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Temporal Pattern Recognition in Gait Activities
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Abstract— In this paper, we assess the capability of a unique
unobtrusive footprint imaging sensor system, based on plastic
optical fiber technology, to allow efficient gait analysis from
time domain sensor data by pattern recognition techniques. Trial
gait classification experiments are executed as ten manners of
walking, affecting the amplitude and frequency characteristics of
the temporal signals. The data analysis involves the design of five
temporal features, subsequently analyzed in 14 different machine
learning models, representing linear, non-linear, ensemble, and
deep learning models. The model performance is presented
as cross-validated accuracy scores for the best model-feature
combinations, along with the optimal hyper-parameters for each
of them. The best classification performance was observed for a
random forest model with the adjacent mean feature, yielding
a mean validation score of 90.84% ± 2.46%. We conclude that
the floor sensor system is capable of detecting changes in gait
by means of pattern recognition techniques applied in the time
domain. This suggests that the footprint imaging sensor system
is suitable for gait analysis applications ranging from healthcare
to security.

Index Terms— Floor sensor, sensor fusion, gait analysis, pattern
recognition, machine learning.

I. INTRODUCTION

GAIT analysis has a wide range of applications: from
biometrics [1] in security applications to monitoring of

human movement in sports and healthcare [2]. Typically, both
temporal and spatial parameters of gait, such as cadence, stride
length and walking base are analyzed from data acquired
by a suitable sensor system or fused from several systems.
This paper presents the first demonstration of time-domain
gait analysis using a new type of footprint imaging sensor
(“Intelligent Carpet”) based on plastic optical fibers (POFs)
sensitive to deformation when pressure is applied by walking.
The system is an innovative cost-efficient combination of hard-
ware and software resulting in a novel non-planar tomographic
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technique [3] allowing real-time reconstruction of footsteps on
the surface of an ordinary carpet [4]. Deployed over typical
living space areas, it offers substantial advantages in cost and
measurement efficiency compared to other floor sensor sys-
tems, such as the commercial TekScan [5] and GAITRite [6].
The footprint imaging sensor is intrinsically safe and robust
against light or sound interference that affects alternatives
such as sound or vision sensors [7]. The adoption of these
alternatives in a home environment is further hampered by
privacy concerns [8].

Due to its unobtrusiveness, the footprint imaging sensor
can collect natural gait and movement outside the labo-
ratory or clinical setting [9]. This allows footprint time
sequences to be recorded, stored and analyzed over practically
unlimited periods of time, as opposed to scheduled sessions,
without affecting the users’ perception of their everyday
environment. Thus, the large volume of data available from
the footprint imaging sensor allows gait analysis, by using
machine learning models.

The objective of this work is to distinguish and classify,
different manners of walking by machine learning models.
To the best of our knowledge, there have been no research
studies to date to analyze the performance of a floor sensor
system for such type of classification. From the time series
acquired in pilot experiments capturing several gait cycles
on the footprint imaging sensor, we engineer time-domain
features and use them on a set of 14 supervised linear, non-
linear, ensemble and deep machine learning models. These
aim to achieve reliable classification scores for 10 different
pre-defined manners of walking, enacted by a single user,
to provide unique gait patterns resulting in variations in the
frequency content and amplitude of the temporal signal.

The rest of the paper is organized as follows: section II
provides the relevant background on floor sensor system
applications, the purpose of machine learning systems in the
context of this work and the description of the footprint
imaging sensor system. Section III formulates the problem
and presents the methods, defining the manners of walking,
the time domain features and the database description. Further,
the machine learning features are defined, along with evalu-
ation metrics, for the machine learning models. The results
are presented in section IV, which includes a description
of the machine learning models and their optimal hyper-
parameters found by exhaustive search per model and offers
a deeper insight into the best model found. Finally, the con-
clusions and future directions of this work are presented in
section V.
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II. BACKGROUND

A. Gait Classification With Floor Sensor Systems
Headon and Curwen [10] recognized movements undertaken

by a single user by analyzing the changes in the Ground Reac-
tion Force (GRF), in a fixed position on a weight- sensitive
floor, resulting from jumping, sitting and rising. A hidden
Markov model was used for classification with performance
approaching 100%. A disadvantage of this study is that the
postural activities were performed statically at the same posi-
tion, thus excluding gait analysis in the temporal domain.

For the purpose of classification of human postural
and gestural movements using floor sensor systems,
Saripalle et al. [11] employed force platforms to infer the
center of pressure of individuals. 11 body movements by
volunteers were classified with an accuracy ranging from
79% to 92% using linear and non-linear supervised machine
learning models. Feature selection is emphasized as a critical
step for obtaining reliable accuracy scores, but this approach
is limited by the lack of a single classification model suitable
for all types of movement.

In a study of gait analysis for biometric applications,
Vera-Rodriguez et al. [12] used a piezoelectric sensor system
with two sensor pads to capture a single footfall period (right
and left steps) at a high sampling frequency speed (1.6 KHz).
The pads comprise 88 sensors each. A biometric system
was constructed to analyze the largest footstep database to
date according to the authors, with nearly 20,000 footstep
sequences from 127 users. The time and space domain
analyses are fused at the score level, yielding an equal
error rate of 7.1%, which the authors claim is the best for
a biometric application using a floor sensor system. This
approach limits the data to a single gait cycle, since it utilizes
a single pair of sensing pads.

Another biometric system presented by Qian et al. in [13]
is based on a floor sensor system of 96 Tekscan sensing mats,
yielding a total dimension of 221 ft2. The dataset consisted of
gait data from 11 volunteers performing several characteristics
of walking including normal walking, varying speed walking
and free walking. The analysis is based on features created
from center of pressure data in time and space domains.
The classification analysis has been limited to the Fisher
linear discriminant model, chosen for its simplicity in training
and testing. The cost implications of utilizing the chosen
sensor technology over large areas, as well as the implications
of the frame rate being limited to 44 Hz, have not been
addressed.

A sensor floor system for movement monitoring and
falls detection in a smart home environment, described by
Leusmann et al. [14], targets the improvement of independent
living among the elderly population. The system consists
of 240 piezoelectric sensors installed on a 20 m2 floor
surface. An overall success rate of 72% for step detection
was achieved using the time domain data, in the absence of
continuous steps analysis.

B. Footprint Imaging Sensor System Description
In this work we employ a 1 m × 2 m “intelligent

carpet” prototype consisting of 116 POF sensor elements

Fig. 1. Sensor head of the system. The 116 red lines across the area represent
the line integrals of optical fiber attenuation, grouped in 3 angular projections
to ensure consistent spatial and temporal sampling.

strategically placed, between the top pile layer and the
deformable underlay of a commercial carpet, in 3 sets of
parallel sensor elements, oriented at 0° (20 POF sensors),
60° and 120° (48 POF sensors each) [4], as shown in Figure 1.
Light attenuation, resulting from the deformation due to the
pressure exerted, is recorded separately from all 116 sensor
elements comprising the sensor head, yielding a 3-angle Radon
transform of the surface deformation (‘depth of bending’,
see [4]). We have shown that the spatial and temporal data
from the footprint imaging sensor allows the derivation of
the main parameters of gait under unobtrusive and unsu-
pervised conditions. Further details of the theory behind
the sensor operation, the data acquisition and processing
procedures, together with an example of sensor fusion for
footstep imaging, are available elsewhere [4]. To perform
sensor fusion in this work we use the raw data from the
individual POF sensors to create temporal features, as detailed
further.

III. METHODS

A. Data Acquisition

A LabVIEW environment was used for the sensor data
acquisition from the “intelligent carpet” prototype [4]. The
acquisition speed, controlled by the clock of an external
Complex Programmable Logic Device (CPLD), was set to
yield 256 full frames per second, each POF sensor element was
polled with a period corresponding to 256 Hz. This acquisition
rate is higher than the previously reported [4] and is better
suited for processing of the temporal signals. The overall time
window for data acquisition during each experiment was set at
5.46 seconds, or 1400 full frames at 256 Hz, allowing enough
time for all manners of walking to be completely captured
during the gait experiments. The latter were performed by
a single healthy person walking in the direction along the
length of the prototype, allowing at least 2 gait cycles (4 to
5 consecutive footsteps). A total of 855 gait experiments were
captured, yielding approximately 111 million unique POF
sensor signals.

B. Data Processing

The data processing and analysis (see Figure 2) was accom-
plished using open source software packages, including the
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Fig. 2. The data analysis procedure. The second row shows the flow for
only one model, as a representative of the 14 alternatives.

Python programming language, the NumPy/SciPy scientific
computing package and the scikit-learn machine learning
library [15]. The raw data was pre-processed with a Savitzky-
Golay filter for smoothing. From the 855 sequences, 757 were
retained after cleaning the dataset from noisy and incorrect
data. The data is also scaled to a range between 0 and 1 as a
required preprocessing step for some of the machine learning
modes.

C. Feature Engineering

Five different types of features were engineered and tested
for the time domain analysis: Spatial Average (SA), Standard
Deviation (SD), Adjacent Mean (AM), Cumulative Sum (CS)
and Cumulative Product (CP). The features’ definition and the
corresponding mathematical representations are given below.

Here t represents time, in units of frames, ranging from
0 to 1400, thus covering a time interval of 5.46 s at 256 Hz.
N is the number of POF sensors and SFi represents the signal
of the i th POF sensor.

1) Spatial average: The average of all the SF POF signals
are calculated at each time step.

S A[t] = 1

N

∑N

i=1
SFi [t] (1)

2) Standard deviation: The spread of the distribution of the
POFs at each frame step is calculated.

SD[t] =
√

1

N

∑N

i=1
(SFi [t] − S A [t])2 (2)

3) Adjacent mean: The mean of two signals from adjacent
POFs is calculated the median SF N/2 of all the signals
in each time frame and the signal with the next higher
index, SF N/2+1.

AM [t] = SFN/2 [t] + SFN/2+1 [t]

2
(3)

4) Cumulative sum: Cumulative summation of the POF sig-
nals at each frame step is calculated and then averaged
to obtain a single value per time frame.

C S[t] = 1

N

∑N

j=1

∑ j

i=1
SFi [t] (4)

5) Cumulative product: The product of the POF signals at
each time step is calculated, and then the average value

of the POFs is calculated to obtain a single value at each
frame step.

C P[t] = 1

N

∑N

j=1

∏ j

i=1
SFi [t] (5)

D. Temporal Gait Pattern Recognition

Two main groups of machine learning algorithms, linear and
non-linear, were independently applied to the data.

1) Linear Learning Models: We considered five linear
models: Support Vector Machine (SVM), Perceptron, Logistic
Regression, Passive Aggressive Classifier and Stochastic Gra-
dient Descent (SGD). The SVM model is known for its top
classification performance in different application domains,
including gait analysis with floor sensors systems [12], [19].
In this paper, we used two implementations of the SVM
algorithm [15]; the first one (LIBLINEAR) prioritizes the loss
and regularization whilst the other (LIBSVM) allows different
kernel schemes and operates on a one-to-one scheme for
multiclass classification.

2) Non-Linear, Ensemble and Deep Learning Models: We
considered Decision Trees and Extra Trees classifiers, as well
as the similarity-based K-Nearest Neighbors method [19].
Algorithms based on boosting techniques, such as AdaBoost
and Gradient Boosted Regression Trees (GBRT), were also
considered, together with the Random Forest algorithm which
is based on training a set of de-correlated decision trees
classifiers [19]. We also considered two types of deep learning
models: a deep feed forward Artificial Neural Network (ANN)
and a Recurrent ANN.

3) Classes and Model Performance Optimization: The
10 manners of walking, are defined in Table I. We use super-
vised learning to find the best approximation function h(x)
(hypothesis) to a desired function f (x) that correctly maps
input sensor data x to a manner of walking y in a supervised
way. The challenge for the machine learning models is to find
the approximation h(x) of f (x), with the highest classification
accuracy, as indicated by the performance classification scores
for each model with optimized hyper-parameters. The latter
were optimized via exhaustive search and their classifica-
tion performance was quantified for each of the engineered
machine learning features (SA, SD, AM, CS and CP) by cross
validation [17], expressed as mean validation score for the
10 manners of walking.

Figure 3 shows three time sequences, for normal, slow
and fast gait. The SA feature is used in the figure. The data
sampling rate is illustrated by using the time frame number
on the horizontal axis. The start and end of the sequences,
as defined by the signals observed at the maximum
amplitude 2.604, coincide with the user stepping on and off
the sensor head, respectively. The pattern variation resulting
from the change in cadence for the three sequences is clearly
observed.

Figure 4 shows a normal gait sequence (class 1, see Table I)
with identified events in a single gait cycle. The shape of the
signal is unique for the footprint imaging sensor system and is
due to the variation of light transmission in the sensor elements
as a result of the floor surface deformation. The amplitude
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TABLE I

RELATIONSHIP BETWEEN CLASSES, MANNERS OF WALKING
AND DATA ACQUISITION DETAILS

Fig. 3. Temporal sequences for normal, slow and fast gait (classes 1, 2 and 3
in Table 1).

in Figure 4 is calculated as the signal average at each time
frame step. The timing of the events shown can be extracted
automatically for further use in gait analysis.

Fig. 4. Identification of gait events in the temporal signals. Right and left
refer to the right and left foot respectively.

TABLE II

BEST PERFORMANCE OVERALL MODELS BY FEATURE

IV. RESULTS AND DISCUSSION

Models from a simple linear Perceptron to complex Random
Forests and deep ANNs are parametrized and optimized for
classification performance, with regard to the temporal sensor
data and calculated features.

A. Model Performance Evaluation

The 10 scores obtained per 10-fold cross-validation experi-
ment are averaged to provide a unique mean validation score.
The standard deviation of the 10 scores per model evaluation
is also calculated to provide confidence intervals. For the best
overall model selected, the classification performance is also
expressed as the precision (exactness), recall (completeness)
and F-score, (the harmonic mean of precision and recall) to
provide further insight into the model’s performance.

Table II displays the best performance scores for each
of the 5 features used across all models. The tuned
Random Forest model with an AM feature was the top
performing model-feature pair with a mean validation score
of 90.84 ± 2.46 %. This compares to the single decision tree
models yielding a mean validation score of 82.30 ± 6.93 %.

Table III shows the classification performance of the linear
learning models using the best feature found per experiment.
The best mean validation score was of 85.45 ± 7.12 % for
SVM (LIBSVM) with a CS feature. This model uses a linear
kernel with optimized regularization and tolerance as detailed
in Table III.

Table IV shows the classification performance of the
non- linear and ensemble learning models, along with the
best model’s hyper-parameters found by grid search for
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TABLE III

LINEAR LEARNING MODELS’ BEST HYPER-PARAMETERS AND PERFORMANCE

TABLE IV

NON-LINEAR AND ENSEMBLE LEARNING MODELS’ BEST HYPER-PARAMETERS AND PERFORMANCE

Fig. 5. Performance per class for the Random Forest model.

the best model - feature combinations. The Random Forest
model with the AM feature is the overall best performer.
(see also Table II). The theoretical background of the
linear and non-linear models presented in Tables II and III is
provided in [18] and [19].

The performance analysis of the deep feedforward ANN
and the recurrent ANN are presented in section IV.C.

B. Analysis of the Classification Results

The five temporal features are introduced in section IIIC and
listed in Table II. The AM feature, which manifests the best
classification performance overall, utilizes the average of two
adjacent POF signals. The rationale in the construction of this
feature is that adjacent parallel POFs on the sensor (see Fig-
ure 1) ensures that the footprint is captured, as their separation
is smaller than the width of an adult foot. The remaining time
features in section IIIC use all POF signals within the time
frame and differ by the particular calculations involved. Thus
it may be speculated that the optimal performance of the AM
feature is due to much better signal-to-noise ratio.

1) Performance by Class of the Optimal Model: The mean
validation scores per class of the Random Forest model can be
observed in Figure 5. The cross-validated confusion matrix of
the model is shown in Figure 6. The fast gait pattern (class 3)
obtained the best F-score of nearly 100% while the gait with
weight pattern (class 5) performed the worst overall obtaining
a F-score of 83%. For this class, the total number of incorrectly
predicted samples was 20, which was the highest. From those
samples, the highest number assigned to a single class was 11,
the hands behind the back gait pattern (class 6). The average
classification performance across all the classes yields the
following mean validation scores: precision of 91.74 ± 2.45%,
recall of 90.89 ± 2.44% and F-score of 90.84 ± 2.46%. Those
were the best performance results across all 5 features used.

2) Optimal Model Learning Curve: Figure 7 shows the
machine learning curve for the optimal Random Forest
model that manifested the best overall classification perfor-
mance. The red and green graphs indicate the train scores
and cross-validation scores, respectively, as a function of
training examples. The corresponding confidence intervals
for the scores are also plotted, indicated as shadowing on
the curves. A 10-fold cross-validation was used to calculate
the scores, as in section IV.A. The training examples vary from
0 to 757 samples, the later corresponding to the entire dataset.

This particular model provides high training classification
performance early on. This is expected for an ensemble learn-
ing model. The cross-validation score increases as a function
of sample size reaching a steady value of 90% for a training
set of 530 samples onwards.

C. Deep Learning Models Analysis

Recently, deep machine learning models have shown top
tier performance results for classification tasks in the fields
of vision, speech recognition, and handwritten digits recogni-
tion [20]. The models take advantage of the ongoing decline
of price of high performance computational systems and the
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Fig. 6. Confusion matrix for the Random Forest model.

Fig. 7. Identification of gait events in the temporal signals. Right and left refer
to the right and left foot respectively.

increase availability of data to design powerful and sophis-
ticated ANNs for pattern identification. In this paper, deep
learning models are tested for effectiveness with the footprint
imaging sensor data.

A deep feed-forward ANN and a recurrent ANN were
designed, trained and tested with the temporal data features
presented in this paper. The Python-based deep learning
library Theano [21] was used for the design of the deep
ANN models. The deep learning models training, testing
and optimization operations were performed entirely on a
NVIDIA Titan X GPU for parallel processing, thus reducing
the model computation time.

1) Deep Feed Forward ANN: A 10 hidden layer ANN
architecture with 256 hidden units per layer was found
to be the most suitable for our type of temporal data.
The initialization of the layer’s weights follows the random
distribution suggested by Glorot and Bengio [22]. The rectifier

Fig. 8. Deep neural net training and validation accuracy.

Fig. 9. Recurrent neural net training and validation accuracy.

linear unit (ReLu) [23] is used as activation function in the
ANN’s hidden units at each layer except for the last, which
uses a softmax [24] activation function to transform class
scores to probabilities. An Adagrad optimizer function is used
with default hyper-parameters [25] to optimize the ANN’s
nodes weights at each epoch. 200 epochs were performed
using a batch size of 16 training samples. A 70-30 train-test
split was adopted.

The top classification score was obtained for the CS feature.
The average classification performance of all the classes yields
82% precision, 80% recall and 80% F-score. The training and
validation accuracies as a function of epoch optimization are
shown in Figure 8.

2) Recurrent ANN With ReLus: The temporal data from the
footprint imaging sensor was used to train a recurrent ANN
architecture where the weights of the network are initialized by
using the identity matrix in the hidden units, as suggested by
Le et al. [26]. The novelty of our approach in this experiment is
the assumption that a sequence learning model is appropriate,
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given the sequential nature of our features calculated from the
raw sensor temporal data.

The ANN was designed with 2000 hidden units, batch
size of 16 training samples and learning rate set at 10−6 by
using an Adagrad optimizer. The network optimization ran for
700 epochs until convergence. The top classification score for
this experiment was obtained for the AM feature. The average
classification performance of all the classes is 75 % precision,
72 % recall and 72 % F-score. The training and validation
accuracies per epoch are shown in Figure 9.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, a methodology was presented to test
the capability of a unique footprint imaging sensor system
(the “Intelligent Carpet” [4]) to provide useful time domain
data of human gait. The methodology was based on the
use of state-of-the-art machine learning models and feature
engineering. We conclude that the time domain data from the
footprint imaging sensor system allows reliable classification
of human gait and that the selection of model-feature pairs is
essential to obtain high classification scores.

The 10 manners of walking, repeatedly enacted by a single
person to yield a dataset of 757 time sequences, were chosen
for their influence on the sensor signal output: as straight-
forward examples, experiments at normal, slow and fast gait
vary the frequency content of the signals, while experiments
with barefoot gait and gait while carrying weight modify the
amplitude. This choice of manners of walking can be further
refined, for example by maximizing their clinical relevance.

Five types of time series features were engineered and
fourteen different types of machine learning models with tuned
hyper-parameters were applied to analyze these features. The
hyper-parameters’ tuning was performed by grid search and
performance evaluation with a 10 fold cross-validation with
confidence intervals. The best classification performance with
a mean validation score of 90.84 ± 2.46 % was observed for
the Random Forest model with tuned hyper-parameters, using
an AM feature. The results imply that the choice of model and
the feature design affect strongly the time-domain analysis,
highlighting the importance of model-feature pairing and the
role of hyper-parameter optimization.

One of the most important insights gained from the experi-
ments in this work, prompted by the high performance of the
AM feature, is that only a couple of the 116 POF sensors
in the footprint imaging sensor are sufficient to obtain reliable
mean validation scores for the presented type of gait activities.
A future analysis of the data can determine the exact subset
of POFs necessary to yield the best classification scores from
temporal data. The knowledge of this subset of POFs may
influence the design and the principles of data acquisition in
future embodiments of the footprint imaging sensor.

The deep learning models, which included a deep feed-
forward ANN and a recurrent ANN for sequence learning,
outperform some, but not all, of the shallow learning models.
We argue that this is due to the limited data available and
the lack of consideration for the spatial component. Deep
learning models manifest top tier classification performance in

problems involving large amounts of data [20]; thus, improved
classification may be expected from such models in future
experiments with substantially larger gait datasets.

The data analysis presented in this paper is limited to
pre-defined time-domain features. Future analyses may involve
classification analysis of gait data in the spatial domain from
reconstructed tomographic images of the footsteps delivering
pressure information assigned to location. Fusion of the spatial
and time domain data will also be considered.

A promising use of the footprint imaging sensor is for
healthcare applications. In addition to the potential to accu-
mulate unobtrusively vast longitudinal data on individual users
under routine everyday conditions, changes in their gait can be
analyzed at any time while performing cognitively demanding
tasks, e.g. dual-task gait experiments [27]. The extent to which
the footprint imaging sensor can detect clinically significant
gait changes is of current and future research interest and
will be addressed in our future experiments with a significant
number of volunteers performing simple and complex tasks.
This direction has the potential, for example, to detect the
early onset of illness affecting the executive function of the
brain and thus mobility. Further obvious applications are in
rehabilitation, sports and security.
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