound without
knowing the locations of the microphones and the target
sound source. Adaptive beamformers suppress noise more effi-
ciently than (delay-and-sum) fixed beamformers. Several cri-
teria can be applied in the design of an adaptive beamformer,
such as minimum variance distortionless response (MVDR),
maximum speech-to-noise ratio (MaxSNR), and multichannel
Wiener filter (MWF) [36]-[38]. These adaptive beamformers
typically require the knowledge of the correlation matrix of
the target sound or of the noise signal. The microphone signal
in the time-frequency domain x(k,l) = s(k,1) + v(k,[), the
correlation matrices of the microphone signal @, (k,[), the
target signal ®s(k,l), and the noise signal ®,,(k,[) are,
respectively, defined as

@, (k, 1) = E{x(k, )x" (k, 1)}, )
@ (k, 1) = E{s(k, )s" (k, D)}, (©6)
@, (k, 1) = E{v(k, )v"(k, 1)}, (7)

where E{-} denotes the mathematical expectation. Assum-
ing that the target and the noise signals are statistically
independent, it follows that

q’xx(k»l) = q’ss(k»l)"‘(puv(k,l)- (8)
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If the correlation matrices in (8) are known, the adaptive
beamformer can be formulated easily. For instance, applying
generalized eigen-vector decomposition (GEVD) to a matrix
pair (®,,(k,1), ®,,(k, 1)), it follows that [38]

D, (k,)E(k,l) = ®,,(k, VE(k,)A(k, 1), ©)]

where A(k,[/) is a diagonal matrix containing M general-
ized eigen-values A(k,l) > > Im(k, 1), Ek,1)
lei(k,1),--- ,enm(k,l)] consists of M generalized eigen-
vectors corresponding to Ay (k, 1), -, Ay (k,[), respectively.
The MaxSNR beamformer is defined as the generalized eigen-
vector corresponding to the largest eigen-value, i.e.

wMaXSNR(k’ l) = el(ka l)’ (10)
with the output being
Yyawsne (&, 1) = whl o (k, Dx (&, D). (11)

A crucial problem in adaptive beamformer design is the
estimation of the correlation matrices.

The correlation matrix of the microphone signal, as defined
in (5), can be estimated directly by using

Q.. (k, )= (12)

L
% > x(k, DxMk, D).
=1
Estimating the correlation matrix of the MAV ego-noise is
a challenging task. If the noise signal is known for the whole
duration of the signal, the noise correlation matrix, as defined
in (7), can be estimated similarly to (12), i.e.

L

] 1
@ (k1) = 7 > vl Dot (k. D).

=1

13)

This scheme works only in an ideal situation. An alternative
scheme is to estimate the noise correlation matrix using the
microphone signal in noise-only periods L, i.e.

(I)V&d(k l) —

z x(k, xM(k, 1), (14)

v el,

where L, is the total number of frames in IL,. This scheme
is widely used in speech processing [38] but not suitable for
MAV sound recording because it is difficult to find a voice
activity detector (VAD) that can reliably detect the noise-only
period especially when the ego-noise is nonstationary and the
SNR is extremely low.

Two other ego-noise correlation matrix estimation
schemes were proposed in the works which applied the
GEVD-MUSIC (MUltiple Slgnal Classification) algorithm
to MAV-based source localization [7], [28], [39]. The first
scheme simply uses an identity matrix as the estimate of the
noise correlation matrix [28], i.e.

QY (k, 1) = Iy, (15)

where 1), denotes an M x M identity matrix. This scheme
assumes the noise signals received at multiple microphones
to be uncorrelated with each other, which is not the case for
MAV ego-noise. The second scheme incrementally estimates
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the noise correlation matrix, assuming that the Ly frames
preceding the current frame contain only noise [7], [39], i.e.
=
inc H
oy (k1) = ir, ZZL x(k, 1)k, ).
=l—LT

(16)

Obviously, this assumption does not stand when the previous
L7 frames contain the target sound signal.

B. Blind Source Separation (BSS)

BSS performs sound enhancement by treating the target
and noise signals equally and by separating all the individual
sources from the mixed signals captured by the array of
microphones [33]. The application of BSS to MAV-based
ego-noise reduction is straightforward as the locations of the
microphones and the target source are not needed [16].

BSS consists of two key components: independent com-
ponent analysis (ICA) and permutation alignment [41].
ICA, which is applied per frequency bin, exploits the statistical
independence between source signals to estimate a demixing
matrix [42]. This demixing matrix can be interpreted as the
inverse of the acoustic mixing network and can recover the
source signals up to permutation ambiguities: each source can
be extracted individually from the observed mixture but with
a random order in the output channels. A subsequent permu-
tation alignment procedure is needed to group the individual
signals that belong to the same source so that the separated
frequency-domain signals can be correctly transformed back
to the time domain [40], [41].

Since we have M microphones, we apply an M x M ICA
directly to the M-channel input, assuming an M x M mixing
network with M independent sources, i.e. a target sound source
component § and M’ = M —1 unknown ego-noise components
01, ,0p’. The M-channel microphone input can thus be
written in the time-frequency domain as

x(k, 1) = H(k, Du(k, ), (17)

where u(k,l) = [5(k,1),51(k, 1), , 0y (k,D]T is a vector
containing the M sources, and H (k,[) is the M x M mixing
matrix between the M sources and M microphones.

After ICA and permutation alignment, we represent the
obtained demixing matrix as Wyss(k,[), which approxi-
mates the inverse of the demixing matrix, i.e. Wpggs(k,l) =~
H~'(k,I). The demixed signal is obtained as

Yess(k, 1) = Wegs(k, Dx(k, 1) ~ u(k,1), (18)

where yuo(k, 1) = [y1(k, 1), , yu(k,D]T is a vector of M
elements, one of which is the target sound.

C. Time-Frequency Processing

Time-frequency (T-F) processing has emerged recently as a
class of approaches that exploit the time-frequency sparsity of
audio signals [34], [35]. These approaches estimate the DOA
of the sound at each time-frequency bin and then combine the
localization results from individual time-frequency bins for
noise reduction. While the idea of local DOA-based spatial
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filtering was originally proposed for indoor speech process-
ing [34], it is also suitable for MAV sound processing as
the harmonic components of the ego-noise have concentrated
energy peaks at isolated harmonic frequencies [16]. Likewise,
target sounds such as human speech or emergency whistles
also consist mainly of harmonic components.

Given the microphone signal x(k,/) and location of the
microphones R, the DOA of the sound at each time-frequency
bin can be estimated by building a spatial likelihood func-
tion [34]

yre(k, 1, 0)
Mo o (k Dx* (k1)
=R Z my K5 L)Xy, (K, j2m frr (my,ma,0) (19
ey Py (ks Daxmy (e, D)
my 7y

where the superscript (-)* denotes complex conjugation, the
operator R{-} denotes the real component of the argument,
and 7(my, mo,0) = ”rmz_r()H;Hrml_rOH is defined as in (4).

The term e/27/kt(m1.m2.0) jg the inter-channel phase dif-
ference £heoretically computed with the delay 7; the term
% is the inter-channel phase difference measured
from x,,, and x,,,. The spatial likelihood pr is high when
these two inter-channel phase differences are consistent with
each other. The DOA can thus be estimated as

HTF(k, l) = yTF(k’ l’e)

arg max (20)

0e(—180°,180°]

The localization results at individual time-frequency bins
can be used to construct a spatially informed filter, which
extracts the target sound coming from 6; [34], [35]. The
spatially informed filter is implemented in two steps.

In the first step, we detect the time-frequency bins that
belong to the target sound, assuming that the time-frequency
bins belonging to the target sound have their DOA estimates
normally distributed around the mean 6, with variance oy.
The detection is performed by measuring the closeness of each
time-frequency bin to the target sound:

kD) 60,
205 ’

where c;4(-) € [0, 1]. The higher c4(-), the higher the proba-

bility that the (k, [)-th bin is dominated by the target sound.

In the second step, we calculate a target correlation matrix,
i.e. the correlation matrix of the target sound:

ca(k,1,67) = exp( 20

L
1
s (k.1 00) = 7 X cqll, L, 0 (k, D"k, D), (22)
=1

where the closeness measure cg(k, [, 6;) indicates the contri-
bution of the (k, [)-th bin to the correlation matrix. Given this
estimated target correlation matrix, an adaptive beamformer
can be formulated easily. We use the multichannel Wiener
filter [37]

wi(k, 1, 00) = @5} (k, Dy (K, 1, 04), (23)

where ¢(k,1,0;) is the first column of ®(k,/,0;), and
@, (k, 1) is estimated directly using (12). The sound coming
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from 6, is extracted as

ye(k, 1,64) = wil(k, 1, 00)x (k, I). (24)

D. Discussion

Table I compares the beamforming, blind source separation,
and time-frequency processing algorithms discussed in the
previous section. The algorithms are further labelled as already
applied to MAVs, A, or new for MAVs, N.

Compared to beamforming, BSS is more flexible as it
does not require as input the locations of the microphones
and the target sound, nor the VAD information. Due to the
nonstationarity of the ego-noise and the low SNR, the per-
formance of the noise correlation matrix estimation schemes
(see Egs. (13)-(16)) is limited. Estimating the correlation
matrix of the MAV ego-noise is still an open problem.
While fixed beamformers have already been applied to
MAVs [24], [25], the use of adaptive beamformers for ego-
noise reduction has not been reported yet.

BSS can extract the target sound and suppress directional
ego-noise effectively by estimating the demixing matrix. How-
ever, there are several issues still unsolved when using BSS in
practice. First, BSS typically works as a batch process and thus
requires the acoustic mixing network to remain stationary for
a certain interval, i.e. with physically static sound sources and
microphones. Although this condition may be satisfied in some
cases, e.g. an MAV hovering stably in the air while recording a
static speaker, a dynamic mixing network is often encountered
with a flying MAV. Second, the target sound is extracted
into one of the M output channels, whose channel index is
unknown. A post-processing procedure is needed to detect the
target sound channel, e.g. by exploiting prior knowledge of
the target sound location.

The time-frequency processing approach performs ego-
noise reduction by exploiting the sparsity of the acoustic
signals. When applying this approach to MAVs, the locations
of the microphones have to be known to estimate the DOA
of the sound at each time-frequency bin. This approach also
requires as input the location of the target sound in order
to detect the time-frequency bins that could be used for
computing the target correlation matrix. This scheme works
efficiently with strong ego-noise. However, if the target sound
comes from a direction close to that of an ego-noise source,
the time-frequency bins belonging to the ego-noise might be
erroneously detected as target sound, thus decreasing the esti-
mation accuracy of the target correlation matrix and degrading
the noise suppression performance. This is a major drawback
of the time-frequency processing approach. In addition, the
accuracy of local DOA estimation might drop as the rever-
beration density is increased. However, the fact that MAVs
are mainly used in low-reverberant outdoor environments may
alleviate this problem.

IV. EXPERIMENTAL COMPARISON
A. Hardware Setup and Data

We built a hardware prototype (Fig. 2(a) and (b)) [16] com-
posed of a circular microphone array with eight omnidirec-
tional lapel microphones mounted on a 3DR IRIS quadcopter.
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(b) (c)

Fig. 2. The circular microphone array mounted on the MAV. (a) Top view.
(b) Side view. (c) Recording environment.

The array has a 0.2 m diameter and a 0.15 m distance from
the top side of the MAV. The specific mounting position of the
array helps avoiding the influence of the self-generated wind
blowing downwards from the propellers. The signals from the
eight microphones are sampled simultaneously with a Zoom
R24 recorder, at a sampling rate of 8 kHz. Fig. 2(c) depicts
the recording setup in a room of size 6mx5mx3m with a
reverberation time of around 200 ms. The quadcopter with
microphone array is fixed on a tripod at a height of 1.8 m.
A loudspeaker is placed 3 m away from the MAV and at a
height of 1.3 m, playing speech signals as the target sound.

We produce two datasets, Dataset-1 and Dataset-2, while
varying the speed of the motors randomly during the recording
of the ego-noise. The microphone signal is generated by
adding the noise and the speech at a varying input SNR from
-30 dB to 5 dB, with an interval of 5 dB. Dataset-1 is produced
with recorded ego-noise and simulated speech to enable a
comprehensive study. The speech is simulated with the image-
source method [43] in a space of size 20mx20mx4m, with
reverberation time 200 ms. The speech source is placed 10 m
away, emitting a plane-wave sound at a varying DOA from
0° to 360°, with an interval of 30°. Dataset-2 is produced
under a more realistic scenario with the ego-noise and the
speech recorded separately. The positions of the MAV and the
loudspeaker are fixed during the recording.

B. Performance Evaluation

We evaluate the performance of seven noise reduc-
tion algorithms (Table I): beamforming (Benchmark, FBF,
ABF-Identity, ABF-Inc and ABF-VAD), BSS (BSS), and
time-frequency processing (TF). We evaluate the noise reduc-
tion performance using testing signals with a 10 s duration.
For all the algorithms, we set the STFT frame length as 1024,
with half overlap. For TF, we set o = 10° in (21). For
Inc, we set L; = 10 in (16). Benchmark assumes the noise
correlation matrix to be known. ABF-VAD assumes the voice
activity of the target sound to be known. BSS is implemented
as in [41]. For reference, we include an additional algorithm:
a BSS method that assumes that the permutation ambiguities
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TABLE I

SUMMARY OF CANDIDATE ALGORITHMS FOR EGO-NOISE REDUCTION. KEY — NCM: NOISE CORRELATION MATRIX. INPUT x: MICROPHONE SIGNAL;
R: MICROPHONE LOCATIONS; 6;: DOA OF THE TARGET SOUND. A: ALREADY APPLIED TO MAVs; N': NEW FOR MAVs

Algorithm [ Abbreviation [ Equation [ Input [ Status ‘
Fixed Beamforming FBF 4) z, R, 0,4 A
Adaptive beamforming with ideal NCM estimation Benchmark 10), (13) | = N
Beamforming | Adaptive beamforming with NCM being an identity matrix ABF-Identity | (10), (15) | x N
Adaptive beamforming with incremental NCM estimation ABF-Inc 10), (16) | = N
Adaptive beamforming with NCM estimated in noise-only periods | ABF-VAD (14), (16) | = N
Blind source separation BSS (18) x A
Time-frequency processing TF (22), (23) | =, R, 04 N

are perfectly solved by referring to the original source signals
(BSS-np) [41].

We use SNR to measure the sound enhancement perfor-
mance of a spatial filter w(n), which is a time-domain version
of w(k, ). Writing the spatial filtering procedure in the time
domain, it follows that

Ly—1

y() = w(n) xx(n) = D w(p)x(n — p)

p=0
ys(n) + yu(n) = w(n) xs(n) + w(n) * v(n), (25)

where ‘x’ denotes the convolutive filtering procedure and L, is
the length of the filter w(n); ys(n) and y,(n) are, respectively,
the target and noise components at the output. The SNR is
calculated in target-sound-active periods Ny as [38]

Zn/eNS ySZ(n/)
Zn/eNs yz%(n/)

We compare the SNR improvement between the input and
output signals, i.e.

SNR = 101log;, (26)

SNRimp = SNRout — SNRy. 7)

C. Results

We discuss the processing results of time-frequency process-
ing (TF) in Fig. 3 for a simulated target sound (speech
signal) coming from 0° and with an input SNR of —10 dB.
Fig. 3(a) and Fig. 3(b) depict the time-domain waveform
and the time-frequency spectrum of the input signal at
one microphone. The speech signal is hardly distinguish-
able from the noisy background. Fig. 3(c) and Fig. 3(d),
respectively, depict the time-frequency spectra of the clean
ego-noise and clean speech components of the microphone
signal. The time-frequency sparsity of both components
can be clearly observed: the ego-noise harmonics and the
speech harmonics generally occupy different time-frequency
bins. Fig. 3(e) depicts the local DOA estimation results at
individual time-frequency bins. For convenience of display,
we plot the absolute values |Grgr(k,[)] € [0°, 180°]. Most
time-frequency bins that are dominated by speech compo-
nents have their DOAs estimated at around 0°, distinguish-
ing them from the background noise. Fig. 3(f) depicts the
contribution measure c;(k,[) from each time-frequency bin
to the computation of the target correlation matrix. Those
speech-dominated time-frequency bins contribute the most to
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Fig. 3. Processing results with TF, BSS and Benchmark for a target sound
with DOA 0° and input SNR —10 dB. (a)-(b) Time-domain waveform and
time-frequency spectrum of the input signal. (c)-(d): Time-frequency spectra
of the clean ego-noise and clean speech signals. (e) Local DOA estimation
results |6rp(k, 7). (f) Contribution measure to the target sound cy(k, [, 0).
(g)-(h) Time-domain waveform and time-frequency spectrum of the TF output.
(i)-(j) Time-frequency spectra of the BSS and Benchmark outputs. The
output SNRs of TF, BSS and Benchmark are 13.9 dB, 14.4 dB and 14.5 dB,
respectively.

the correlation matrix. Fig. 3(g) and Fig. 3(h) depict the
time-domain waveform and the time-frequency spectrum of
the spatial filtering output ytr, where the strong harmonic
noises are almost completely removed and the speech sig-
nal can be clearly observed (SNR: 13.9 dB). For reference,
Fig. 3(i) and Fig. 3(j) depict the time-frequency spectra of the
output signals by BSS and Benchmark, respectively. The
target sounds are well enhanced with the output SNRs being
14.4 dB and 14.5 dB, respectively.
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Next, we evaluate the performance of the considered noise
reduction algorithms when the target sound comes from a
fixed direction with a varying input SNR from -30 dB to
5 dB, with an interval of 5 dB. For each input SNR we
implement 10 realizations with different segments of noise and
speech signals and calculate the averaged SNR improvement.
Fig. 4(a) depicts the evaluation results for a simulated target
sound coming from 0° (Dataset-1). With perfect knowledge
of the noise correlation matrix, Benchmark outperforms
all the other algorithms, with its performance invariant with
respect to the varying SNR;,. We thus use its result as a
benchmark for ego-noise reduction. The performance of TF
and BSS both improves with increasing SNR;, for SNR;, <-
15 dB and then declines with increasing SNR;j, for SNR;j, >-
10 dB. The performance of TF is close to Benchmark for
—20dB < SNR;, <-5dB. TF outperforms BSS in almost all
scenarios, especially when SNR;, <-15 dB. The performance
degradation of BSS in low SNRs is due to strong ego-noise,
which deteriorates both ICA and permutation alignment. This
is verified by comparing BSS and BSS-np, which outper-
forms BSS for all SNR;, especially when SNR;, <-15 dB.
This shows that BSS still suffers from permutation errors even
after permutation alignment processing, and these residual
permutation errors become more important when the ego-noise
becomes stronger. The performance drop of BSS-np with
decreasing SNR;, when SNR;, <-15 dB indicates deteriorated
ICA performance. By exploiting the time-frequency sparsity of
the acoustic signals and the target direction, TF outperforms
BSS especially in low SNRs. The performance degradation
of TF in low SNRs is due to the broadband component of
the ego-noise. With its energy uniformly distributed through
the whole frequency band, the broadband noise may severely
mask the target sound in low-SNR scenarios and corrupt
local DOA estimation at harmonic frequencies of the target
sound. For high SNR;j,, the output SNRs of TF and BSS both
rise, but with a lower rate in comparison to the increment
of SNR;,, thus leading to declined SNR improvement with
increasing SNR;,. The performance drop of TF at high SNRs
also shows that the estimation error of the target correlation
matrix becomes pronounced when the energy of the target
sound increases with the SNR;,.

TF and BSS outperform the four beamforming algorithms,
i.e. ABF-VAD, ABF-Identity, ABF-Inc and FBF, for
almost all input SNRs. The poor performance of these beam-
forming algorithms is mainly due to their inaccurate esti-
mation of the noise correlation matrix. Interestingly, their
performance varies differently with the SNR;,. Assuming that
a perfect VAD is available, ABF-VAD estimates the noise
correlation matrix more accurately and hence leads to a much
higher SNR improvement than the other three algorithms.
However, ABF-VAD still performs worse than Benchmark,
due to the nonstationarity of the ego-noise, i.e. the noise
correlation matrix in noise-only periods is different from the
one in the target-sound-active periods. The influence of this
estimation error grows when the noise intensity is increased,
leading to declined SNR improvement with decreasing SNR;j,.
ABF-Identity uses an identity matrix as the noise corre-
lation matrix estimate. The influence of the estimation error
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Fig. 4. SNR improvement with different noise reduction algorithms for a
varying input SNR. (a) Simulated target sound with DOA 0° (Dataset-1).
(b) Real-recorded target sound with DOA 160° (Dataset-2). The consid-
ered algorithms are beamforming (Benchmark, FBF, ABF-Identity,
ABF-Inc and ABF-VAD), blind source separation (BSS and BSS-np), and
time-frequency processing (TF). Benchmark assumes the noise correlation
to be perfectly known. ABF-VAD assumes a perfect VAD. BSS-np assumes
permutation ambiguities to be perfectly solved. A demo with the audio signals
corresponding to (a) and (b) is available [44].

becomes smaller when the intensity of the speech is increased,
leading to increased SNR improvement with increasing SNRjj,.
ABF-Inc uses the microphone signal in previous frames to
estimate the noise correlation matrix of the current frame. The
estimation error becomes pronounced when the intensity of
speech is increased, leading to decreased SNR improvement
with increasing SNR;,. While FBF improves the SNR only
limitedly, this improvement does not vary with the SNRj;.

Fig. 4(b) shows the evaluation results for a real-recorded
target sound coming from 160° (Dataset-2). We can make
similar observations to those made for Fig. 4(a). Benchmark
is the best performer, followed by BSS-np, TF and BSS. TF
outperforms BSS when SNR;;, <-10 dB, while BSS performs
better when SNR;j, >-5 dB. TF and BSS outperform the
four beamforming algorithms (ABF-VAD, ABF-Identity,
ABF-Inc and FBF).

Finally, Fig. 5 shows the evaluation result for the
three representative noise reduction algorithms (Benchmark,
BSS, TF) when varying the DOA of the target sound anti-
clockwise from —150° to 150°, with an interval of 30°
(Dataset-1). We consider four input SNRs: -30 dB, -20 dB,
10 dB and O dB. For each DOA and input SNR, we
implement one realization and calculate the SNR improve-
ment. Benchmark produces the best result among the three
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Fig. 5. SNR improvement with three noise reduction algorithms (Benchmark, BSS, TF) for a target sound with a varying DOA and at different input

SNRs (Dataset-1).

algorithms and its performance does not vary with variations of
DOA. The performance of BSS is close to that of Benchmark
for high SNR;, (—10 and 0 dB) and does not change when
the DOA varies. The performance of BSS drops significantly
for low SNR;, (—30 and —20 dB). The performance of TF is
sensitive to the variation of DOA. For all SNR;, a performance
drop can be clearly observed at DOAs 30° and 90°. For low
SNRj; (=30 and —20 dB) an additional performance drop can
be observed at DOA -90°, because the ego-noise is dominant in
these directions (30°, 90°, —90°). As discussed in Sec. III-D,
the noise from one of these directions is detected as tar-
get sound, thus leading to an inaccurate correlation matrix
and degraded noise reduction performance. When exclud-
ing these directions, TF performs similarly to BSS for
high SNR;j, (—10 and O dB) and outperforms BSS for low
SNRin (=30 and —20 dB).

V. CONCLUSIONS

We addressed the problem of acoustic sensing using mul-
tiple microphones mounted on an MAV. The main challenge
is dealing with extremely low SNRs that degrade the sound
recording quality significantly because of the ego-noise gen-
erated by motors and propellers. To address this problem, we
proposed to use a time-frequency spatial filtering approach.
We also evaluated beamforming and blind source separation
algorithms that could be applied to MAV-based ego-noise
reduction. Blind source separation (BSS) and time-frequency
processing (TF) outperform beamforming algorithms. The
biggest challenge for beamforming is the estimation of the
noise correlation matrix. Due to the nonstationarity of the ego-
noise, ABF-VAD, which assumes a perfect VAD and estimates
the noise correlation matrix in noise-only periods, performs
considerably worse than Benchmark, which assumes the
noise correlation matrix to be known. As expected, the perfor-
mance of TF degrades when the target sound arrives from a
direction close to that of the ego-noise. TF outperforms BSS
especially in low-SNR scenarios (e.g. <—15 dB), but requires
the knowledge of the DOA of the target sound, which could
be obtained with an onboard camera and an object tracker [4].
Since the relative locations between the propellers and the
microphones are fixed during the MAV movement, the MAV
can then be intentionally rotated so that the target sound comes
from a different direction from that of a propeller.

In our future work, we will investigate the effect of different
array geometries placements and of the mobility of the MAV.
In addition to this, we will also extend the algorithms to
address scenarios with natural wind and multiple simultaneous
sound sources.
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