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Abstract— Accurate estimation of gait phases during walking is a
crucial prerequisite for both extracting clinically meaningful gait
parameters and delivering gait-based feedback control information
to rehabilitation devices. In addition, speed variation appears in our
daily walking locomotion. However, most existing IMU-related meth-
ods based on heuristic algorithms were reported to be sensitive to
walking speed changes. To address this problem, in this study, we
presented a temporal convolutional network (TCN) based approach
for automatic and robust recognition of gait phases across multi-
scene ambulation and different walking speeds. We collected data
on both real-world overground walking experiments and public
treadmill datasets to validate the performance in terms of the ac-
curacy and robustness of the proposed method. By comparing our
method with six machine learning models and two neural network
models, our method achieves 97% accuracy in gait phase estimation for both overground and treadmill walking, out-
performing all compared benchmarks. It also excelled in both model generalizability evaluation and velocity robustness
comparison tests over the other two neural networks. Notably, TCN can achieve 91 % accuracy in velocity robustness
tests and outperformed fully convolutional network (FCN) and long short-term memory (LSTM) in mean square error
comparison (p<0.05). These results show that our method has outstanding estimation performance and high robustness
on gait speed variations.

Index Terms— Gait Phase Estimation, Gait Speed Variation, Wearable Sensors, Multi-Scene Ambulation, Deep Learning

I. INTRODUCTION

INDEPENDENT walking is one of the primary human
physical activities among daily living activities completed

by the coordination of multiple muscles and skeletons. The
gait cycle describes the cyclic pattern of movement that occurs
while walking, which is defined as a single cycle of gait that
starts when the heel of one foot strikes the ground and ends
when the same heel touches the ground again [1], [2]. In order
to clearly quantify the gait cycle, researchers divided the gait
process into multiple phases. The most studied model in the
gait analysis field was a separation of the stride into the stance
phase and the swing phase. Stance (ST), in which the foot is in
contact with the ground and bearing body weight, and swing
(SW) is the period foot is free to move forward. Detailed
further, the stance phase comprises several sub-phases: initial
contact or heel strike, loading response, midstance, terminal
stance, and pre-swing [3].

The importance of gait phase segmentation lies in its
ability to evaluate and diagnose gaits. Automatic gait phase
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segmentation is a challenging task that is of increasing in-
terest in various multidisciplinary fields. For example, in the
sports field, gait analysis can serve as an effective tool for
coaching athletes to improve their sports performances and
prevent injuries [4], [5]. Gait analysis is also indispensable to
support clinical diagnosis, wearable exoskeleton control, and
rehabilitation process monitoring. For instance, due to factors
such as age and neurodegenerative diseases, spatiotemporal
gait parameters can degenerate significantly from the typical
patterns [6]. Events discriminating gait phases can also be
used as control inputs for functional electrical stimulation
(FES) and wearable assistive devices, such as prostheses,
orthoses, and exoskeletons [7]. Monitoring the improvement
of spatiotemporal gait parameters can also be considered an
effective method of rehabilitation.

However, current gait phase analysis relies on subjective
clinician inspection, which requires field-specific expertise to
hand-craft features for phase extraction. This approach is
not only tedious and time-consuming but also increases the
potential for human error [8]. Therefore, there is a growing
need for the development of autonomous gait phase detection
approaches to overcome these limitations. While existing
automatic gait phase detection methods [9]–[12] are highly
sensitive to variations in walking speed, leading to unsatisfied
results across different walking speeds [13].

In this paper, we aim to develop a deep learning-based gait
phase estimation model for automatic and robust recognition
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of gait phases across multi-scene ambulation and different
walking speeds based on the use of Temporal Convolutional
Network model (TCN). The main contributions of this paper
are summarized as follows:

1) In order to achieve automatic and robust gait phase
estimation across multi-scene ambulation and different
walking speeds, we proposed a temporal convolutional
network (TCN) based approach and implemented six
machine learning models and two neural network models
as benchmarks for comparison.

2) Extensive experiments on both real-world overground
walking data and public treadmill datasets prove the
superior performance in terms of estimation accuracy and
robustness of the proposed method.

3) To our knowledge, few existing studies concern the com-
parison of robustness to speed variations in deep learning-
based phase estimation methods, we design a novel
evaluation method by training and validation models with
different speeds for better verifying speed robustness of
the deep learning model.

The rest of this paper is organized as follows. Section II
introduces the related works in the gait phase detection field.
Section III gives the details of the experimental protocol, along
with the data acquisition and labeling processes. Section IV
presents the gait phase recognition method and benchmarks.
Experimental results are presented in Section V and discussed
in Section VI. Section VII concludes this paper.

II. RELATED WORKS

A. Gait Analysis Systems and Sensing Modalities
1) Force: Utilizing force information to detect gait phases

was the most straightforward and convenient method in the
gait analysis field. With advances in electronic technology, a
variety of force-based automated instruments for gait measure-
ment have been developed, some famous golden standard in
the field including AMTI force plates (FPs) [14], GAITRITE
pressure sensitive walkway [15], etc. Researchers employ these
devices in laboratory settings to collect the necessary force
information, and it is also the most accurate method and is
now serviced as the ground truth for phase detection [16]. But
meanwhile, these devices are restricted to laboratory or clinical
settings and are costly for daily usage. With the development
of wearable technology, force-sensitive resistor (FSR) [17] and
other flexible pressure insoles [18] has been used to perform
gait analysis by measuring the ground reaction forces exerted
on lower limbs. However, these methods have problems such
as short service life. Moreover, the performance of flexible
resistive materials is easily affected by temperature, resulting
in inaccurate measurement outcomes.

2) EMG: Apart from the direct force information, surface
Electromyography (EMG) data, which measures the contin-
uous contraction and relaxation of the target muscles from
electrode-skin interfaces, is a significant indicator of the action
potential and can provide a kinetics clue of human walking
patterns [19]. Recent studies have increasingly focused on
employing EMG data for various motion analysis tasks, such
as hand gestures [20] and gait phase recognition [21], [22].

However, raw EMG signals are inevitably affected by several
factors, including noise, motion artifacts, skin-electrode inter-
face, and cross-talk, resulting in unsatisfactory outcomes in
distinguishing similar but different motions [23]. Additionally,
individual differences are exacerbated by the different place-
ment of wearable sensors and variations in muscle conditions
across trials and subjects.

3) Visual Methods (RGB/RGBD): In the gait analysis field,
multi-camera systems for motion capture are considered the
gold standard solutions, which obtain the high-precision kine-
matic data by accurately detecting 3D positions of reflective
markers affixed to the anatomical landmarks of subjects [24].
Some commercial Mocap systems, like Vicon [25] and Opti-
track [26], are widely used in prominent biomechanics labora-
tories. However, due to the high cost, complicated equipment
settings, and tedious preparation process, the Mocap system is
usually restricted to laboratories and clinical settings. Recent
advancements in computer vision have facilitated the 2D or
3D skeleton estimation directly from RGB or RGBD images.
Several techniques have been proposed to achieve gait phase
recognition from the estimated 3D kinematic data [27], [28].
However, inherent challenges such as 3D skeleton estimation
accuracy and occlusions persist. It is still challenging to apply
for gait phase estimation due to the unsatisfactory estimation
of foot movements in many daily life scenarios [29].

4) Inertial Measurement Units (IMUs): Functions like multi-
camera Mocap systems, IMUs also can measure the kinematic
data by attaching the sensor to the corresponding body parts
of interest. The methods based on the measurement of the
IMU signals present several advantages over traditional Mocap
systems, such as portability, low energy consumption, low
cost, durability, and suitability for use outside laboratory
settings, etc. Thus, many researchers begin to use inertial
measurement units (IMUs) to enable gait analysis in daily life
scenarios [30]–[34].

B. Heuristic methods for phase segmentation

Most existing IMU-related methods rely on heuristic ap-
proaches. These methods use hand-crafted feature extractions,
such as applying thresholds, local minimum/maximum, fil-
tering algorithms, or zero-crossing detection. Aminian et al
[35] utilized the periodic variations in sagittal plane gyroscope
angular velocity during the walking cycle to identify two
critical gait events, heel-strike (HS) and toe-off (TO). The local
minimum on either side of the angular velocity peaks served
as features for recognizing these key events, thus dividing the
gait phase into the swing phase and stance phase. Kotiadis et
al [36] developed a finite state machine representing the gait
process and implemented threshold-based criteria to determine
the rules governing state transitions. Gouwanda et al [37]
employed the zero-crossing technique on gyroscopic data to
detect HS and TO accurately. These methods are simple and
effective, as they only need to find some signal features related
to certain gait events to obtain the corresponding results.
These methods have greatly promoted the development of
IMU-based gait analysis. However, due to the high sensitivity
of accelerometer and gyroscope signal features to variations
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in gait patterns and walking speed, the application of these
heuristic methods often requires field-specific expertise to
adjust the thresholds every time in order to achieve the desired
results.

C. Learning-Based gait phase estimation
1) Machine Learning: To address the issue arising from

heuristic methods, researchers have proposed using learning-
based gait phase estimation. Firstly, researchers use machine
learning algorithms to automatically detect and classify dif-
ferent gait phases. Perez-Ibarra et al. [38] employed support
vector machine (SVM) techniques to analyze data collected
from a single-IMU foot-mounted wearable device during over-
ground and treadmill walking sessions, involving both healthy
individuals and Parkinson’s disease patients, for the purpose
of accurately identifying gait events. Attal et al. [39] imple-
mented a multiple-regression hidden Markov model (HMM)
to facilitate the automatic recognition of gait phases. However,
this approach has some limitations as the learning ability of
machine learning algorithms is limited by the complexity of
the rules or features. The broader class of machine learning
systems relied heavily on feature engineering, which is to
transform the input data into hand-crafted features and then
facilitate the downstream machine learning algorithms to solve
the specific tasks. As a result, the accuracy of the results
obtained using these algorithms may be limited.

2) Deep Learning: To overcome these limitations, re-
searchers are exploring the use of deep learning algorithms.
Deep learning ways can learn complex patterns and relation-
ships in gait data without the need for pre-defined rules or
features. Wang et al. [40] implemented a convolutional neural
network (CNN) based algorithm to analyze data from plantar
pressure sensor arrays and acceleration measurements, with
the objective of accurately recognizing gait phases. Arshad et
al. [41] employed a CNN-RNN hybrid model in conjunction
with a single waist-mounted IMU sensor to accurately predict
gait events. Su et al. [42] carried out a study with 12 healthy
participants, employing 7 IMUs and 4 foot switches for the
collection of walking data. They subsequently implemented a
long short-term memory (LSTM) neural network to predict
both gait trajectories and gait phases, demonstrating the effi-
cacy of this approach. These deep learning-based approaches
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Fig. 1. (a) Experimental setup. (b) Validation of data pre-processing
and illustration of phase labeling.

have shown promising results in gait phase detection and have
significant potential for improving the accuracy and reliability
of gait analysis.

In this paper, we target at learning-based gait phase es-
timation, which aims to achieve a model that robustness to
variations in gait patterns and walking speed.

III. EXPERIMENTS AND DATA COLLECTION

In the experimental section of our study, we utilized two
distinct sets of data, encompassing both overground walking
and treadmill walking scenarios, to comprehensively assess the
performance of the proposed model.

A. Experimental Setup

In the overground walking experiment, 2 IMU sensors
(MetaMotionC, MbientLab, San Fransisco, CA, USA) were
used to obtain gait data as input to subsequent models. Owing
to the high accuracy of Force Plates (FPs), FPs now serve as
the gold standard for gait event detection in the gait analysis
field. We use a force plate (AMTI, MA, USA) sampled at
1000 Hz to provide foot ground reaction force (GRF) as a
benchmark to assess the performance of the proposed method.

Five subjects with no history of severe lower-limb related
injuries participated in this study. All subjects wore two
wireless IMU sensors mounted on the shank with velcro belts.
Accelerometer and gyroscope data with 100 Hz sampling rate
were logged in the sensors during the trials of this experiment
and later uploaded to the computer for further data processing.
The gyroscope range is set at 1000°/s, and the accelerometer
range is set at 8g. Subjects were asked to walk back and forth
on an 8m sidewalk at their preferred speed, fast walking and
slow walking separately. Each experiment was conducted for 3
minutes without intervention, for a collection of total 9 minutes
of gait data per subject.

In this experiment, the motion capture system (Mocap) and
force plate (FP) are well synchronized through the electronic
synchronization device. In order to synchronize the data of the
IMUs with a force plate, participants were asked to perform
the corresponding landmark actions before starting the walking
session and after the end of the last walking cycle (In this
experiment, participants were instructed to jump). Figure1.a
depicts the scenarios of the experimental setup.

B. Biomechanical Dataset

In the session on treadmill walking, we utilized an open-
source dataset, which can be found in [43]. This dataset
comprised data from 15 healthy subjects (8 males and 7 fe-
males) walking on an instrumented treadmill in three different
speed conditions: PWS (preferred walking speed: 3.9 ± 0.5
km/h), PWS+20%, PWS-20%. Each condition contained at
least 120 steps. Reference data for this dataset were recorded
using an OptoGait system (Microgate, Bolzano, Italy) and
FDM-THQ pressure distribution measurement system (Ze-
bris Medical GmbH, Isny, Germany), both integrated into
the quasar® med treadmill (h/p/cosmos sports and Medical
GmbH, Nussdorf-Traunstein, Germany). The Zebris system
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consists of a capacitive force sensor integrated directly under
the treadmill to provide ground reaction force (GRF) data
from the foot, thereby offering data on the stance period.
The OptoGait system consists of infrared LED transmitting
and receiving bars integrated into the treadmill footboards.
During data collection, the OptoGait LED sensors measure
contact time and position, thereby automatically providing
spatiotemporal gait parameters for treadmill walking after data
collection. The dataset also includes IMU data recorded using
seven Physilog®5 IMUs (Gait Up, Lausanne, Switzerland).
The IMU sensors are factory-calibrated, with all sensors being
well synchronized. The zebris system and IMU are configured
to record at 128 Hz, while the OptoGait system is set to record
at 1000 Hz. The gyroscope range is set at 1000°/s, and the
accelerometer range is set at 16g. Additionally, this dataset
offers video recordings from two RGB cameras capturing the
frontal and sagittal views of the participants’ lower bodies
during the experiment. In this study, we only use two shank-
mounted IMUs in this dataset.

C. Data Pre-processing
During the overground walking experiment, we collected the

collected data of the participants including marker positions,
shank IMUs signals, and ground reaction force information
(GRF) on the force plates, firstly we use a boolean stance
flag H(t) to distinguish the standing period from the GRF
information, the formula is shown in Eq.(1), where FGRF (t)
is the GRF in the vertical direction from the FP, Fthreshold

is the set judgment threshold, and in this study the threshold
is set to 10N. The heel-strike event is then detected from the
rising edge of the stance flag H(t).

H(t) = Sgn(max(FGRF (t)− Fthreshold, 0)) (1)

In these steps without GRF information during the over-
ground walking experiment, the toe-off and heel-strike events
were extracted by applying Foot Velocity Algorithm (FVA)
[44] to the corresponding foot marker’s kinematics informa-
tion. We utilized this method to complement gait event data
for overground walking that were not captured by force plates,
which allowed us to enhance the comprehensiveness of our
analysis. After applying FVA, we extend valid steps from 424
steps on the force plate to 2505 steps extracted from kinematic
data. Figure1.b shows the process of verifying the effectiveness
of the FVA algorithm.

Regarding the data labeling process, we initially collected
all maximal and minimal values of the vertical ground reaction
force (GRF) from the 424 steps on force plates. We then
calculated the statistical averaging percentage of each gait
phase throughout the entire support period for these steps
from FP. Next, we aligned each kinematic extracted step’s
timestamps with 6D IMU data to create the respective data
segments, then applied the phase statistical percentage ob-
tained from the above-mentioned steps to the 2505 ground
walking data segments, obtaining the corresponding phase
change timestamps for each segment. Finally, we labeled
the segment with each phase according to the corresponding
timestamps or the closest one, thus dividing them into load

response (LR), midstance (MS), propulsive phase (PP), pre-
swing (PS) and swing (SW) 5 phases. Figure1.b depicts a
schematic of phase labeling.

In the treadmill walking scenarios, the reference system data
provided by the dataset gives the temporal information of each
step of the subjects so that we can segment each step and
divide it into load response (LR), midstance (MS), propulsive
phase (PP), pre-swing (PS) and swing (SW) 5 phases, consis-
tent with the phases we labeled with the overground walking
data.The final format for each segment in both datasets is 8
× S (8: timestamps + 6D IMU signals + labels, where S is
the number of samplings in one step = sample rate of IMU *
step duration)

IV. METHODS

A. Problem Statement
Before going into the implemented sequence model and

the benchmarks, we first give an overview of the pipeline
for learning-based phase estimation. Considering that we
have Nt pre-processed training subject datasets D =
{D1,D2, · · · ,DNt

}, the main objective of the learning-based
method is to establish a map function f(Xinput,Wp), where
Wp was referred to as the weights parameters and the set of
variable Xinput = {X1, · · · ,Xn} is the input space which was
described in Eq.(2).

Xinput =

x1[1] · · · xf [1]
... · · ·

...
x1[n] · · · xf [n]

 ,X ∈ RNs×F (2)

Ns stands for the sum of the sampling number of each
step segment, F stands for the number of features, and the
input feature in this research is 3D acceleration adding 3D
angle velocity, 6 features in total. The output space Ŷp,
which denoted the output predicted phases in this study, was
described in Eq.(3).

Ŷp =

ŷ1...
ŷn

 , ŷn ∈ [0, 1, 2, 3, 4] (3)

ŷn ranges from 0 to 4, as it corresponds to the target phases,
which are divided into five stages in this study. The values 0 to
4 each represent the target values for these five phases in this
study. During the training process, function spaces F with
different learning-based algorithms f ∈ F extract the input
data from provided training dataset D and transform it into an
optimization problem: minimize loss function L.

B. Implemented Sequence Model and Benchmarks
Two types of gait phase estimation approaches were im-

plemented in this study: the machine learning (ML) baseline
method and the deep learning (DL) baseline method.

ML Baseline Methods - The machine learning baseline
methods include some classic feature extraction-based classi-
fication ML algorithms to extract time series features into gait
phases, i,e., K-nearest neighbor (KNN), naive Bayes (NB),
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support vector machine (SVM), decision tree (DT), logistic
Regression (LG), multilayer perception (MLP), etc.

FCN - Fully convolutional network (FCN) was selected
as a benchmark neural network for comparison with our
methodology, given its proven success in estimating the gait
phase in previous research [45], [46]. We implemented an FCN
that uses a series of fully connected layers comprising hidden
nodes activated by a nonlinear activation function to estimate
the output. Based on our hyperparameter optimization, the
FCN in our study is made up of three hidden layers activated
by the ReLU function and one output layer. A dropout follows
each hidden layer to aid the model in learning more complex
representations and preventing overfitting.

LSTM - Long short-term memory network (LSTM), a class
of recurrent neural networks, served as another comparison
benchmark neural network to our method and shows superior-
ity in most time series tasks recently, including the gait phase
estimation [42]. LSTM is composed of three gates and two
states: input gate it, forget gate ft, output gate ot, cell state
ct, and hidden state ht.

X

X
X

+

Forget gate Input gate Output gate

LSTM Unit

tanh

tanh

Fig. 2. Schematic Diagram of LSTM Unit.

The input gate determines which elements of the new data
are retained in the cell state. The forget gate layer decides the
portions of information that should be omitted from the cell
state. The output gate ascertains the quantity of information
on the cell state at the current time adopted as the output,
cell state and hidden state serve as repositories for long-term
and short-term information. The schematic representation of
an LSTM unit is depicted in Figure.2, and the mathematical
expressions of LSTM cell units from the input to the output
can be expressed as follows:

it = σ
(
Wiixt + bii +Whih(t−1) + bhi

)
(4)

ft = σ
(
Wifxt + bif +Whfh(t−1) + bhf

)
(5)

gt = tanh
(
Wigxt + big +Whgh(t−1) + bhg

)
(6)

ot = σ
(
Wioxt + bio +Whoh(t−1) + bho

)
(7)

ct = ft ∗ c(t−1) + it ∗ gt (8)

ht = ot ∗ tanh (ct) (9)

Input

Output

N

Temporal Casual Layer

Temporal Casual Layer

Temporal Casual Layer

Temporal Casual Layer
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Conv1d (k)

Weight Normalization

ReLU

Dropout
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Weight Normalization

ReLU

DropoutLinear Layer + SoftMax

Fig. 3. Schematic Diagram of TCN Unit.

In this study, the hyperparameter-optimized LSTM we use
comprises two LSTM layers each of size 128, and one fully-
connected layer. It takes in six features to generate predictions
for five distinct phases.

TCN (This Work) - Temporal convolutional network
(TCN) introduced by Bai et al [47] was implemented as our
candidate network for estimating the gait phase due to the ben-
efits of dilated, causal convolution operation, which allowed to
apply a flexible receptive field size and the convolution is done
in parallel without waiting for the previous timesteps compared
to a conventional convolutional network. Fig.3 shows the
diagram of a TCN unit. The dilated convolution operation F
on elements j for the one-dimensional input sequence β with
the filter ψ : {0, ..., k − 1} −→ R is defined in Eq.(10), where
d is the dilation factor, k is the filter size and j− di indicates
the direction of the past.

Fj(x) =

k−1∑
i=0

ψ(i)βj−di
(10)

After the causal convolution operation, weight normaliza-
tion is performed and then the ReLU function is used for
activation, and finally perform dropout to avoid overfitting.
For the purpose of enhancing the network’s performance and
stabilizing the model, a low-kernel convolution was added
to the input tensor x as a residual block. The output o of
the temporal causal layer is related to the input via residual
block connection, which is a branch leading out to a series of
transformations f :

o = Activation(x+ f(x)) (11)

Finally, the receptive field size R of this network depends on
the size of the filter and the dilation factor d, which was usually
exponentially increased by an i times exponential relationship
of 2, i represents the number of temporal causal layers in the
unit.

R = 1 +

k−1∑
i=0

2(k − 1)di, di = 2i (12)

In this study, the number of temporal causal layers N
was set to 3 according to our hyperparameter results. We
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implemented a TCN composed of three stacked temporal
causal layers with a filter kernel size of 64.

All these model was implemented in Pytorch framework.
The hyperparameters of the FCN, LSTM, and TCN were
independently optimized using grid search hyperparameters.
Each neural network was trained using the Adam optimizer
and a CrossEntropy loss function(described in Eq.(13)). The
optimized models for each type of neural network were then
trained from random initialization. The results for all further
analyses were computed using the same training method.

Lc = −
N∑
i=1

yo,i log po,i (13)

C. Evaluation Metrics
For the purpose of quantified evaluation of these model’s

performance, in this study, the performances of these imple-
mented gait phase estimation models are evaluated using four
metrics: accuracy, precision, recall, and F-score, which can be
calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
=
TP

P
(16)

where TP , TN , FP , and FN represent the number of true
positives, true negatives, false positives, and false negatives,
respectively.

Fα · score = (1 + α2) ·Recall · Precision
α2 ·Recall + Precision

(17)

In this study, α is set to 1 to assign the same weight to
recall and precision, obtaining the F1-score metric.

D. Statistical Analysis
To indicate statistical significance across different networks

in the robustness of different walking speeds, the mean squared
error (MSE) between the predicted result and ground-truth
label, which is defined in Eq.(18) was used as a compact
measure for comparison metrics. A one-way analysis of vari-
ance (ANOVA) with a significance level α set to 0.05 was
conducted. For a comparison between pairwise baselines, a
Tukey’s Honest Significant Difference (HSD) post hoc cor-
rection with the same α assigned of 0.05 was applied.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (18)

V. RESULTS
A. Validation of FVA and Label Accuracy

To validate the reliability of the FVA algorithm used in this
study and the accuracy of the phase label method, the 424
steps collected from the force plate serves as the gold standard
for validation of both FVA algorithm and phase label during
stance phase.
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Fig. 4. Boxplot of distribution of labels derived from ground truth and
the phase label in overground walking dataset

1) Validation of FVA Algorithm Derived Gait Events: Table I
shows the difference between the results of the FVA algorithm
and the true value of the GRF for heel-strike and toe-off
detection.

TABLE I
VALIDATION OF FVA ALGORITHM

Gait Events
Validation of FVA Algorithm (Mean±Std)

RE AE ME

HS 2.014±9.588 7.957±5.640 8.000

TO 0.286±21.422 17.943±11.505 15.000

Note: HS: Heel strike, TO: Toe Off, RE: Relative Difference
Error, AE: Absolute Error, Me: Median of Absolute Error. Unit
in this Table: millisecond(ms).

The RE and AE of heel-strike (HS) and toe-off (TO) are
within 15ms and 30ms respectively, which is consistent with
the results given in the existing study [44]. The above results
show that the gait events extracted from the kinematic data
by FVA used in this study are consistent with the force plate
reference standard, which means that the FVA algorithm can
be used to accurately extract gait events of participants during
walking sessions from Mocap kinematic data.

2) Validation of Label Accuracy During Stance Phase: Since
the determination of HS and TO events have clearly defined
the stance phase and swing phase, we only need to verify the
accuracy of the remaining four labels inside the stance phase.
Our label reference for the stance phase comes from the gold
standard: the steps on the force plate. We use statistical values
of these reference data to label all steps, the data distribution
of the phase label and ground true value is shown in Figure
4 and the validation accuracy results are shown in Table II.
The accuracy results of each label inside the stance phase are
within 20ms.

B. Estimate Results of Phase Models
For the purpose of quantified evaluation of these models’

performance, we initially partitioned the training and vali-
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Fig. 5. The comparison of confusion matrix results among phase estimation models

TABLE II
VALIDATION OF STANCE PHASE LABELS

Gait Phases
Accuracy of Phase Labels (Mean±Std)

RE AE ME

LR 0.013±14.143 10.780±9.060 9.070

MS -1.038±11.555 9.059±7.164 7.785

PP 0.035±14.958 11.708±9.198 10.344

PS 1.075±10.556 7.303±7.647 5.043

Note: RE: Relative Difference Error, AE: Absolute Error, Me:
Median of Absolute Error. Unit in this Table: millisecond(ms).

dation sets at the same speed in the same subject and used
the metrics such as accuracy, precision, recall, and F1-score
mentioned above to evaluate.

Within the gait data of the same speed for the same subject,
the training and validation sets were divided into 70% and

30%, respectively. During the training and validation, we
trained and validated each speed for each subject separately.
We then combined the predicted labels from these models with
the true labels from all subjects for the final model evaluation.

The overall performances of phase models of ML and DL
baseline methods are compared in Table III. For the Walking
Session, deep learning models LSTM and TCN outperformed
the other models across all evaluation metrics. Specifically,
TCN achieved excellent results with accuracy, precision, re-
call, and F1 score of 0.9694, 0.9697, 0.9691, and 0.9694,
respectively. LSTM also demonstrated high performance with
accuracy, precision, recall, and F1 score of 0.9583, 0.9602,
0.9579, and 0.9583, respectively. For the Running Session,
Similarly, the deep learning models LSTM and TCN also per-
form well, all evaluation metrics are higher than other models.
TCN performed best, with accuracy, precision, recall, and F1
scores of 0.9713, 0.9716, 0.9713, and 0.9712, respectively. The

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3343721

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE III
COMPARISON OF OVERGROUND WALKING AND TREADMILL WALKING TEST SET PERFORMANCE ACROSS ALGORITHMS

Overground Walking Session Treadmill Walking Session

Algorithms Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

ML

KNN 0.9183 0.9183 0.9179 0.9173 0.9353 0.9339 0.9319 0.9328

NB 0.8669 0.8673 0.8670 0.8570 0.8677 0.8662 0.8542 0.8533

SVM 0.9052 0.9051 0.8993 0.9017 0.9074 0.9092 0.8979 0.9019

DT 0.9195 0.9208 0.9197 0.9195 0.9271 0.9240 0.9229 0.9234

LG 0.8680 0.8680 0.8683 0.8683 0.8695 0.8657 0.8526 0.8573

MLP 0.9433 0.9431 0.9433 0.9433 0.9465 0.9470 0.9412 0.9438

DL

FCN 0.9438 0.9445 0.9440 0.9444 0.9460 0.9463 0.9460 0.9461

LSTM 0.9583 0.9602 0.9579 0.9583 0.9665 0.9669 0.9665 0.9664

This Work 0.9694 0.9697 0.9691 0.9694 0.9713 0.9716 0.9713 0.9712

Note: Numbers are the performance of each model’s evaluation metrics in the training and validation in the same subject and
same speed situation. The number in bold represents the highest model performance.

evaluation metrics of LSTM are also above 0.96, which is an
excellent performance. Among the machine learning models
employed in these two sessions, the MLP model exhibited the
best performance, with all evaluation metrics above 0.94. The
SVM, KNN, and DT models also demonstrated comparatively
good performance. In general, however, in the gait phase
estimation tasks among these two scenarios, the deep learning
models outperformed the machine learning models.

Figure.5 illustrates the confusion matrix resulting from the
model evaluation that combined the predicted labels from
models trained and validated on data from the same subject at
the same speed, with the true labels from all participants. The
confusion matrix provides details of the estimation accuracy
of each model at each phase. Consistent with the results
shown in Table I, the deep learning models LSTM and TCN
outperformed other models in estimating most phases with
higher precision. To offer a more intuitive display of the
differences in the results of these models, Figure.6 presents
an example, displaying a comparison between the predicted
label and true labels for phase estimation by these models at
the same speed for the same subject.

In conclusion, the deep learning models LSTM and TCN
excelled in phase estimation tasks during both the overground
walking session and treadmill walking session, while the TCN
slightly outperforms the LSTM.

C. Inter-Subject Model Generalizability Evaluation
Based on the conclusions from previous estimation perfor-

mance evaluation and considering that deep learning models
generally handle dynamical time-series data better than ma-
chine learning models in most cases [48], we are confining
our subsequent evaluation to the deep learning models: FNN,
LSTM, and TCN.

To assess the generalizability of these models, we employ
the Leave-One-Subject-Out (LOSO) cross-validation method.

In this study, we utilized the data of different subjects at the
same speed to train the model, while data from one subject
is left out for validation. We averaged the results obtained
after validating the data of all subjects in turn to obtain the
final results. Table IV and Table V summarize the final results
in normal, fast, and slow speed situations of each model
after LOSO in the overground walking session and treadmill
walking session respectively.

As the table shows, whether in the overground walking
session or the treadmill walking session, the accuracy at slow
speed is consistently higher than that in both fast and normal
scenarios, while the lowest accuracy is observed at fast speed.
This can be explained by gait features that might be more
easily captured by neural networks for slow motion. For the
LOSO results of each network, TCN has achieved the best
results compared to FCN and LSTM in both the overground
walking session and the treadmill walking session. The overall
trend for FCN and LSTM is similar for this inter-subject
validation, this indicates that LSTM has some weakness for
cross-subject usage.

Overall, in terms of LOSO results, TCN consistently outper-
forms other benchmarks. These results demonstrate the robust-
ness of the TCN model in handling cross-subject estimations.
The certain advantage over FNN and LSTM indicates the
TCN model’s generalizability for different subjects, which is
an important feature when we need gait phase estimation for
a brand-new subject.

D. Intra-Subject Speed Variation Robustness

To evaluate the speed variation robustness of these models,
we conducted training and validation across different speeds
for the same subject.

1) Evaluation of Speed Variation Robustness: In this study,
we trained the model using data from one speed, while
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Fig. 6. Comparison figure of predicted labels versus true labels across
all algorithms. The blue line denotes the predicted label, and the red
line denotes the truth label (0-4 in the y-axis denotes the label of target
phases).

validating it on data from another speed. After sequentially
validating all subjects’ data, we selected all valid results for
analysis (Due to the absence of effective slow-speed data
from one participant in the treadmill dataset, we excluded this
individual from training and validation processes involving
slow-speed data). Then we averaged the obtained results to
yield a final outcome. Table VI and Table VII summarize the
final results for each model.

Table VI shows the results of the validation accuracy of each
neural network in the speed variation robustness evaluation.
Whether in the overground walking session or the treadmill
walking session, TCN consistently demonstrates the highest
accuracy, with the accuracy exceeding 90% in most cases.
While the LSTM exhibits some advantages over the FCN but
is worse than TCN. Compared with the three neural network
results of training and validation in the same subject and
same speed situation in Table III, the accuracy of the FCN
network drops significantly. Although the accuracy of the

TABLE IV
INTER-SUBJECT MODEL GENERALIZABILITY RESULT OF EACH NEURAL

NETWORK IN OVERGROUND WALKING SESSION

Overground Walking Session

Networks Normal Fast Slow

FCN 0.6937±0.077 0.6626±0.081 0.7258±0.071

LSTM 0.6923±0.074 0.6653±0.072 0.7342±0.079

This Work 0.7693±0.082 0.7364±0.077 0.8032±0.071

Note: Numbers are the average test accuracy of leave-one-subject-
out (LOSO) results of each participant in an overground walking
session. The number in bold represents the highest generalizability
performance.

TABLE V
INTER-SUBJECT MODEL GENERALIZABILITY RESULT OF EACH NEURAL

NETWORK IN TREADMILL WALKING SESSION

Treadmill Walking Session

Networks Normal Fast Slow

FCN 0.6820±0.074 0.6556±0.079 0.7090±0.065

LSTM 0.6687±0.079 0.6341±0.072 0.7105±0.076

This Work 0.7607±0.078 0.7101±0.089 0.7814±0.069

Note: Numbers are the average test accuracy of leave-one-subject-out
(LOSO) results of each participant in a treadmill walking session. The
number in bold represents the highest generalizability performance.

LSTM in Table III is relatively close to TCN, there is an
evident difference between the results between LSTM and
TCN in Table VI.

While accuracy can only measure the absolute correct rate
of the model’s estimation, to quantify the distance difference
between the predicted labels and the true labels of each
neural network model in the speed variation robustness test,
we calculated the mean square error (MSE) of each model
in various training and validation situations. As shown in
Table VII, for the overground session, across all different
speed training-validation configurations, the TCN’s MSE is
the lowest. In comparison to FCN, the average MSE of
TCN in various speed training-validation scenarios has been
reduced by 55.93%, 64.40%, 49.75%, 48.87%, 65.59%, and
54.76%, respectively. Against LSTM, it has been reduced
by 46.99%, 51.22%, 38.27%, 26.15%, 60.33%, and 45.94%
respectively. While LSTM also shows a decrease in MSE
compared to FCN, the reduction is consistently below 30%.
The greatest reductions in MSE correspond to the training-
validation scenarios TSVF and TFVS, which involve the most
significant differences in speed.

For the treadmill session, the MSE of TCN is again the
lowest across all different speed training-validation config-
urations. Compared to FCN, the average MSE of TCN in
various speed training-validation scenarios has been reduced
by 50.19%, 59.47%, 47.61%, 55.97%, 53.22%, and 56.93%
respectively. Against LSTM, it has been reduced by 44.14%,
51.73%, 42.41%, 50.32%, 50.45%, and 46.26% respectively.
Similarly, LSTM shows a decrease in MSE compared to FCN,
but the performance is mostly similar, with the MSE difference
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TABLE VI
COMPARISON OF SPEED VARIATION ROBUSTNESS WITH ACCURACY EVALUATION OF EACH NEURAL NETWORK

Overground Walking Session Treadmill Walking Session

Networks TSVN TSVF TNVS TNVF TFVS TFVN TSVN TSVF TNVS TNVF TFVS TFVN

FCN 0.811(0.036) 0.758(0.039) 0.812(0.030) 0.819(0.032) 0.798(0.028) 0.859(0.031) 0.838(0.038) 0.762(0.031) 0.824(0.029) 0.841(0.031) 0.803(0.037) 0.839(0.03)

LSTM 0.864(0.028) 0.809(0.028) 0.866(0.027) 0.878(0.023) 0.802(0.030) 0.871(0.029) 0.867(0.026) 0.810(0.035) 0.859(0.026) 0.878(0.021) 0.798(0.032) 0.873(0.027)

This Work 0.911(0.017) 0.902(0.022) 0.902(0.018) 0.904(0.019) 0.911(0.017) 0.914(0.016) 0.911(0.023) 0.877(0.026) 0.904(0.021) 0.916(0.023) 0.864(0.027) 0.915(0.020)

Note: Numbers are the mean accuracy results (the higher the better) of each train and valid situation (T: training, V: validation, S: slow, N: normal, F: fast). These accuracy results were
presented by mean values and their standard deviation.

TABLE VII
COMPARISON OF SPEED VARIATION ROBUSTNESS WITH MEAN SQUARE ERROR EVALUATION OF EACH NEURAL NETWORK

Overground Walking Session Treadmill Walking Session

Networks TSVN TSVF TNVS TNVF TFVS TFVN TSVN TSVF TNVS TNVF TFVS TFVN

FCN 0.599(0.172) 0.837(0.180) 0.597(0.113) 0.577(0.149) 0.776(0.104) 0.515(0.116) 0.536(0.178) 0.824(0.168) 0.565(0.207) 0.527(0.158) 0.714(0.176) 0.534(0.144)

LSTM 0.498(0.149) 0.611(0.153) 0.486(0.148) 0.462(0.140) 0.673(0.171) 0.431(0.131) 0.478(0.143) 0.692(0.194) 0.514(0.156) 0.467(0.119) 0.674(0.189) 0.428(0.093)

This Work 0.264(0.074) 0.298(0.094) 0.300(0.074) 0.295(0.080) 0.267(0.068) 0.233(0.051) 0.267(0.104) 0.334(0.137) 0.296(0.109) 0.232(0.100) 0.334(0.120) 0.230(0.087)

Note: Numbers are the mean squared error (MSE) results (the lower the better) of each train and valid situation (T: training, V: validation, S: slow, N: normal, F: fast). These MSE comparisons
were presented by mean values and their standard deviation. This error is regarding the gait phase label value (ranging from 0 to 4).
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Fig. 7. Speed variation robustness results per neural network. The MSE
(lower is better) results of the temporal convolutional network (TCN) and
baseline methods are shown. Results are presented for the overground
and treadmill ambulation modes among 12 training and validations
situations (Figures a, b and c present training with slow, normal, and
fast situations respectively. T: training, V: validation, S: slow speed, N:
normal speed, F: fast speed). The bars represent the mean error ± the
standard deviation. * represents p values (p <0.05), ** represents p
values (p <0.01).

consistently below 20%. The same as mentioned above, the
most significant reductions in MSE correspond to the training-
validation scenarios TSVF and TFVS, which involve the most
substantial differences in speed.

Fig.7 provides a more detailed illustration of the MSE
differences in phase estimation among these models under var-

Slow Normal Fast

Combined 

Segments

FNN

LSTM

TCN

Predicted Label True Label

Fig. 8. Robustness performance test to train each neural network on
the normal speed walking data and validate on a combined segment
consisting of slow, normal, and fast speed from speed-controlled tread-
mill data. Each speed contained six steps, together forming a combined
segment consisting of 18 steps with three speeds (0-4 in the y-axis
denotes the label of target phases).

ious speed training-validation scenarios in the context of intra-
subject conditions. The results were statistically analyzed and
grouped according to different ambulation modes and training-
validation scenarios. As illustrated, for the overground session,
all the MSE results of the TCN model showed significant
differences compared to FCN, in which the TNVF scenario
exhibits p<0.05, while all other scenarios show p<0.01. All
TCN results also showed significant differences compared to
LSTM (p<0.05), where the TFVS scenario was p<0.01.In the
case of the overground session, the results of LSTM did not
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Fig. 9. One example of predicted labels versus true labels while
trained with slow and validated with fast situations (TSVF). The blue line
denotes the predicted label, while the red line denotes the truth label
(0-4 in the y-axis denotes the label of target phases).

show a significant difference compared to FCN.
For the treadmill session, all the MSE results of the TCN

model demonstrated a significant difference compared to FCN
(p<0.01). All the results of TCN also showed significant
differences compared to LSTM (p<0.01). In the treadmill
session, the results of LSTM compared to FCN only showed
significant differences in the TSVF and TFVN scenarios
(p<0.05), and no significant differences were seen in other
scenarios. All p-values for non-significant differences are
marked in the figure.

2) Robustness Performance on Combined Speed: In order
to understand the speed variable robustness of each network
more intuitively, a robustness performance test on a combined
speed segment was conducted. The combined segment con-
sisted of slow, normal, and fast-speed walking data from the
speed-controlled treadmill experiment. Each speed contained
six steps, together forming a combined segment consisting of
18 steps with three speeds. Each neural network was trained
in normal walking speed data (the same speed as the normal
part of the combined segment) and validated on the combined
segment. As we can see in Fig.8, the performance of LSTM
and TCN was close in normal speed part, but TCN shows
supreme robustness in the other slow and fast speed segments,
which is consistent with the results shown previously.

3) Performance of Speed Robustness in Limit State: To
offer an intuitive representation of the mean squared error
differences in phase estimation across these models under a
variety of speed training-validation scenarios, Fig.9 provides
an example under the specific scenario of TSVF (training
with slow and validation with fast) in treadmill walking,
which is characterized by a substantial difference in speed and
illustrates the comparison between the predicted labels and the
true labels. It can be seen that there is a clear distinction in
the results of speed variations between TCN and the other
models, FNN and LSTM. This illustrates the robustness to
speed variations that TCN exhibits in comparison to the other
two benchmark models.

VI. DISCUSSION

According to the above results, the accuracy and robustness
to different walking speeds of gait phase estimation in multi
scenarios ambulation context can be enhanced by utilizing
Temporal Convolutional Networks (TCN) based deep learning
methods. Most existing IMU-related methods rely on heuris-
tic approaches. These methods employ hand-crafted feature
extractions, such as applying thresholds [35], identifying lo-
cal minimum/maximum values [36], implementing filtering
algorithms, or detecting zero crossings [37]. Due to the high
sensitivity of accelerometer and gyroscope signal features to
variations in gait patterns and walking speed, the accuracy and
reliability of these heuristic methods are often insufficient.

In this paper, we presented a temporal convolutional net-
work (TCN) based approach for automatic and robust recogni-
tion of gait phases across multi-scene ambulation and different
walking speeds. Extensive experiments on both public datasets
and real-world data have proven the superior performance
of the proposed method in terms of accuracy and efficiency.
We utilized the proposed TCN-based gait phase estimation
model to segment the training-labeled gait series into five
gait phases and employed six classical classification machine
learning methods and two commonly used neural networks as
benchmarks for comparison.

In the first evaluation, we split the data at the same subject of
the same speed into training and validation sets and evaluated
and compared with four metrics: accuracy, precision, recall,
and F1 score, to select the best classifier for gait phase esti-
mation. The results demonstrated that neural network methods
outperformed other feature-based machine learning classifiers
in this task, and our proposed method also surpassed the other
benchmarks compared. In the second evaluation, we tested
data from different subjects at the same speed, using LOSO
(Leave-One-Subject-Out) to compare model generalizability.
The results indicated that the TCN-based method has certain
advantages over FCN and LSTM in terms of model general-
ization.

In the final evaluation, we assessed and compared the
model’s speed robustness using the data from the same subject
at different speeds (To our knowledge, few existing studies
concern the comparison of robustness to speed variations in
deep learning-based phase estimation methods). The experi-
mental results showed that our method exhibited significant
differences in various walking conditions compared to FCN
and LSTM (p<0.05). The differences were even more pro-
nounced in cases of combined speed validation and significant
speed variations, such as TSVF (Train with slow, validate with
fast) and TFVS (Train with fast, validate with slow). In the
combined speed validation, the perfomance of TCN was close
to the performance of LSTM in normal speed part, this was
consistent with our results in Table III. But when it comes to
validation under other speed conditions, TCN showed supreme
speed robustness againstother benchmarks, which is consistent
with our results in the analysis of Table VII and Figure 7. The
performance test in the limit state further illustrates the gap in
speed robustness among TCN and benchmarks.

There are also some limitations within this study. First,
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the current model is primarily designed for healthy indi-
viduals, and it can be unlikely to have the same effect on
pathological gait. Therefore, consideration should be given
to increasing pathological gait training data and improving
the corresponding models to enhance the model’s general-
ization ability for other gait types, enhancing it closer to
real clinical gait analysis application. Second, the current
algorithms and hardware systems have been tested only by
offline analysis, the development of hardware and algorithms
for corresponding online analysis systems can be considered in
the future. Finally, compared with the RNN network structure,
the parallelism processing method of TCN may struggle to
capture the intricate sequential dependencies that are crucial to
accurately identify the gait phase transitions, moreover where
there are distinct gait patterns occur at the beginning and end
of a gait cycle. We suggest looking into the multi-stage TCN
[49], which uses combined large and small receptive fields and
fewer parameters potentially improving the recognition accu-
racy in the transition phase, and other possible deep learning
architectures that may offer solutions to these challenges.

VII. CONCLUSION
We presented a temporal convolutional network-based ap-

proach for automatic and robust recognition of gait phases
across multi-scene ambulation and different walking speeds.
We collected data on both real-world overground walking ex-
periments and public treadmill datasets to validate the perfor-
mance in terms of the accuracy and robustness of the proposed
method. By comparing our method with six machine learning
models and two deep neural network models, our method
achieves nearly 97% accuracy in gait phase estimation for both
overground and treadmill walking, outperforming all compared
benchmarks. It also outperformed in both model generalizabil-
ity evaluation and speed variation robustness tests over the
other two neural networks. Especially, the proposed method
could keep nearly 90% accuracy in gait phase estimation even
when there was a significant discrepancy in speed between
training data and validation data. These results demonstrate
that our method has outstanding estimation performance and
high robustness on gait speed variations.
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