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Abstract— Artificial tactile sensing systems have gained signifi-
cant attention in recent years due to their potential to enhance
human-machine interaction. Numerous initiatives have been in-
troduced to shift the computational paradigms of these systems
towards a more biologically inspired approach, by incorporating
neuromorphic computing methods. Despite the significant ad-
vances made by these systems, dependence on complex offline
methods for classification (i.e. hand-crafted encoding features),
remains a limitation for their real-time deployment. In this work,
we present a neuromorphic tactile PVDF-based sensing system
for textural features classification, that employs raw signals directly for classification. We first converted raw signals into
spikes and then trained recurrent spiking neural networks (RSNNs) using Backpropagation Through Time (BPTT) with
surrogate gradients to perform classification. We proposed an optimization method based on tuning the refractory period
of the encoding neurons, to explore a potential trade-off between the computational cost and classification accuracy of the
RSNN. The proposed method effectively identified two RSNNs with refractory period configurations that achieved a trade-
off between the two evaluation metrics. Following this, we reduced the inference time steps of the selected RSNN during
inference using a rate-coding based method. This method succeeded in saving around 26.6% out of the total original time
steps. In summary, the proposed system paves the way for establishing an end-to-end neuromorphic approach for tactile
textural features classification, through deploying the selected RSNNs on a dedicated neuromorphic hardware device for
real-time inferences.

Index Terms— Tactile sensing system, recurrent spiking neural network, gratings, textural features, refractory period,
spatio-temporal.

I. INTRODUCTION

A. Motivation

HUMAN skin, with its vast network of sensory receptors,
serves as the primary interface with the external world,

enabling it to perceive and interpret a diverse range of tactile
sensations. The perception of touch, which is delivered by
the skin, relies on four types of mechanoreceptors innervating
the glabrous skin, namely: Merkel cells (SA-I), Ruffini ending
(SA-II), Meissner (RA-I) and Pacinian’s (RA-II) corpuscles
[1]. These mechanoreceptors, synergistically, contribute to
the somatosensory system in serving the exteroceptive and
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interoceptive functions [2]. Drawing inspiration from the so-
phistication of human skin, artificial tactile sensing systems
have emerged, aiming to replicate the skin’s physiological
features, by using a variety of methods (i.e. complex elec-
tronics, data processing, and sophisticated materials). These
systems have important applications in prosthetics [3] [4]
and robotics [5]. This electronic skin (e-skin) endows the
robots with cutting-edge abilities to augment interaction with
their surroundings such as perceiving texture [6], stiffness [7],
and shape [8], [9]. Tremendous efforts have been made to
establish an adequate artificial replication of the human skin
behaviour [10]–[12]. These endeavors include: i) exploring a
wide range of materials used for sensor fabrication to cover the
mechanoreceptors’ frequency bandwidth (1Hz-1kHz) [11], ii)
developing algorithms to process tactile information efficiently
[12] and effectively, and iii) minimizing the time latency of
the hosting device [10] and match the biological range.

Various methods based on machine learning (ML) and deep
learning (DL) approaches have been studied to analyze tactile
data coming from tactile sensing systems, addressing both
classification [19] and regression tasks [20]. These algorithms
are hosted by dedicated edge accelerators near the sensors
for fast and efficient inferences. The aforementioned approach
has led to the development of a complete tactile system that
is utilized in various tactile recognition tasks such as touch

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3382369

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0001-4667-2721
https://orcid.org/0000-0002-9225-8900
https://orcid.org/0000-0002-5558-3923
https://orcid.org/0000-0001-7872-0794
https://orcid.org/0000-0002-6522-2451
https://orcid.org/0000-0002-7366-6060


2

TABLE I
RELEVANT WORKS ON TACTILE TEXTURE CLASSIFICATION

Reference Sensor Encoding Model Feature Extraction Type of Features Mechanoreceptors Classifier

[13] Piezoresistive Izhikevich Yes Average firing rate (FR), SA-I K-Nearest Neighbor
Coefficient of variation (CO)
of Inter-spike Interval (ISI)

[14] Piezoresistive Izhikevich Yes SA-I k-Nearest Neighbor
Average FR, CO of ISI,
Fano factor of spikes,
Co-occurrence matrices

[15] Piezoresistive Izhikevich Yes Average ISI, SA-I Support Vector
Average FR Machine

[16] Piezoresistive Izhikevich Yes Time-delayed SA-I & RA-I Extreme Learning
input signals Machine

[17] PVDF Izhikevich Yes Spike train distances SA-I k-Nearest Neighbor

[18] PVDF Poisson Yes Gray scale images - Spiking Neural
Network

This work PVDF Leaky-Integrate-Fire No - SA-I & RA-I Recurrent Spiking
Neural Network

modality [21] and texture classification [22], object recognition
[8], and Braille letter reading [23], [24].

Despite all these technological advances that optimized
the performance of the artificial tactile sensing system, it
remains distant from emulating the sensory capabilities of
the human touch system [25]. The main reason behind this
disparity is that biological systems can process even more
complex information rapidly, efficiently, and with significant
differences in energy consumption compared to the state-of-
the-art systems [26]. Moreover, the artificial systems rely on
conventional computers [27] (i.e. Von-Neumman-based) that,
by their nature, cannot support rapid computations. [28].

To address the aforementioned limitations, we employ a
neuromorphic computing-based system inspired by the compu-
tational primitives found in the human somatosensory system,
to bridge the efficiency gap between artificial systems based
on conventional computing and their biological counterparts.
Neuromorphic computing, unlike conventional systems, fea-
tures brain-inspired computational primitives that are applied
at the software and hardware levels, with the aim of emulating
biological nervous systems [29]–[31]. This approach involves
the conversion of analog signals into digital asynchronous
spikes or events, carrying temporal and spatial information,
therefore, modeling the mechanoreceptors of the skin. The
emitted spikes can be exploited for classification tasks using
spiking neural networks (SNNs), that simulate the neuronal
spiking mechanism and plasticity observed in the somatosen-
sory system [32], [33]. Neuromorphic circuits utilize mixed
analog/digital hardware signals. This enables the implementa-
tion of these SNNs and fully exploiting their intrinsic features.
These features include event-driven processing, asynchronous
communication between neurons, and learning based on local
information [25], [34]. Therefore, the neuromorphic approach
through its biologically inspired primitives is projected to op-
timize the artificial tactile sensing system through performing
robust information processing with minimal use of hardware
resources.

In this work, we focus on the classification of textural

features of artificial gratings. The inherent time-dependent
nature of the texture’s signals [35] imposes difficult challenges
during classification, such as capturing the significant tempo-
ral dependencies of the texture without relying on complex
methods. This is further compounded by the requirement for
rapid response in texture perception applications, such as
tactile feedback systems, making it one of the most formidable
challenges for artificial tactile systems [36].

B. Related Works
The human somatosensory system has been the inspiration

of considerable works in the literature that addressed texture
classification problem based on a neuromorphic approach.
Table I provides an overview of some existing literature on
tactile-based texture classification.

In general, these works model the firing behavior of the
biological mechanoreceptors to transform tactile signals into
spikes, followed by a feature extraction phase and then classi-
fication based on different classifiers. The proposed solutions
demand offline processing of raw signals, such as requiring
a whole window of signal (time window) to compute hand-
crafted features, before fetching the decision or action, which
correspondingly requires high computational resources such
as memory footprint, power consumption, and high inference
time. Despite the wide range of proposed features, varying
from simple and basic features as in [13] and [15] to more
complex features as in [14] and [17], the drawback persists, by
requiring a time window of signal for processing. Furthermore,
most of these works employed the Izhikevich model for
encoding and spike conversion. Despite its efficiency and
precision in modeling the cortical neurons’ behavior, it pri-
marily focuses on analyzing spike features (i.e. fine temporal
structure). However, implementing it at the neural network
level presents a drawback due to its computational cost [37].
Additionally, neglecting the temporal characteristics inherent
in texture encoding and exclusively addressing it through rate-
coding limits the generalizability of the proposed solution for
complex tactile applications as in [16] and [18].
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Fig. 1. An overview of the proposed neuromorphic tactile sensing system. A) Data collection: indentation touches were applied at different velocities
and forces. B) Encoding of gratings’ raw signals into spikes by modeling the slow and rapid adaptive mechanoreceptors. C) The proposed Recurrent
Spiking Neural Network (RSNN) for textural features classification. D) Gratings classification.

Most of the proposed solutions rely on piezoresistive sens-
ing systems [13]–[16], which are characterized by a low-
frequency range response (<100 Hz) [38]. Conversely, few
relevant works adopted a PVDF-based piezoelectric sensing
system for the same application as in [17] and [18]. Accord-
ing to [11], PVDF sensors exhibit a wide frequency range
(≤ 1 Hz to 1 kHz), due to their fast dynamic response
(i.e. polymers crystallization), hence covering the range of
the mechanoreceptors in the human skin [39]. However, the
aforementioned solutions maintained offline-based complex
methods for texture classification.

C. Contribution

In this work, we present a neuromorphic tactile sensing
system for classifying the textural features of artificial grat-
ings. The proposed system consists of a PVDF-based sensing
system and neuromorphic classification framework that can
be implemented in real-time to process and classify tactile
information as pictured in Fig. 1.

The main contributions of this paper are summarized as
follows:

• We present a Recurrent Spiking Neural Network (RSNN)
for textural features classification. The RSNN is trained
by the Surrogate Gradient Descent (SGD) [40] to process
raw signals and perform subsequent classification. Unlike
the exciting methods in the literature (Table I), the novelty
of this work lies in classifying the artificial grating using
the raw tactile signals obtained from the sensors, without
the need to extract features.

• We propose a strategy to control the computational cost
and the classification accuracy of the RSNN, based on
tuning the refractory period of the spiking neurons during
the encoding. The strategy allows the selection of the
network with a trade-off between the aforementioned
metrics for real-time deployment.

• The selected network is further optimized by reducing the
number of simulation time steps in the inference using
a rate-coding approach. This method allows to reduce
the overall inference time and computational cost of the
network.

• We evaluated the proposed neuromorphic system under
various experimental conditions, in particular, the slid-
ing velocity and indentation force. To the best of our
knowledge, this is the first study that undertakes such
an assessment while employing a PVDF-based sensing

system. The results demonstrate the robustness of the
proposed solution to the aforementioned variation of
sensing conditions.

The rest of the paper is organized as follows: Section II de-
scribes the tactile sensing system and the experimental design.
Section III presents the implemented neuromorphic methods.
Section IV depicts the proposed optimization methods. Section
V addresses the conducted experiments to evaluate the overall
approach. Section VI reports the obtained results.

II. MATERIALS

A. Sensing System and Experimental Setup
This study utilizes a PVDF-based sensing system originally

developed for a prosthetic hand (see [10]). The system com-
prises a biomimetic finger equipped with a piezoelectric sens-
ing array and embedded electronics. We adopted specifically
the piezoelectric sensing array (8 sensing units) designed for
the volar side of the distal phalanx of the index finger as
shown in Fig. 2(B) (sensor distribution). The sensing units
are screen-printed on a finger-shaped flexible PET substrate.
Each sensing unit comprises a P(VDF-TrFE) poly(vinylidene
fluoride trifluoroethylene) piezoelectric polymer layer, sand-
wiched between two PEDOT:PSS electrodes (Fig. 2(b)). The
biomimetic finger was 3D printed using TPU material. The
sensing array was shielded using conductive tapes and then
attached to the finger using double-sided adhesive tape. Fi-
nally, a thin flexible cylindrical shape protective layer (Art.
5500 Dream, Framisitalia) has been added on the top of the
sensing array forming a skin patch.

The embedded electronics presented in [41] were used to
acquire, sample, and send tactile signals to a host PC. It
comprises a 32-channel analog-to-digital converter DDC232
(Texas Instrument, US), and an ARM cortex-M0 low-power-
based microcontroller. The embedded electronics samples at
2 KSamples/s/channel to cover the full frequency bandwidth
(1Hz - 1kHz) of the sensors.

A 3-axis Cartesian robot was used to perform a series of
sliding actions on the gratings along the x-axis (Fig. 2(A)). The
biomimetic finger was connected to the embedded electronics
through a flat cable and both were fixed on the z-axis as
shown in Fig. 2(A). Each of the three axes of the cartesian
robot is driven by three stepper motors, controlling the xyz
coordinates and the speed. To modulate the indentation load
on the biomimetic sensor, a 700 g weight was mounted on the
z-axis and hung to a spring. Data acquisition, visualization,
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Fig. 2. Experimental setup for texture classification: A) The 3-axis Cartesian robot employed in controlled-environment data collection. B) Sensor
structure, distribution, and data processing. From left to right: Sensing unit structure and geometry. A biomimetic fingertip was sensorized with the
sensing array and mounted to the z-axis of the robot along with the embedded electronics. C) Artificial gratings design and geometry. Each grating
was designed with a specific pitch size to control its coarseness level. D) Illustration of the four phases of the data collection procedure.

collection, and control of the Cartesian robot were imple-
mented using a graphical user interface (GUI) developed with
NI LabVIEW on a host PC (see Fig. 2(B)).

B. Tactile Stimuli
A total of 8 gratings were designed and 3D printed using

polylactic acid (PLA) (Fig. 2(C)). The plates host a series of
1 mm thick and 3 mm height ridges separated by a pitch size
(P) that varies between 4 mm and 0.5 mm with a decrement
of 0.5 mm. Thus, varying gradually the coarseness level of
the tactile stimuli from rough (P = 4 mm) to smooth (P
= 0.5 mm). Section 1.1 and Fig. S1 in the supplementary
materials describe and illustrate the characteristics of the
artificial gratings.

C. Experimental Protocol
The experiment consists of four main phases (see Fig. 2(d)):

1) Finger preparation: the finger is located ∼ 1 cm above the
grating (preparation stage), 2) Normal indentation: the finger
is indented to the surface of the grating for a period of ∼
0.5 s with an indentation force F [N ], 3) Tangential sliding:
the finger slides tangentially for 200 mm across the grated
surface along the x-axis with a sliding velocity v[mm/s], and
4) Release indentation: after maintaining its position (end of
grating surface) for 0.5 s, the finger is then returned to its
preparation position. This procedure is repeated 100 times for
each grating.

To investigate and analyze the relation between the per-
formance of the proposed neuromorphic system and the
experimental conditions (sliding velocities and indentation

forces), multiple experiments were performed with a range of
parameters commonly explored in the literature [42]. These
experiments encompassed two sliding velocities v1 = 8.6
mm/s (minimum achievable velocity along the x-axis) and
v2 = 13.7 mm/s ( maximum velocity). Additionally, three
indentation forces were considered Flow = 3 N , Fmedium =
6 N , and Fhigh = 12 N . In total, 600 trials are recorded in
this study, consisting of 6 distinct experimental combinations,
with each combination conducted 100 times per grating.

III. METHODOLOGY

This section presents the methods employed for textu-
ral features classification. First, we addressed the modeling
procedure of the biological mechanoreceptors employed to
encode the grating’s raw signal into spikes. Following this,
we presented the architecture of the RSNN employed for the
classification along with the training algorithm and procedure.

A. Encoding

We modeled two mechanoreceptors innervating the
Glabrous skin, specifically focusing on the Meissner corpuscle
(rapid adaptive: RA-I) and the Merkel discs (slowly adaptive:
SA-I) afferents. The motivation of this choice is to consider
mechanoreceptors associated with texture perception with a
minimal computational cost. The Ruffini ending (SA-II) is
excluded as it is not implicated in texture perception [35],
[43], [44]. RA-II was omitted due to its higher computational
cost in modeling when compared to SA-I and RA-I receptors
(refer to supplementary material Section 1.2 for details).
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Fig. 3. Demonstration of the mechanoreceptors’ (8 SA-I & 8 RA-I) modeling procedure based on the 8 sensors output raw signals. The currents of
mechanoreceptors are computed through the constitutive equations in 2 and 3. These currents are then injected into the LIF neuron for encoding.
The output raw signal of a 1 PVDF sensor for Grating 1, collected with F = 12 N and v1 = 8.6 mm/s) is involved in this illustration.

The output raw signals of the 8 PVDF sensors are filtered
by an exponential moving average (EMA) implemented as
microcode in the embedded electronics to reduce signal noise
online. A cut-off frequency of 30 Hz has been set based
on the conducted frequency analysis of all textures across all
the experimental conditions. The analysis revealed a spectral
range of principal information between 1.8 Hz and ≈ 10
Hz. Frequency analysis is reported in supplementary material
Section 1.3. Consequently, the filtered raw signals are fed to
the artificial spiking neuron to be encoded and converted to
digital spikes. The primary objective is not to mimic the human
mechanoreceptors with utmost fidelity but rather to establish
a straightforward framework for potential future hardware
implementation. Therefore, this study focuses on modeling
the mechanoreceptors with a balance between computational
cost and the degree of precision in modeling. In this regard,
we adopt the Leaky-Integrate-and-Fire (LIF) neuron due to its
lower computational cost compared to the Izhikevich neuron,
which is widely used in the relevant works [37]. The LIF
neuron model is described as a dynamical time-continuous
system [45]:

τm
dU(t)

dt
= −(U(t)− Urest) +Rm ∗ Iinput(t), (1)

where U(t) is the voltage membrane potential that defines the
state of the neuron, Ureset is the resting value, τm represents
the membrane time constant, Rm is the input resistance
(equal to 1Ω for convenience), and Iinput(t) is the neuron’s
input current. When an input current Iinput(t) is applied, the
membrane potential U(t) undergoes a depolarization phase
(accumulation of input current). Once U(t) reaches a defined
threshold Vth, the neuron emits a spike and the membrane
potential is reset to Ureset for a defined time called refractory
period tref . The parameter values of the LIF neuron are
selected to approximate regular spiking behavior in neurons
[46]–[48] to encode the dynamic and static stimulus [1]. Table

TABLE II
PARAMETERS OF THE LIF MODEL

Parameter Ureset Vth τm tref

Value -65 mV -55mV 10 ms [1-10] ms

II lists the parameter values.
Fig. 3 demonstrates the procedure of modeling the SA-I and

RA-I mechanoreceptors. The raw signal of each PVDF sensor
is employed to model a combination of two mechanoreceptors:
1 RA-I and 1 SA-I. Therefore, a total of 8 RA-I and 8 SA-
I neurons, corresponding to the 8 PVDF sensing units, are
modeled and randomly distributed across the finger index (Fig.
3). The modeling procedure is outlined sequentially as follows:

• The output raw signal of each PVDF sensor undergoes a
conversion into two distinct currents: ISA−I and IRA−I

(step 1 in Fig. 3), using equations 2 and 3 [16], [49]:

ISA−I = SCSA−I ∗ Vsensor(t), (2)

IRA−I = SCRA−I ∗
∣∣∣∣ ddtVsensor(t)

∣∣∣∣ , (3)

where SCSA−I and SCRA−I represent the scaling coef-
ficients of currents ISA−I and IRA−I respectively, and
Vsensor(t) represents the output raw signal of the sensors
at time t.

• The two currents ISA−I and IRA−I are applied to the
LIF neuron as an input Iinput(t) in (1) (step 2 in Fig. 3).

• The LIF voltage membrane undergoes a depolarization
through the accumulation of the two currents until it
reaches Vth, triggering the emission of a spike (step 3
in Fig. 3).

Following the same procedure of [13], [14], [16], the opti-
mum scaling coefficients (SC) values SCSA−I and SCRA−I
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are selected based on the interspike interval (ISI) distri-
bution of the neuron model in response to the gratings
stimuli with different SC values. The considered SC val-
ues ranges are SCSA−I = [1800, 3200, 6400]/MΩ and
SCRA−I = [18000, 32000, 64000]/MΩ. Generally, increasing
the SC value in both neurons typically results in an increased
firing rate (FR) and a consequent decrease in the ISI. The
ISI decrease yields an overlapping distribution of the ISI
associated with different gratings, leading to a close spiking
response. Conversely, decreasing the SC value leads to a low
firing rate and a substantial loss of information (due to the
high sparsity). This, in turn, leads to an increase in both the
values and distribution of the ISI in addition to an increase
in response latency. Therefore, the selected SC values are
SCSA−I = 3200/MΩ and SCRA−I = 32000/MΩ, carrying
a compromise between the issues above. (check Fig. S3 in
supplementary material Section 1.4)

B. Recurrent Spiking Neural Networks

1) Architecture and design: We designed a two-layer Recur-
rent Spiking Neural Network (RSNN) inspired from [50] to
perform classification as shown in Fig. 1(c).

The network consists of an encoding layer (green) with
16 LIF neurons (8 SA-I and 8 RA-I receptors, see Sec-
tion III-A), a hidden layer (blue) with recurrent connections
(orange) among a pool of neurons Ni = {20, 30, 40, 50}
for model selection (to choose the best Ni based on per-
formance/computational cost trade-off), and a readout layer
including 8 LIF neurons to classify the 8 gratings. The neurons
of the readout layer (yellow) decode the spiking activity to
their corresponding grating based on maximal spike count
(rate-coding), in which the winning neuron is the one with
the highest number of emitted spikes.

The neurons in the hidden and output layers are based on
the current-based (CUBA) LIF neuron written in discrete time
as:

Ui(t+ 1) = β(Ui(t) + Ii(t)) · (1− Ureset), (4)

where Ui is the voltage membrane potential of the i-th neuron,
Ureset the resting voltage, β is the voltage membrane decay
set as a hyperparameter [51], and Ii is the synaptic current
that carries the emitted spikes to the downstream neurons. t
is used to represent the time step tsteps. The choice behind
adopting the CUBA LIF neuron is supported by [52] which
demonstrated the efficient exploitation of the temporal dynam-
ics by this neuron through its exponentially decaying synaptic
current Ii(t). The postsynaptic current I(l)i of i-th neuron in
layer l is modeled as:

I
(l)
i (t+1) = αI

(l)
i (t)+

∑
j

WijS
(l−1)
i (t)+

∑
j

VijS
(l)
i (t), (5)

where α represents the current decay constant and considered
as a hyperparameter, Wij and Vij are respectively the forward
and recurrent learnable weights within each layer, and S

(l)
i (t)

is the spike train of the i-th neuron in layer l denoted as a
binary step function as follows:

S
(l)
i (t) = Θ(Ui(t)− ϕ), (6)

where the firing threshold ϕ = 1 [40]. (Parameters discussion
in supplementary material Section 1.5).

Initially, the raw signals are fed to the encoding layer as
a 2D tensor with size tsteps × Ns, where tsteps (time steps)
= Fc ∗ T , Fc = 2KSample/s, T is the input raw signal
duration in seconds, and Ns = 8 corresponds to the number of
sensors of the patch. Consequently, the generated spikes from
the encoding layer (Fig. 3) will be forwarded to the RSNN
(Fig. 1(c)) as a 2D tensor with size tsteps × 2 ∗ Ns to be
decoded and classified, where the 2∗Ns is the number of LIF
neurons modeling the SA-I and RA-I mechanoreceptors.

2) Surrogate Gradient Descent: The surrogate gradient de-
scent (SGD) presented by Neftci et al. [40] is employed to
train the RSNN to classify the textural features of the gratings
directly from the emitted spikes without using hand-crafted
features. This supervised learning approach was introduced
to solve the non-differentiability issue of the spike activation,
and back-propagate the error throughout the network using
Backpropagation Through Time (BPTT). The method works
by maintaining the non-differentiable step function during the
inference of the RSNN (forward pass with trained parameters)
and replaces it with a differentiable function to compute its
gradient during the backward pass and update the learnable
weights of the network (Wij & Vij) using the chain rule [53].
We used the gradient (partial derivative) of the fast sigmoid
function σ(x) (7) during the backward pass in this work:

σ(U
(l)
i ) =

U
(l)
i

1 + λ
∣∣∣U (l)

i

∣∣∣ , (7)

where λ is the scale parameter of the σ(x), and considered a
hyperparameter to be tuned based on the spiking activity of
the stimuli. A custom function has been designed in Pytorch
[50] [40] for the SGD implementation. (SGD mathematical
discussion in supplementary material Section 1.6).

3) Training setup and strategy: For network
training, a 70/15/15 percentage is chosen for the
training/validation/testing split, while maintaining balanced
sets for the 8 classes. The investigated datasets are elaborated
in Section V. The networks are trained with a learning rate
lr = 0.001 and batchsize = 128 for 100 epochs. The NNI
(Neural Network Intelligence) toolkit [54] is used for the
hyperparameter optimization (HPO), and model selection,
over 800 trials (check supplementary material Section
1.7 for HPOs list and description). The best performing
hyperparameters (in terms of classification accuracy) are
selected based on the validation accuracy (intermediate result
in NNI), and then evaluated for generalizability using the
testing set (final result in NNI). The early stop criterion is
involved during training to avoid over-fitting, by monitoring
the validation loss with patience = 7.

4) Computational cost estimation: The computational cost
of the RSNN is estimated as the total number of synaptic
operations (SOPs) of the network. The SOPs are computed
using the methods presented in [55] by calculating the number
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(a) tref = 1ms (b) tref = 5ms (c) tref = 10ms

Fig. 4. Impact of changing the tref on the behavior of the voltage membrane potential and spiking activity of the LIF neuron using the same raw
input. a) tref = 1 ms (spike count = 38), b) tref = 5 ms (spike count = 19), and c) tref = 10 ms (spike count = 15).(Top): voltage membrane
dynamics of the LIF neuron. (Bottom): raster plot or spiking activity of the LIF neuron.

Fig. 5. Raster plot showing the spiking activity of the 8 SA-I (blue) and
8 RA-I (orange) mechanoreceptors for Gratings 1 (P = 4 mm), 5 (P = 2
mm), and 8 (P = 0.5 mm). The plots illustrate the impact of the three
forces at sliding velocity v1.

of synaptic operations Q(l) for each layer:

Q(l) = f (l+1)
∑
i

a
(l)
i , (8)

where a
(l)
i denotes the spiking activity of i-th neuron in layer

l, f (l+1) represents the number of neurons in layer l + 1 that
receive the spikes emitted by a single neuron in layer (l).
Following this, the total SOPs of the network are obtained
by summing Q(l) of all layers:

SOPs =
∑
l

Q(l). (9)

IV. OPTIMIZATION

This section illustrates the optimization methods proposed
to reduce the computational cost of the RSNNs while main-
taining classification accuracy. Initially, we explored the con-
cept of the refractory period tref in spiking neurons, ex-
amining its influence on the spike count and information.
Following, we exploited this concept to optimize the proposed
RSNN with a list of tref combinations. Lastly, we addressed

TABLE III
PROPOSED REFRACTORY PERIODS

Notation Mechanoreceptors
(trefRA−I

& trefSA−I
) RA-I SA-I

1&1 1 ms 1 ms
5&5 5 ms 5 ms

10&10 10 ms 10 ms
1&5 1 ms 5 ms
1&10 1 ms 10 ms
5&10 5 ms 10 ms

another optimization method focused on decreasing the RSNN
simulation time steps through a rate-coding approach.

A. Refractory Period Fine-Tuning

The refractory period, or tref , is the duration that the
spiking neuron in the somatosensory cortex undergoes a silent
mode after spike emission, in which the membrane potential
U(t) remains at its resting value Ureset for a defined period
of time [56] [57]. We employed tref to control the number of
emitted spikes during encoding. The goal is to investigate the
optimal tref that enables the mechanoreceptors to transmit
sufficient information to downstream neurons in the RSNN
(hidden and readout layer neurons) with a minimal computa-
tional cost (in terms of the number of spikes emitted). Fig.
4 shows the impact of tref on the number of emitted spikes
while applying random input to the LIF neuron. Increasing
tref (Fig. 4(b) and 4(c)) results in a longer silent period after
spike emission. Thereby, reducing the spiking activity and
hence the number of synaptic operations (computational cost).
However, this comes at the cost of a higher information loss,
due to the ignored applied input during this period. In contrast,
decreasing tref results in a shorter duration where the neuron
is inactive or silent, leading to increased spike emission, higher
computational cost, and reduced information loss (Fig. 4(a))).

A list of six combinations of tref for SA-I and RA-I
mechanoreceptors during the encoding phase is proposed in
Table III, and notated as (trefRA−I

& trefSA−I
). The combina-

tions cover a range from 1 to 10ms, encompassing the typical
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Fig. 6. Impact of the proposed tref combinations (set1 & set2) on the spike count for SA-I (blue) and RA-I (orange) for an input of 1-second.
The spike count for both receptors illustrated their contribution to the total number of spikes (green). The three plots show the impact on gratings:
grating 1 (left), grating 5 (middle), and grating 8 (right), at F = 12 N and v1. For the sake of visualization the tref combinations where sorted in
descending order.

range observed in cortical neurons [56] [57]. The combinations
are classified into set1 and set2. In particular, set1 includes
combinations with the same tref for both SA-I and RA-I
mechanoreceptors during the encoding (e.g., 1&1 (tref = 1
ms for SA-I and RA-I), 5&5 (tref = 5 ms), and 10&10
(tref = 10 ms)). While set2 incorporates combinations with
different tref for SA-I and RA-I (e.g., 1&10 (1 ms for RA-I
and 10 ms for SA-I), 1&5 (1 ms for RA-I and 5 ms for
SA-I), and 5&10 (5 ms for RA-I and 10 ms for SA-I)).
The motivation behind the proposed combinations in the set2
relies on the firing dynamics of both mechanoreceptors. Fig.
5 shows the effect of the indentation force on the spiking
activity of both mechanoreceptors across grating 1 (rough),
grating 5 (intermediate), and grating 8 (smooth). In general,
SA-I neurons consistently exhibit a higher spiking activity
(emitted spikes) compared to RA-I neurons. Hence, the set2
is proposed to significantly reduce the spiking activity of the
former neurons while partially mitigating the activity of the
latter. This is intended to achieve an approximate balance
between both mechanoreceptors and to study the contribution
of each, in terms of the conveyed encoded information. The
effect of co-varying the tref and the SC values of currents
ISA−I and IRA−I for both mechanoreceptors is reported in
the supplementary material section 1.8 and Fig. S4.

Fig. 6 shows the effect of each proposed combination
during the encoding phase in terms of spike count for SA-
I and RA-I. The tactile signals of three gratings with a
salient difference in coarseness level have been investigated
for simplicity. As expected, the 1&1 combination generated
the highest number of spikes in comparison to the others, since
both receptors (SA-I and RA-I) are inactive for the smallest
period after spike emission (i.e., 1 ms), thus increasing the
number of computations. Conversely, the 10&10 combination
exhibits the lowest spike count. This can be attributed to
its longer no-activity period, leading to occasional spiking
activity. Straightforwardly, the 5&5 combination falls between
the two previous values. The repetitive behavior of the three
combinations can also be observed in grating 1 (roughest),
grating 5 (intermediate), and grating 8 (smoothest), with a
variation in the overall spike count.

To examine the tref combinations of set2, it is necessary
to visualize and compare the individual contributions of the

TABLE IV
DATASETS UTILIZED IN THE EXPERIMENTS

Dataset
Force (N) Velocity (mm/s)

3 6 12 v1 = 8.6 v2 = 13.7

Dv1,L ✓ ✓

Dv1,M ✓ ✓

Dv1,H ✓ ✓

Dv1,mix ✓ ✓ ✓ ✓

Dv2,L ✓ ✓

Dv2,M ✓ ✓

Dv2,H ✓ ✓

Dv2,mix ✓ ✓ ✓ ✓

Dmixed ✓ ✓ ✓ ✓ ✓

SA-I and RA-I receptors. The two combinations 1&10 and
5&10 exhibited a total spike count that falls between the two
combinations 5&5 and 10&10. Additionally, the 1&5 combi-
nation achieves the second-highest spike count, following the
1&1 one. It can be observed in the two combinations 1&5 and
5&10 that SA-I receptors overcome RA-I receptors in terms of
the number of emitted spikes despite the smaller tref assigned
to the RA-I. The only combination that witnessed opposite
action is 1&10, as RA-I receptors emitted more spikes due to
the 9 ms difference between the assigned periods. Hence, the
SA-I receptors play a predominant role during the encoding
process (in terms of spike count).

B. Reducing Inference tsteps of RSNN
The RSNN’s readout layer decodes the weighted spiking

activity from the early layers during the forward pass using
a spike count-based procedure for gratings classification, so-
called RSNN inference. This method relies on rate coding,
where the neuron emitting the highest number of spikes within
a window of RSNN’s time steps tsteps (tsteps is defined in
Section III-B.1, eq. (4)) is selected as the decoder for the
input stimuli (provides the classification label). In this work,
we introduce a new method to identify the neuron with the
highest spike count without requiring the entire tsteps. The
main motivation behind this is to investigate the possibility of
reducing the number of tsteps, thereby decreasing the overall
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Algorithm 1 Reducing Inference tref
Input:
- Decoded Spiking Tensor TD = [Time steps × 8]
- index true, Patience
1.Methodology

1: do
2: M = TD[1, :]
3: imax prev = argmax(M)
4: count = 0
5: set Patience
6: for (i = 2; i ≤ Time steps; i++) do
7: M =

∑i
j=1 TD[j, :]

8: imax = argmax(M)
9: if imax == imax prev then

10: count++
11: if count == Patience then
12: Time new = i
13: index op = imax

14: break
15: end if
16: else
17: counter = 0
18: imax prev = imax

19: end if
20: end for
21: while (index op ̸= index true)

2. Return Time new

complexity and the inference time of the network for real-time
deployment.

Algorithm 1 illustrates the proposed method. During each
time step tstep, the neurons in the readout layer update their
states by either a spike emission {1} or no spike emission
{0}. A decoded spiking tensor TD with size tsteps × Nout

(Nout represents the neurons in the readout layer), stores the
aforementioned updates (spike or no spike) according to the
time step sequence. The method starts by selecting the neuron
index with the highest spike count (imax prev in step 1.3) at
the first time step (for initialization). Afterward, the algorithm
computes the cumulative sum of the spike data stored in the
TD tensor for the Nout neurons (Nout = 8), starting from
the preceding time steps (step 1.7). This process results in an
array M that holds the spike count for each neuron over time.
Next, the algorithm identifies a new variable imax associated
with the highest spike count selected from M (step 1.8).
The algorithm then checks if imax is equal to the initialized
imax prev for a predefined period of time specified by the
patience value (Patience). When this condition is met, the
method returns two values 1) index op that is the neuron index
with the maximum spike count imax, and 2) Time new equal
to the time step where the condition is met. If this condition
is not fulfilled, the counter will be reset and start counting
when the condition is met again. However, if the obtained
index op does not match the true decoding index index true
fetched during the training procedure, the entire process will
be repeated by adjusting the Patience until the condition at

Fig. 7. Flow of experimental results. Description of Experiment 1
(right) and Experiment 2 (left).

step 1.21 is achieved. The neural network will be simulated
along this optimized Time new during inference.

V. EXPERIMENTS

Two experiments are conducted in this paper: 1)
Experiment 1: analyzing the impact of varying the experi-
mental conditions (sliding velocities and indentation forces) on
the performance of the proposed networks (before applying the
suggested optimization methods) addressing each condition
individually, and 2) Experiment 2: implementing the pro-
posed optimization methods on the designed RSNNs to elicit
the network with the best trade-off between the classification
accuracy and computational cost for future real-time hardware
deployment. The first part of the study utilizes six datasets (see
Table IV). Three of these datasets, Dv1,L, Dv1,M , and Dv1,H ,
incorporated tactile information collected with v1 = 8.6 mm/s
and forces = 3 N, 6 N, and 12 N, respectively. The other three
datasets, Dv2,L, Dv2,M , and Dv2,H , used v2 = 13.7 mm/s and
the same forces. The second part of the study merged the six
datasets into three new datasets (Table IV) as follows: Dv1,mix

combines all forces collected with v1, Dv2,mix includes all
forces collected with v2, and Dmixed merging all forces and
velocities. The motivation behind this selection is to challenge
the entire neuromorphic approach in complex experimental
conditions, as preparation for future real scenarios where the
conditions are unknown and unpredictable.

VI. RESULTS AND DISCUSSION

The flow of the results is illustrated in Fig. 7. We started
from a fixed input including a 1&1 tref combination along
with all the designed RSNNs. We explored first the minimal
input duration Tmin that can be used to train the RSNNs,
employing the aforementioned fixed input. Following this, the
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Fig. 8. Tmin selection before optimization and network selection (step
1 in Fig. 7). The selection is based on a trade-off between classification
accuracy and computational cost using the dataset Dmixed. The afore-
mentioned dataset is selected for this experiment since the proposed
neuromorphic system is designed to deal with all the experimental
conditions (indentation forces and sliding velocities). N represents the
hidden layer size of the RSNNs. Acc denotes the accuracy and SOPs
stands for the number of synaptic operations in the legend.

selected Tmin is used in Experiment 1 and Experiment 2
(Section V).

A. Minimal Input Duration Selection Tmin

According to [21], [58], the input size impacts directly
the computational cost of the neural network since larger
input sequences require more computations to be performed.
Therefore, it is crucial to explore the minimal input duration
(i.e., the sliding duration) that carries sufficient information
to the system to perform successful classification. To select
Tmin, a set of gradually increasing input raw signal sizes
T = {.05, .10, .15, .20, .50, .70, 1.0}s are evaluated in terms
of classification accuracy and computational cost (number of
SOPs). Dmixed (Table IV) is used here while relying on the
fixed input illustrated in Fig. 7 (1&1 tref combination along
with all the designed RSNNs). Figure 8 presents the selection
procedure.

As shown in the figure, all the RSNNs (Ni = 20, 30,
40, and 50) demonstrate consistent classification accuracy
acc ≥ 92% with a time window T≥ 200 ms. This indicates
that the essential spatio-temporal information of the gratings
is adequately captured and repeated throughout the entire
experiment. However, the computational cost of the network
is affected by the size of the input, thereby a large input size
yields a higher computational cost. This is validated when
examining the total number of SOPs for each network that
is increasing with the increase in the input size. A significant
drop in performance is observed when evaluated with a shorter
time window (T ≤ 100 ms), resulting in accuracy ranging
from 46% to 77%. This drop is related to the insufficient
information within this T for the networks to effectively
learn and classify the gratings. Based on this observation,
the minimal time window Tmin should fall between 100 ms
and 200 ms. By taking into account the three evaluation
metrics: classification accuracy, computational cost (SOPs),
and latency, an input duration of 150 ms represents the best

Fig. 9. Classification accuracy of the proposed models under all the
experimental conditions. (Left): Datasets collected with v1 = 8. mm/s.
(Right): Datasets collected with v2 = 13.7 mm/s. The refractory period
tref involved here is 1 ms for both receptors.

choice. This selection is motivated by the slight decrease in
average accuracy ≈ 3%, and ≈ 8% in the number of SOPs,
and finally the gain of 50 ms in latency in comparison to what
has been achieved using a 200 ms input duration. Therefore,
Tmin = 150 ms is selected as a convenient input size to the
RSNNs and to be used accordingly in Experiment 1 and
Experiment 2.

B. Effect of Experimental Conditions

The investigation into the influence of the experimental
conditions on the performance of the proposed RSNNs has
been conducted using the selected Tmin = 150 ms and with
the fixed input (1&1 tref combination, since the goal is not to
optimize the network at this point) as shown in Fig. 7 (right).
Figure 9 provides an overview of the best-achieved results by
the RSNNs (with varying numbers of neurons Ni in the hidden
layer) across all the experimental conditions (3 indentation
forces and 2 sliding velocities). The best configurations in
terms of classification accuracy correspond to the datasets
with high indentation forces (i.e. F = 12 N) in both sliding
velocities: Dv1,H and Dv2,H (i.e. acc ≥ 90%, except RSNN
with Ni = 20 in Dv1,H i.e. acc = 87.8%), with a slight
increase in accuracy in the latter. On the other side, the
RSNNs exhibit a lower accuracy in classifying the gratings
with datasets collected with low indentation forces (i.e. F = 3
N): Dv1,L (acc ≤ 81%) and Dv2,L (acc ≤ 84%).

To discuss more, we computed the firing rate FR (Hz) =
nsp/TFR window, where nsp is the number of emitted spikes
in a defined time window TFR window (we used 150 ms).
Additionally, we calculated the inter-spike interval: ISI (s)
= ts(t+1)

− ts(t) where ts(t+1)
and ts(t) represent the time

of the following and preceding spikes respectively. Fig. 12
reports the computed encoding features (FR and ISI) for both
mechanoreceptors across all textures and experimental condi-
tions. The overall normalized firing rate (Fig. 12(a) reveals that
an increase in the indentation force results in higher FR for
both mechanoreceptors across all grating, and a decrease in ISI
(Fig. 12(b)). This can be attributed principally to the amplitude
of the output raw signal of each grating which increased
remarkably when higher indentation forces were applied, and
that induced a higher spiking activity for both receptors as
shown in Fig. 10 and Fig. S5 in supplementary material section
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Fig. 10. Impact of increasing the indentation force (F) on the output raw signal and the encoding procedure (response of SA-I and RA-
I mechanoreceptors). Grating 1 (pitch size = 4 mm) is considered in this illustration. Left: Graphical illustration of increasing the indentation
force procedure during data collection. Middle: Output raw signals of the 8 PVDF sensors. Right: Raster plot of the 8 SA-I and 8 RA-I modeled
mechanoreceptors. Row 1: Force = 3N. Row 2: Force = 6 N. Row 3: Force = 12 N. Each force is accompanied by v1 = 8.6 mm/s.

Fig. 11. Comparison of the evaluation metrics for the RSNNs in terms
of classification accuracy (left column) and the number of synaptic
operations (SOPs) (right column) when evaluated with the proposed
tref combinations. All the RSNNs are trained and tested using the
merged datasets mentioned in Table IV for generalization among all
the experimental conditions. The networks are sorted by the evaluation
metrics in descending order.

1.9. For that reason, higher classification accuracy is observed
with the same conditions (using Dv1,H and Dv2,H ) due to the
higher induced information. Conversely, a low FR is remarked
for indentation force F = 3 N in both sliding velocities (due
to the lower amplitude of the raw signal (Fig. 10 row 1)),
thus leading to a drop in classification accuracy (accuracies
obtained in Dv1,L and Dv2,L), due to the poor representative
information.

Generally, according to the computed encoding features and
obtained results, it is noticed that the amplitude of the sensors’
raw signal plays a vital role in reflecting the spatial shape of
the grating and thereby its coarseness level, which aligns as

well with the findings in [13]. Furthermore, increasing the
sliding velocity did not demonstrate any significant effect on
the induced firing rate of the mechanoreceptors across all grat-
ings, and consequently the classification accuracy. Although
increasing the sliding velocity from v1 = 8.6 mm/s to v2 =
13.7 mm/s (factor of ≈1.6) yields an increase in the principal
frequency of each grating with the same factor ≈ 1.6 (refer to
table S1 in supplementary material section 1.3), this was not
translated in terms of encoding. Particularly, v2 exhibited a
slight increase in the firing rate compared to v1 as shown
in Fig. 12(a). This observation can be linked to the slight
increase in the amplitude of the raw signal corresponding
to the increase in sliding velocity (Fig. S6 in supplementary
material Section 1.10). In contrast, increasing the indentation
force doesn’t influence the principal frequency of the gratings.
Instead, it affects the firing rate and the performance of the
RSNNs. Hence, our system displays less dependence on speed
and a greater dependence on high force in textural features
classification.

C. Network optimization and selection

Following the guidance in Fig. 7, we implemented the
proposed optimization methods in Section IV on the fixed
input (1&1 tref combination with all RSNNs) after choosing
Tmin. We selected networks that demonstrated the best trade-
off between computational cost and classification accuracy.
Afterward, we examined whether the same trade-off achieved
in step 1, was maintained by the selected networks in step
2 (Decision block). If the trade-off persisted, the selected
networks proceeded to the final optimization stage involving
a reduction in time steps during inference. If not, a new Tmin

is checked.
1) Refractory Period Fine-Tuning: Figure 11 summarizes the

obtained results after hyperparameters optimization (HPO).
Each column in the figure represents the dataset (see Section
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Fig. 12. SA-I and RA-I firing dynamics across all gratings and experimental conditions. a) Impact of varying the experimental conditions on the
firing rate of SA-I and RA-I neurons. Each matrix illustrates the normalized average FR obtained with a 150ms time window, for each grating under
all the performed sensing conditions (3 indentation forces and 2 sliding velocities). b) Computed average ISI for RA-I (right) and SA-I (left) using
a 1-second data sample for each grating (Gratings are denoted with their number (1: 1: 8), i.e. Grating 1: 1, Grating 2: 2, Grating 3: 3, etc). The
computations were carried out for the datasets Dv1,L, Dv1,M , and Dv1,H .

Fig. 13. Checking the persistence of the trade-off achieved in step 1
using the selected networks in step 2. The shaded area in b) represents
the difference between the initial and selected networks.

V), with the tref combinations on the x-axis. The rows display
the RSNNs, along with their corresponding hidden layer size
(Ni).

The overall behavior of the networks follows the trend
discussed in Sec. IV-A, and highlights the significant impact
of tuning the refractory period tref at the network level.
The combinations that display high spike emission (i.e. 1&1
and 1&5, Fig. 6) enable all RSNNs to attain the highest
classification accuracy across the three investigated datasets.
These results can be attributed to the fact that smaller tref
allows the modeled mechanoreceptors in the encoding layer
to convey grating information more frequently and sufficiently
to the hidden layer. This is a result of their short silent period
after spike emission, as depicted in Fig. 4(a). Nonetheless, this
comes with the cost of a high number of SOPs. On the other
side, the combinations with low spiking activity (i.e. 10&10,
5&10) yield the worst classification accuracy, due to the long
silent period after spike emission leading to information loss
(Fig. 4(c)). For example, the best classification accuracy in
Dv1,mix (i.e. acc = 90.2%), Dv2,mix (i.e. acc = 92.1%) , and
Dvmixed

(i.e. acc = 86.7%) corresponds to the combination

1&1 with Ni = 40, Ni = 40, and Ni = 30 neurons in the
hidden layer, respectively. However, it is characterized by a
high number of SOPs that affect future real-time deployment
on a hardware device (i.e. increase inference time and power
consumption during real-time classification). Alternatively, the
worst performance in accuracy is coupled with combinations
10&10 and 5&10, resulting in a decrease of ≈ 15% and
≈ 10%, respectively.

Considering the two evaluation metrics (i.e., accuracy and
computational cost), it is evident that the optimal combinations
of tref presenting the best trade-off among the rest are those
employing 5&5 and 1&10. For instance, the best-achieved
accuracy by the 5&5 combination is 85.3% with Ni = 30
in Dv1,mix, 84.2% and Ni = 40 in Dv2,mix, and 81.4% and
Ni = 30 in Dmixed. Moreover, in comparison to the 1&1
combination, the average percentage of the SOPs drops by
≈ 28% (± 9%), ≈ 28.2% (± 7%), and ≈ 26% (± 2%)
respectively. Additionally, the 1&10 combination exhibits a
comparable behavior to the 5&5, but with a slight drop in both
the average accuracy (∼ 1% in Dv1,mix, ≈ 3% in Dv2,mix, and
≈ 2% in Dmixed) and the average percentage of computational
cost ≈ 14% (± 2%) in Dv1,mix, ≈ 10% (± 4%) in Dv2,mix,
and ≈ 13% (± 7%) in Dmixed).

We re-assessed the input sizes T examined in Section VI-A
(employing Dmixed) utilizing the chosen networks, to validate
the persistence of the trade-off achieved in Step 1 (Fig. 7).
Fig. 13 demonstrates the evaluation results. Both RSNNs,
{5&5, Ni = 30} and {1&10, Ni = 30}, exhibit a consistent
trend observed in step 1 (Fig. 8). For the former, the network
exhibited a drop of 3% in accuracy and a gain of 9.3% in
computational cost compared to the evaluation done with 200
ms input duration. Similarly, the latter network showed a 3.8%
decrease in accuracy and a 9.9% gain in computational cost.
Therefore, the trade-off achieved in step 1 persists.

2) Reducing Inference tsteps: After checking the validation
of the Tmin, we applied the final optimization method on
the selected RSNNs, {5&5, Ni = 30} and {1&10, Ni =
30}, to reduce their inference tsteps as described in Section
IV-B. Table V depicts the optimized number of time steps,
which are considered to be sufficient during the inference
to maintain the same classification accuracy. The standard
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TABLE V
OPTIMIZED TIME STEPS (T ime_new) AND PATIENCE VALUE FOR THE

CHOSEN COMBINATIONS.

Combination Time new (± std ) Patience

5&5 220 (±26) 120

1&10 238 (±32) 120

deviation coupled with the time steps represents the disparity
among the samples in the testing set. The proposed method
succeeded in saving remarkable but varying time steps for each
combination during the inference. As illustrated, and based
on the adopted Tmin = 150 ms (300 time steps), the network
linked to the 5&5 combination requires 220 time steps to retain
the same classification accuracy, resulting in a saving rate of
26.6%. Similarly, the network associated with 1&10 requires
238 time steps, achieving a reduction rate of 20.6%. Moreover,
to preserve the original classification accuracy, the proposed
method was tuned with a Patience value of 120 time steps for
both networks.

In total, the proposed system paves the way toward a
real-time hardware deployment to perform online classifi-
cation with minimal use of hardware resources due to the
implemented optimization methods. The future work involves
deploying the selected networks on a dedicated neuromorphic
device (i.e. Intel Loihi2 chip [34]) to present an end-to-
end neuromorphic system for tactile texture classification,
with event-based and asynchronous communication, and spike-
based computing. A drawback in our approach is that proposed
system was evaluated under controlled experimental condi-
tions, specifically utilizing known indentation force and sliding
velocity values commonly found in the literature. However, it’s
essential to note that in real-world scenarios, these conditions
are often both unknown and unstable. Therefore, another future
goal is to transition the experimental data collection conditions
to a more realistic environment, simulating to a certain extent,
real application scenarios. Further research endeavors could
focus on exploring the versatility of this neuromorphic tactile
system through the investigation of diverse tactile applica-
tions. These may include tasks such as stiffness and hard-
ness classification, and objection recognition. In light of the
hard constraints required for real-time inferences in prosthetic
and robotic applications, the proposed neuromorphic tactile
sensing system stands as a suitable candidate for integration.
A potential scenario for utilizing it can be by mapping the
real-time event-driven inferences to feedback or control-based
systems for rapid and efficient post-processing closed-loop
scenarios, such as safe and proper interaction with the environ-
ment. Another possible scenario can be employing the spikes
emitted by the modeled mechanoreceptors (SA-I and RA-I)
from the raw signals of our PVDF-based sensing system, in
human-in-the-loop psychophysical experiments. This could be
achieved by mapping the spikes or their associated features to
a feedback system for the user. This would allow exploiting
the frequency range of such sensing systems, in exploring the
somatosensory system activity such as information encoding
and decoding as done in [59].

VII. CONCLUSION

In this paper, we presented a neuromorphic tactile sensing
system designed for textural features classification. The core of
our system lies in its capability to directly handle raw signals
obtained from our PVDF-based sensing system. This elimi-
nates the need for feature extraction to perform classification,
thereby addressing the challenges highlighted in the literature.
To achieve this, we modeled the firing dynamic of the SA-
I and RA-I mechanoreceptors, encoding both transient and
static information applied to the sensors, to spikes carrying
spatio-temporal features. Subsequently, the emitted spikes are
conveyed to an RSNN, trained using the SGD to perform
inferences and classification. We proposed an optimization
method to the RSNN based on tuning tref during the encoding
phase, to impose a trade-off between computational cost and
classification accuracy. We found that two RSNNs {5&5,
Ni = 30} and {1&10, Ni = 30} achieved the best trade-off
among the rest of the evaluated combinations (Section VI-C),
making them a favorable candidate for real-time deployment
and inferences. Following this, we reduced the inference time
steps tsteps of these networks through a rate-coding based
approach for further optimization. The method detects the
neuron with the highest spike count in the readout layer
through an adaptable patience value (Section IV-B). The
proposed method succeeded in saving 26.6% and 20.6% out
of the total time steps for the {5&5, Ni = 30} and {1&10, Ni
= 30} networks respectively. The main conclusion that can be
elicited from this study is the feasibility of relying on insights
from neuroscience (i.e. refractory period of spiking neurons)
to develop an elaboration system that fits the constraints of
real-time applications. In particular, and as demonstrated in
our work, the refractory period influences the spiking activity,
making it an interesting parameter that can be leveraged by
neuromorphic devices, which predominantly depend on spike-
driven communication for inferences.
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