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Unraveling the Motor Cortex for Individual Finger
Tapping Movements: An fNIRS Study
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Abstract— Finger tapping is one of the most reliable and widely
utilized tasks for evoking activity in the motor cortex area of the brain,
both for the brain-computer interface (BCI) and for evaluating the
progress of certain brain diseases. Keeping in view the importance of
dominance of the right hand, the goal of this study is to understand the
response of each finger tapping alongside proposing a suitable finger
tapping task both for BCI and medical imaging. With this in mind,
we recruited twenty-four healthy subjects. Functional near-infrared
spectroscopy (fNIRS) was used for brain imaging while the subjects
performed a series of finger-tapping tasks utilizing each of the five
fingers individually. From average hemodynamic results, the middle
finger tapping task showed a maximum amount of activation in the
motor cortex, whereas the index finger tapping task had the minimum
activation compared to the other four fingers. The little finger and
ring finger tapping tasks gave the most significant and widespread
activation, respectively when compared through brain activation maps. The activation was clustered on a single region for the
thumb-tapping task, whereas a wider area showed a very strong activation for the little finger and ring finger tapping tasks.
Conclusively, this study is a step towards standardizing finger tapping and its related motor area activations, demonstrating
that little finger tapping can best suit the purpose of a finger tapping task for BCI and medical imaging applications.
Index Terms— Brain-computer interface (BCI), Functional near-infrared spectroscopy (fNIRS), Cortical activation, Individual
finger tapping

I. INTRODUCTION

Over the past few decades, using brain signals to achieve
various goals has gained popularity among researchers.
Brain-computer interface (BCI) systems and brain imag-
ing for medical purposes (e.g., progression of a dis-
ease/disorder) are among the hot discussion topics. A BCI
technique serves as a conduit between peripheral equip-
ment and the brain. BCI system receives instructions from
the brain to control specific external actions [1]. Brain-
machine interface or mind-machine interface are two of the
standard terms that are also used instead of BCI. Research
has been concentrated in this area for over twenty years,
allowing for the creation of multiple prototype systems.
Both patients and healthy study participants utilize BCI
[2]. Among different tasks used for neuronal activation,
finger tapping is one of the most widely utilized tasks
in BCI applications. Finger tapping is also commonly
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used for assessing motor performance, muscle control,
and motor ability in the upper extremities due to its
reliability and reproducibility [3]. The investigation of
finger-tapping skills has been utilized to assess the stages
of Parkinson’s Disease [4], [5]. Likewise, finger-tapping
tasks can provide insights into various neuromuscular
issues such as cerebral palsy and stroke [6], [7]. Moreover,
it has been utilized to investigate the neural systems and
maintenance of timing behavior and to measure changes
in hemodynamic responses when participants engage in
tapping tasks with varying difficulties [8]. Therefore, it is
necessary to investigate activation from different finger-
tapping (i.e., thumb, index, middle, ring, and little fingers)
to trigger particular neural processes. Aiming to this goal,
we suggest the finger with the best activation among the
five fingers for the functional near-infrared spectroscopy
(fNIRS)-based studies, which can better serve the purpose
of BCI systems and neuroimaging.

Several methods exist for acquiring brain signals. These
include,magnetoencephalography (MEG) [9], [10], func-
tional magnetic resonance imaging (fMRI) [11], [12],
fNIRS [13], [14], and electroencephalography (EEG) [15],
[16]. fNIRS is a non-invasive imaging method that mea-
sures the localized blood flow within the brain by utilizing
near-infrared light with a wavelength between 650 and
1000 nm [17]. Using fNIRS, we aim to measure two
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blood chromophores that absorb radiation and change
significantly in the aforementioned spectrum, i.e., oxy-
hemoglobin (∆HbO) and deoxyhemoglobin (∆HbR) [18].
The hemodynamic response (HR), also known as the local
concentrations of ∆HbO/∆HbR, changes during activity
in the brain and reflects the rise in the local oxygen levels
[19].

The significant applications of fNIRS include brain de-
velopment at early stage [20], discernment and perception
[21], psychological symptoms [22], stroke, and neurological
damage [23], medical and network imaging [24], and BCI
applications [25], [26]. These applications emphasize the
tremendous potential for fNIRS as a suitable neuroscience
instrument. In contrast to fMRI, EEG, and positron
emission tomography methods, fNIRS offers flexibility,
minimum effort to setup time, and less sensitivity to
motion artifacts [27]. fNIRS also offers acceptable spatial
and temporal resolutions. Some of the core areas of
research in fNIRS are spatial and temporal resolution
enhancements. They include contemporary methods like
an initial dip. Initial dip detection can reduce the time
needed to generate BCI instructions [28], [29].

Over the past few years, fNIRS research has focused
on using various stimulating protocols. These studies
used almost all cerebral cortices to collect the HR data.
Numerous studies have tested the prefrontal cortex using
activities like mental math, mental enumeration, and
puzzle-solving. Studies based on the sensory cortex have
included heat stimulation [30], electrical stimulation [31],
painful stimuli [32], and poking. The motor cortex is
frequently stimulated by finger tapping task [33], [34].
Among the various stimulation types as discussed previ-
ously, finger tapping is one of the most utilized tasks for
evoking brain activity. Over the last decade, hundreds of
studies in fNIRS-based brain imaging have been conducted
using this task. The utilization of finger tapping as a
way to evoke brain activity ranges from BCI to medical
imaging. With the help of studies that have utilized
finger tapping, researchers can investigate the mental
timing system without the complexities associated with
intricate motor execution or feedback mechanisms [35].
Therefore, investigating the correlation between the brain
and finger-tapping tasks can enhance our understanding of
neuromuscular impairments, thus contributing to a better
understanding of this field.

In the authors’ pilot study [34], we investigated the
maximum classification accuracy obtained by classifying
five different finger-tapping tasks. We used signal-mean,
peak, minimum, skewness, kurtosis, variance, median,
and peak-to-peak values as features for classification.
The extracted features were then classified using classical
classification methods like artificial neural networks and
quadratic discriminant analysis. Among all the classifi-
cation techniques used in the study, extreme gradient
boosting-based classification outperformed all others with
an average accuracy of 0.77.

In addition to our previous work, this study pursues
finding the most appropriate task from the motor cortex

(specifically finger tapping) to yield the maximum de-
tected activation. While doing so, this study compares the
activation results by tapping the five fingers of the right
hand individually and compares the resulting activation.
Keeping in view several different parameters, the aim is
to propose an appropriate finger that can yield a desirable
amount of activation among five and can be used for
evoking brain activity.

II. MATERIAL AND METHODS

A. Ethical Consideration
The Norwegian Centre for Research Data AS (NSD) ap-

proved the data collection and protection protocols before
the experiments. Experiments were conducted following
the latest declaration of Helsinki [36]. Participants’ data
is protected under the NSD rule (reference no. 647457).
Anonymity is ensured during the data processing process.
Before participating in the experiment, each participant
signed an approved written consent form by NSD. In addi-
tion, ethical approval was granted by regional committees
for medical and health research ethics (REK) Norway
(reference no. 322236).

B. Participants’ Recruitment, Training, and Interaction
Twenty-four right-handed participants (including males

and females; range: 24 − 34 years) participated in the
experiment. The male participants had an average age of
30.44 ± 3.03 years. In contrast, the average age of female
participants was 29.17 ± 3.06 years. The needed number of
subjects was calculated statistically using the online power
calculator at http://biomath.info/power/prt.htm, after
setting the values of the statistical level of significance
(α) and the statistical power (1−β) to 5% and 80%,
respectively. A total of sixty-six sessions were recorded,
ranging from one to five sessions per participant depending
on their participant’s comfort with participating in mul-
tiple sessions. Handedness is defined as “the individual’s
preference to use one hand predominately for uni-manual
tasks and/or the ability to perform these tasks more
efficiently with one hand [37]”. Right-handedness was
defined as the ability to write with the right hand. In this
study, right-handedness was preferred since approximately
90% of the world’s population is right-handed [38], with
the left brain hemisphere being the dominant one. All par-
ticipants had normal or corrected-to-normal vision. The
participants reported no history of neurological, visual,
or motor impairment. Extensive instructions were given
to the participant before the actual experiment regarding
the experimental protocol, the duration of the experiment,
and the number of trials. To ensure results, participants
were asked to remain calm and avoid movements (head
or body movements) that might affect their results. The
participant sat in a comfortable chair, and any discomfort
during the experiments resulted in the termination of
the experiments. A dark room with the least amount
of external sounds was preferred for the study to avoid
external noise as much as possible.
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C. fNIRS Instrumentation and Data Acquisition
The experiments were performed with a continuous-

wave optical tomographic NIRScout machine. NIRScout
collects data using dual wavelengths (λ1 = 760 nm,
λ2 = 850 nm) and samplng frequancy of 3.9063 Hz.
Sixteen emitters and detectors were used in the experiment
positioned over the motor cortex area of the brain.
NIRStar 15.2 software was used for signal acquisition.
The NIRxcap shower cap was used to reduce external
light further.

D. Brain Montage
A head circumference measurement was performed be-

fore the experiments began to ensure that the appropriate
NIRxcap size was selected. The Cz is marked as the mid-
point between the nasion to anion through a preauricular
point(left and right). The optodes were then positioned
over the motor cortex using the 10 − 10 international
positioning system. We used optode holders to keep the
distance between the optodes at 3 cm. In total, 16 emitters
and detectors were used to collect data. The predefined
montage in NIRStar 15.2 for motor16×16 was applied. The
optodes configuration used in the study is shown in Fig.
1 [34].

Fig. 1. Positioning of emitters and detectors over the motor cortex
according to the 10-10 international positioning system

E. Experimental Design
The experimental design was in the block design format

composed of blocks of rest and task, as shown in Fig.
2. The initial and final rest of 30 sec is given for the

data to come to baseline. The duration of each finger-
tapping task was set to 10 sec to ensure an adequate
hemodynamic response. A single experiment consisted of
3 sessions; each session had of five blocks of rest and a task
(each finger tapping starting from thumb to little finger).
In one complete experiment, there were three sessions
totaling 350 sec of experimental length. The instruction
for finger tapping was presented on a computer monitor
using NIRStim 4.0.

F. Signal Pre-processing
The software Satori v1.4 (Brain Innovation, Germany)

and MATLAB® 2021a (The MathWorks Inc., USA) were
used to pre-process acquired fNIRS signals. The possessing
includes removing corrupted data, spikes introduced as
noise, and data truncation. The data truncation was done
to get the data from the start of the first trial to the
end of the last trial. Gain and coefficient of variation were
utilized for rejecting the channels with insufficient quality
(‘bad’) data. For the current experiment, the gain was set
at three, and the coefficient of variation was set to 7.5
%. The higher the value of the coefficient of variation,
the higher will be the noise. Finally, the modified Beer-
Lambert’s Law was used to convert the optical densities
to the concentration changes, i.e., ∆HbO and ∆HbR. Fig.
3 shows the overall signal pre-processing pipeline.

G. Data Fliteration and Statistical Analysis
The acquired signals were filtered to eliminate the

contamination due to heart-beat, respiration, and induced
frequency due to paradigm. The trial length in the
experiment was 20 sec. Therefore, the frequency due to
the paradigm will be 0.15 Hz. Hence, the acquired signals
were filtered using a band-pass filter of bandwidth 0.01 to
0.5 Hz [39].

H. General Linear Model (GLM)
In an ideal world, the hemodynamic response occurring

in response to tapping any of the five fingers should be
the same, but it’s not the case in the real-world scenario.
The response that is considered to be ideal is known
as the desired hemodynamic response. So, in order to
extract the closest or comparable results to the desired
hemodynamic response function, the generalized linear
model (GLM) was used in this study. Applying the Gen-
eral Linear Model (GLM) in fNIRS research involves the
integration of experimental design knowledge and signal
morphology based on a priori knowledge [40] to model
the hemodynamic response. This approach allows for an
unbiased linear estimation of the hemodynamic response
to a series of stimuli by accounting for physiological
nuisance signals. In the field of fNIRS, the GLM serves as a
widely accepted statistical method for quantifying changes
in ∆HbO and ∆HbR. The t-value, p-value ( ≤ 0.05
statistically significant), and oxygenated hemoglobin were
used for the purpose of statistical testing. A t-test (Eq.
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Fig. 2. Experimental Paradigm: The experimental paradigm consists of three sessions; each session contains trails of each finger tapping;
a single trial consists of 10 sec of rest followed by 10 sec of tapping task.

Fig. 3. Signal processing pipeline

1) is used to test the regression coefficient β and residual
error e. The t-values are calculated by using the following
formula [41]–[43]:

t =
cTβ√

e2cT (XTX)−1c)
(1)

where X ∈ RN×M represents the design matrix (M
denotes the number of time points, and N represents
the β dimension), β ∈ RM×L (where L is the number
of channels) is the corresponding response signal strength
for ∆HbO/∆HbR at the respective L channel. The error
term is represented by e. The GLM fitting procedure finds
the set of β values that explains the data with a perfect
fit.

III. RESULTS

A. Event-Related Average Responses
Using GLM, the extracted ∆HbO, ∆HbR, and ∆HbT

responses averaged for all the finger tapping tasks are
shown in Fig. 4. The resulting activation in the motor
cortex can be clearly seen for all the finger-tapping tasks.
For individual subjects, the variance in data was relatively
high, but for the averaged results, a significant amount of
activation could be seen in all five cases. An exciting thing
that can be noticed in the case of ∆HbO (red) is that each
finger’s response is significantly different.

For the case of the thumb, ring, and little fingers, the
response keeps increasing during the stimulation duration.
However, it is not the case for the index and the middle
fingers. In the case of the index and middle fingers, the
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response attained a saturation point even though the
subjects were still performing the task. For the index
finger, the ∆HbO response achieved a Plato midway
between the task duration and did not increase from
there. Whereas, for the middle finger, a peak was achieved,
and the response started declining right after that peak
time. The average maximum activation value was achieved
for the middle finger, whereas the least activation was
achieved for the case of index finger tapping. This finding
is of particular interest because, for motor tasks, index
finger tapping is one of the most commonly used tasks;
however, the results of ∆HbO activation show that the
response due to tapping other fingers is far more significant
than the index finger.

B. Comparison of the Temporal Characteristics
Two of the most important attributes (temporal char-

acteristics) that are used to define the shape of the
hemodynamic response in literature are peak value and
time to peak. These two features were selected as they
well describe the characteristics of a time-domain signal.
However, other time-domain features like slope, mean, etc.
can be investigated as well. These temporal characteristics
of signals are among the widely used features for classifi-
cation as well. In the case of the current study, the visual
inspection of Fig. 4 shows a significant difference in the
aforementioned attributes for all five finger-taping tasks.
Comparing the achieved ∆HbO responses, the highest
peak achieved among all five finger tapping tasks was
through middle finger tapping. Alongside that, the middle
finger tapping showed the fastest time to peak. Moreover,
there was a significant difference between the average
hemodynamic responses achieved for each finger-tapping
task. This is another exciting trend that can aid future
studies in the field of fNIRS-based studies utilizing finger-
tapping tasks. The time to peak and peak values for
∆HbO of each finger are summarized in Fig. 5 and Fig.6,
respectively.

C. Comparison of Brain Area Activation
To investigate the activation resulting in response to

the tapping of each finger, activation maps were made.
The average activation maps achieved for each finger are
shown in Fig. 7. As all the subjects were right-handed, the
left motor cortex showed dominant activation compared
to the left motor cortex for all five finger-tapping tasks.
From Fig. 7, it can be noticed that the least amount of
activation achieved was for the index finger tapping task.
Whereas the ring finger and little finger gave significantly
detectable activation in the left motor cortex with a wide
activation area. One way to explain this phenomenon is the
strategy behind the activation of different muscle groups in
the hand to move individual fingers. Muscles that control
the fingers and thumb reside within the hand (intrinsic)
and the forearm (extrinsic). Three of the extrinsic finger
muscles have a compartment and tendon for each of
the four fingers [44]. Based on the measurements of

EMG activities and isometric force with the fingertip,
the intrinsic muscles of the index finger behaved as a
single unit whose region of activation overlapped that of
the extrinsic flexor and extensor muscles [45]. On the
other side of the coin, we could also look at sensory
feedback in a finger tapping task; the side of the thumb is
mostly touching the surface while tapping, and not the full
finger area. If the sensory receptors are supposed to send
information to control the forces and muscle activations,
then the sensory information from the thumb would be
limited. When sensory feedback is limited or inhabited, a
rougher control based on previous experiences ( involving
the cerebrum) will occur [46], [47]. Thus, it makes it
more probable that the index finger or the thumb has less
significant brain activations due to the group of muscles
that are activated.

D. Statistical Comparison Over Each Channel
In order to find the locations where each finger was

giving a strong response, statistical analysis was performed
on individual channels as well. A graphical demonstration
of activation for each finger over each channel is given
in Fig. 8. Interestingly, the little finger outperformed the
activation of all other fingers on all channels. Channels 1
to 24 were positioned over the left motor cortex, whereas
channels 25 to 48 were on the right motor cortex. As
all the subjects were right-handed, the region of interest
is the left motor cortex. In this particular scenario, a
channel was considered active if the t-value was above
0.8. The most channels that showed activity (higher t-
value) were for the little finger. A total of 14 channels
were active for averaged activity in response to little finger
tapping. This was followed by activity on six channels
for the ring finger, four channels for the middle finger,
two for the index, and five for the thumb finger. All the
active channels mentioned above represent a particular
active brain area while the task is being performed. The
common activation area was near the frontal eye field,
pre-motor, and supplementary motor cortex in the case
of the thumb, ring-, and little finger. In the case of the
little finger, the supramarginal gyrus part of Wernicke’s
area, pars triangularis Broca’s area, and middle temporal
gyrus also showed activity. Whereas for the middle finger,
the activity was only restricted to the pre-motor and
supplementary motor cortex.

IV. DISCUSSION

In this study, we have investigated the spatial variability
of hemodynamic responses (∆HbO, ∆HbR, and ∆HbT )
in the primary motor cortex area in response to five
different tasks (i.e., tapping of thumb, index finger, middle
finger, ring finger, and little finger). The aim of the
study is to propose the finger that best suits the purpose
of motor-related activation in response to finger-tapping
tasks. Alongside this, the study aims to localize the area
activated as a result of the tapping of each finger. To the
best of the authors’ knowledge, this is the first study in
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Fig. 4. Average ∆HbO, ∆HbR and ∆HbT response for individual fingers across all the channels and subjects

Fig. 5. Time to peak for ∆HbO, response for individual fingers
averaged across all the channels and subjects

the field of fNIRS that aims to localize the brain area
responsible for each finger tapping and to propose the
most appropriate finger-tapping task for motor-related
activities, especially for the fNIRS-based studies. As a
finding of the study, the most effective finger-tapping
task that activated the most amount of brain area is
suggested. In previous studies, researchers have utilized
different finger-tapping tasks for the purpose of classi-
fication. The most commonly used tasks among recent
studies are thumb, index, and little finger tapping [18],
[48]. Similarly, in the authors’ previous work, we tried to
classify the five fingers tapping task to achieve maximum

Fig. 6. Peak values for ∆HbO, response for individual fingers
averaged across all the channels and subjects

accuracy by varying temporal features and classification
techniques [34]. Moreover, this study aims to compare the
hemodynamic responses occurring in response to tapping
different fingers. Summarized below are the findings of the
current study.

The changes in ∆HbO were significantly different for
each of the five fingers. The averaged ∆HbO kept rising
until the stimulation’s end for the thumb, ring finger, and
little finger. However, for the case of the index finger and
the middle finger, the data reached a plateau and didn’t
increase any further, even though the subjects were still
performing the task. However, the ∆HbO response started
decreasing as soon as the stimulation ended in the case of
all five fingers. While comparing the responses of ∆HbR,
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Fig. 7. Average amount of activation for individual fingers averaged across all the channels and subjects. The columns represent different
viewing angles (from left to right; isometric, left, right, and top views, respectively). The rows correspond to activity against each finger
tapping task (From top to bottom: thumb, index finger, middle finger, ring finger, and little finger, respectively). The positive y (in green)
represents the posterior side of the brain, while the negative y corresponds to the anterior side.

no significant difference was noted in the hemodynamic response signal. A significant difference was observed while
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Fig. 8. Activation achieved over all channels against tapping task
of each finger.

comparing the activation maps for each of the five fingers.
Interestingly, the least amount of activation was observed
in the index finger tapping task, which is among the most
commonly used tasks for motor area activation in the BCI
studies. Little finger tapping yielded the most amount of
activation. The area of activation was spread all over the
motor cortex area. The little finger was followed by the
ring finger, thumb, middle finger, and index finger. For all
participants, the left motor cortex was more active than
the right motor cortex area.

Different avenues were discovered while comparing the
specific channels that were activated in response to the
stimulation. It was noticed that the little finger-taping
task-evoked the strongest activity in the most amount of
channels. The channels covered the brain area that ranged
from the frontal eye field, pre-motor, and supplementary
motor cortex to the supramarginal gyrus part of Wer-
nicke’s area, pars triangularis Broca’s area, and middle
temporal gyrus. On the other hand, the activity for the
middle finger tapping was confined to the pre-motor and
supplementary motor cortex. This finding indicates that
if the goal is to detect the activity without compromising
on repeatability, the little finger-tapping task will best
suit the purpose. Whereas if the goal is the detection of
the activity at a very precise brain location, middle finger
tapping is the task to be preferred.

Summarizing the study’s limitations, the study partici-
pants were not prohibited from any caffeine intake before
the experiment. The presence of caffeine element might
have affected the results of the study. The surrounding
noise (both sounds and light) was tried to be kept as low
as possible; however, there might be some contamination
in the signal due to these factors. Moreover, the results
might be influenced by the boredom of the subjects as
they had to sit in a dark room for a long interval of time
with almost no movement. Finally, using dense optode
configuration in future studies will aid in more precise
brain area identification.

The index finger tapping task is the most widely utilized
task for motor area activation. To the best of the author’s
knowledge, no study in the field of fNIRS has addressed
the activation issue related to finger tapping (i.e., which

finger gives the most activation). One of the reasons for
the utilization of index finger tapping is that it is easy to
move this finger and execute a task. As it is easy to move,
the amount of activation associated with this finger is also
much less as compared to other fingers (e.g., middle-, ring-
, and little finger). On the contrary, the movement of the
little finger and ring finger comparatively activates more
muscle groups and requires more attention, resulting in
stronger activation throughout the motor cortex area of
the brain. Therefore, it leaves an open question for future
studies to investigate whether this type of response is due
to the effort that is involved in the execution of the task
or not. Also, whether replacing the index-finger tapping
task with the little finger tapping task can improve the
results or not. Furthermore, in future studies, left-handed
persons can be recruited to validate whether a similar
effect is noted in their case. These types of studies will
significantly aid the field of Biomedical Imaging.

V. CONCLUSION

This study is a step towards standardizing the most ap-
propriate finger-tapping task for utilization in functional
near-infrared spectroscopy (fNIRS)-based medical imaging
as well as the brain-computer interface (BCI) applications.
The current work compares the changes in the hemoglobin
levels as well as the activation in the motor area that
resulted in response to the tapping task of all five fingers
of a hand. The results of the study showed that among
all of the fingers, the middle finger tapping task showed
the highest peak value when it comes to the hemodynamic
response. Not only that, but the time to peak is also the
shortest for middle finger tapping. As regards the brain
area activation, the activation in response to the middle
finger tapping task was strong and confined to a relatively
narrow area, whereas for the case of the little finger
tapping task, the whole motor area showed widespread
strong activation. Therefore, using little finger tapping as
a task for future fNIRS-based studies focusing on motor
area activation can lead to better and reproducible results.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

[1] N. Naseer and K.-S. Hong, “fnirs-based brain-computer inter-
faces: a review,” Frontiers in human neuroscience, vol. 9, p. 3,
2015.

[2] Z. Liu, J. Shore, M. Wang, F. Yuan, A. Buss, and X. Zhao,
“A systematic review on hybrid eeg/fnirs in brain-computer
interface,” Biomedical Signal Processing and Control, vol. 68,
p. 102595, 2021.

[3] B. H. Repp, “Sensorimotor synchronization: A review of the
tapping literature,” Psychonomic bulletin & review, vol. 12,
pp. 969–992, 2005.

[4] M. H. Trager, K. B. Wilkins, M. M. Koop, and H. Bronte-
Stewart, “A validated measure of rigidity in parkinson’s disease
using alternating finger tapping on an engineered keyboard,”
Parkinsonism & related disorders, vol. 81, pp. 161–164, 2020.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3404030

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



KHAN et al.: UNRAVELING THE MOTOR CORTEX FOR INDIVIDUAL FINGER TAPPING MOVEMENTS: AN FNIRS STUDY 9

[5] R. Krupička, P. Krỳže, S. Net’uková, T. Duspivová, O. Klem-
píř, Z. Szabó, P. Dušek, K. Šonka, J. Rusz, and E. Ržička,
“Instrumental analysis of finger tapping reveals a novel early
biomarker of parkinsonism in idiopathic rapid eye movement
sleep behaviour disorder,” Sleep Medicine, vol. 75, pp. 45–49,
2020.

[6] A. Alves-Pinto, S. Ehrlich, G. Cheng, V. Turova, T. Blumen-
stein, and R. Lampe, “Effects of short-term piano training
on measures of finger tapping, somatosensory perception and
motor-related brain activity in patients with cerebral palsy,”
Neuropsychiatric disease and treatment, pp. 2705–2718, 2017.

[7] J. Birchenall, M. Térémetz, P. Roca, J.-C. Lamy, C. Oppen-
heim, M. A. Maier, J.-L. Mas, C. Lamy, J.-C. Baron, and P. G.
Lindberg, “Individual recovery profiles of manual dexterity, and
relation to corticospinal lesion load and excitability after stroke–
a longitudinal pilot study,” Neurophysiologie Clinique, vol. 49,
no. 2, pp. 149–164, 2019.

[8] N. J. Spencer, R. A. Bywater, M. E. Holman, and G. S. Taylor,
“Inhibitory neurotransmission in the circular muscle layer of
mouse colon,” Journal of the autonomic nervous system, vol. 70,
no. 1-2, pp. 10–14, 1998.

[9] S. A. Balart-Sánchez, M. Bittencourt-Villalpando, J. van der
Naalt, and N. M. Maurits, “Electroencephalography, magne-
toencephalography, and cognitive reserve: A systematic review,”
Archives of Clinical Neuropsychology, vol. 36, no. 7, pp. 1374–
1391, 2021.

[10] A. L. Fred, S. N. Kumar, A. Kumar Haridhas, S. Ghosh, H. Pu-
rushothaman Bhuvana, W. K. J. Sim, V. Vimalan, F. A. S. Givo,
V. Jousmäki, P. Padmanabhan, et al., “A brief introduction to
magnetoencephalography (meg) and its clinical applications,”
Brain Sciences, vol. 12, no. 6, p. 788, 2022.

[11] A. Chowdhary, P. Garg, A. Das, M. S. Nazir, and S. Plein,
“Cardiovascular magnetic resonance imaging: emerging tech-
niques and applications,” Heart, vol. 107, no. 9, pp. 697–704,
2021.

[12] X. Shuyue, Z. Yongjie, L. Linling, Z. Li, H. Gan, Z. Zhiguo,
and L. Zhen, “Review of affective detection based on functional
magnetic resonance imaging,” Journal of Electronics and Infor-
mation Technology, vol. 44, no. 2, pp. 424–436, 2022.

[13] N. A. Alzahab, L. Apollonio, A. Di Iorio, M. Alshalak, S. Iarlori,
F. Ferracuti, A. Monteriù, and C. Porcaro, “Hybrid deep
learning (hdl)-based brain-computer interface (bci) systems: a
systematic review,” Brain sciences, vol. 11, no. 1, p. 75, 2021.

[14] K. Paulmurugan, V. Vijayaragavan, S. Ghosh, P. Padmanabhan,
and B. Gulyás, “Brain–computer interfacing using functional
near-infrared spectroscopy (fnirs),” Biosensors, vol. 11, no. 10,
p. 389, 2021.

[15] K. Värbu, N. Muhammad, and Y. Muhammad, “Past, present,
and future of eeg-based bci applications,” Sensors, vol. 22, no. 9,
p. 3331, 2022.

[16] K. Douibi, S. Le Bars, A. Lemontey, L. Nag, R. Balp, and
G. Breda, “Toward eeg-based bci applications for industry
4.0: challenges and possible applications,” Frontiers in Human
Neuroscience, p. 456, 2021.

[17] M. Cope and D. T. Delpy, “System for long-term measurement
of cerebral blood and tissue oxygenation on newborn infants
by near infra-red transillumination,” Medical and Biological
Engineering and Computing, vol. 26, no. 3, pp. 289–294, 1988.

[18] M. A. Khan, M. R. Bhutta, and K.-S. Hong, “Task-specific
stimulation duration for fnirs brain-computer interface,” IEEE
Access, vol. 8, pp. 89093–89105, 2020.

[19] M. A. Yücel, A. v. Lühmann, F. Scholkmann, J. Gervain, I. Dan,
H. Ayaz, D. Boas, R. J. Cooper, J. Culver, C. E. Elwell, et al.,
“Best practices for fnirs publications,” Neurophotonics, vol. 8,
no. 1, p. 012101, 2021.

[20] H. Watanabe, Y. Shitara, Y. Aoki, T. Inoue, S. Tsuchida,
N. Takahashi, and G. Taga, “Hemoglobin phase of oxygena-
tion and deoxygenation in early brain development measured
using fnirs,” Proceedings of the National Academy of Sciences,
vol. 114, no. 9, pp. E1737–E1744, 2017.

[21] S. Cutini, S. B. Moro, and S. Bisconti, “Functional near infrared
optical imaging in cognitive neuroscience: an introductory re-
view,” Journal of Near Infrared Spectroscopy, vol. 20, no. 1,
pp. 75–92, 2012.

[22] U. Ghafoor, J.-H. Lee, K.-S. Hong, S.-S. Park, J. Kim, and
H.-R. Yoo, “Effects of acupuncture therapy on mci patients

using functional near-infrared spectroscopy,” Frontiers in Aging
Neuroscience, vol. 11, p. 237, 2019.

[23] P. C. Petrantonakis and I. Kompatsiaris, “Single-trial nirs
data classification for brain–computer interfaces using graph
signal processing,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 26, no. 9, pp. 1700–1709, 2018.

[24] Y. Zheng, D. Zhang, L. Wang, Y. Wang, H. Deng, S. Zhang,
D. Li, and D. Wang, “Resting-state-based spatial filtering for
an fnirs-based motor imagery brain-computer interface,” Ieee
Access, vol. 7, pp. 120603–120615, 2019.

[25] M. A. Khan and K.-S. Hong, “Most favorable stimulation dura-
tion in the sensorimotor cortex for fnirs-based bci,” Biomedical
Optics Express, vol. 12, no. 10, pp. 5939–5954, 2021.

[26] H. Khan, N. Naseer, A. Yazidi, P. K. Eide, H. W. Hassan, and
P. Mirtaheri, “Analysis of human gait using hybrid eeg-fnirs-
based bci system: a review,” Frontiers in Human Neuroscience,
vol. 14, p. 613254, 2021.

[27] A. M. Chiarelli, E. L. Maclin, M. Fabiani, and G. Gratton, “A
kurtosis-based wavelet algorithm for motion artifact correction
of fnirs data,” NeuroImage, vol. 112, pp. 128–137, 2015.

[28] K.-S. Hong and A. Zafar, “Existence of initial dip for bci: an
illusion or reality,” Frontiers in neurorobotics, vol. 12, p. 69,
2018.

[29] F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M.
Pavia, U. Wolf, and M. Wolf, “A review on continuous wave
functional near-infrared spectroscopy and imaging instrumen-
tation and methodology,” Neuroimage, vol. 85, pp. 6–27, 2014.

[30] C. I. Hucke, M. Pacharra, J. Reinders, and C. van Thriel,
“Somatosensory response to trigeminal stimulation: a functional
near-infrared spectroscopy (fnirs) study,” Scientific reports,
vol. 8, no. 1, pp. 1–13, 2018.

[31] U. Ghafoor, D. Yang, and K.-S. Hong, “Neuromodulatory effects
of hd-tacs/tdcs on the prefrontal cortex: A resting-state fnirs-
eeg study,” IEEE Journal of Biomedical and Health Informatics,
vol. 26, no. 5, pp. 2192–2203, 2021.

[32] M. A. Yücel, C. M. Aasted, M. P. Petkov, D. Borsook,
D. A. Boas, and L. Becerra, “Specificity of hemodynamic
brain responses to painful stimuli: a functional near-infrared
spectroscopy study,” Scientific reports, vol. 5, no. 1, pp. 1–9,
2015.

[33] N. M. Sommer, B. Kakillioglu, T. Grant, S. Velipasalar,
and L. Hirshfield, “Classification of fnirs finger tapping data
with multi-labeling and deep learning,” IEEE Sensors Journal,
vol. 21, no. 21, pp. 24558–24569, 2021.

[34] H. Khan, F. M. Noori, A. Yazidi, M. Z. Uddin, M. A. Khan,
and P. Mirtaheri, “Classification of individual finger movements
from right hand using fnirs signals,” Sensors, vol. 21, no. 23,
p. 7943, 2021.

[35] J. Sergent, “Mapping the musician brain,” Human Brain Map-
ping, vol. 1, no. 1, pp. 20–38, 1993.

[36] B. Christie, “Doctors revise declaration of helsinki,” BMJ:
British Medical Journal, vol. 321, no. 7266, p. 913, 2000.

[37] D. M. Corey, M. M. Hurley, and A. L. Foundas, “Right and
left handedness defined: a multivariate approach using hand
preference and hand performance measures,” Cognitive and
Behavioral Neurology, vol. 14, no. 3, pp. 144–152, 2001.

[38] C. G. De Kovel and C. Francks, “The molecular genetics of hand
preference revisited,” Scientific reports, vol. 9, no. 1, p. 5986,
2019.

[39] P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tacht-
sidis, “Current status and issues regarding pre-processing of
fnirs neuroimaging data: an investigation of diverse signal
filtering methods within a general linear model framework,”
Frontiers in human neuroscience, vol. 12, p. 505, 2019.

[40] A. von Lühmann, A. Ortega-Martinez, D. A. Boas, and M. A.
Yücel, “Using the general linear model to improve performance
in fnirs single trial analysis and classification: a perspective,”
Frontiers in human neuroscience, vol. 14, 2020.

[41] N. R. Draper and H. Smith, Applied regression analysis,
vol. 326. John Wiley & Sons, 1998.

[42] M. Uga, I. Dan, T. Sano, H. Dan, and E. Watanabe, “Op-
timizing the general linear model for functional near-infrared
spectroscopy: an adaptive hemodynamic response function ap-
proach,” Neurophotonics, vol. 1, no. 1, p. 015004, 2014.

[43] R. Li, T. Potter, W. Huang, and Y. Zhang, “Enhancing per-
formance of a hybrid eeg-fnirs system using channel selection

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3404030

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

and early temporal features,” Frontiers in human neuroscience,
vol. 11, p. 462, 2017.

[44] J. A. Birdwell, L. J. Hargrove, T. A. Kuiken, et al., “Activation
of individual extrinsic thumb muscles and compartments of
extrinsic finger muscles,” Journal of neurophysiology, 2013.

[45] T. E. Milner and S. S. Dhaliwal, “Activation of intrinsic and
extrinsic finger muscles in relation to the fingertip force vector,”
Experimental brain research, vol. 146, pp. 197–204, 2002.

[46] J. W. Sensinger and S. Dosen, “A review of sensory feedback
in upper-limb prostheses from the perspective of human motor
control,” Frontiers in neuroscience, vol. 14, p. 345, 2020.

[47] S.-J. Blakemore, D. M. Wolpert, and C. D. Frith, “The cere-
bellum contributes to somatosensory cortical activity during
self-produced tactile stimulation,” Neuroimage, vol. 10, no. 4,
pp. 448–459, 1999.

[48] A. Zafar and K.-S. Hong, “Reduction of onset delay in functional
near-infrared spectroscopy: Prediction of hbo/hbr signals,”
Frontiers in neurorobotics, vol. 14, p. 10, 2020.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3404030

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


