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Abstract—In the quest for a blood pressure (BP) mea-
surement method that is applicable in daily life, deep
learning-based BP estimation models utilizing photoplethys-
mograms (PPGs) have recently been introduced. To allow
the routine deployment of BP estimation models that rely on
wearable sensing PPGs, they should be able to sustain per-
formance over an extended period. However, achieving stabil-
ity is difficult due to variations in the distribution of PPG data
caused by shifts in sensor positions and human conditions.
This study assessed the performance of deep learning-based
BP estimation models that were pretrained on a large-scale
dataset and explored their adaptability and adjustment fre-
quency during fine-tuning with wearable sensed small-scale
data over a one-month period. Two distinct datasets were
utilized: the publicly available Multiparameter Intelligent Mon-
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itoring in Intensive Care Il Waveform Database Matched Subset version 1.0 and a private dataset recorded from
11 participants over four days (one day per week) using a customized wearable wristband-type PPG device. The results
indicated the superior performance of the fine-tuned models compared with the non-fine-tuned models. Tuning the
models every week resulted in greater performance than tuning only once in the first week. Balancing convenience and
performance continues to be a practical challenge in this research field. Moreover, even the most accurate fine-tuned
model does not consistently satisfy medical standards, presenting a hurdle for medical applications. This study revealed
the effectiveness and adaptability of pretrained fine-tuned BP estimation models for long-term wearable sensing data;
however, enhancing the estimation performance remains a challenge.
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[. INTRODUCTION

DENTIFYING and addressing signs of hypertension onset

and assisting in preventing its development are crucial for
maintaining well-being because hypertension is a significant
cause of cardiovascular diseases, such as angina pectoris and
myocardial infarction [1] and is a major cause of death
due to stroke [2]. The number of patients with hypertension
worldwide has doubled from 1990 to 2019 [3]. Hypertension
can be identified when systolic blood pressure (SBP) is above
130 mmHg or when diastolic blood pressure (DBP) is above
80 mmHg [4]. SBP represents the blood pressure (BP) when
the heart contracts and pumps blood from the heart to the
body through the aorta. DBP represents the BP when the heart
relaxes and receives blood from the body. The method most
commonly used to measure BP in healthy people involves
the use of a cuff-type sphygmomanometer on the upper arm,
which is cumbersome and hampers routine BP measurements
in daily life. The development of a simple and implicit BP
measurement method may contribute to obtaining BP values
with high temporal resolution, which would help to identify
and address signs of early hypertension onset and could assist
in preventing its development, resulting in the maintenance of
well-being.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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To develop a routinely applicable BP measurement
method, machine-learning and deep-learning models using
data obtained from photoplethysmograms (PPGs) to estimate
BP values have been proposed [5], [6], [7], [8], [9], [10],
[11], [12]. Such studies have focused on constructing advanced
models using large-scale datasets collected from traditional
nonwearable PPG devices used in hospitals. Furthermore,
they reported an increasing number of models that exhibited
minimal errors between the true and estimated BP values,
meeting the standards for estimating BPs. PPGs provide an
optical measurement of subcutaneous blood flow, making them
well suited for implementation in wearable devices because
of the affordability and lightweight nature of the sensors.
Therefore, such devices have the potential to be simple and
implicit BP measurement tools.

Recently, personalization and continual learning have
become common in deep-learning-based BP estimation for
PPGs [13], [14], [15], [16], [17]. Both are important keywords,
but they have used separately. The studies developing person-
alization methods based on fine-tuning [13], [14], [15], [16]
partition large-scale or small-scale datasets collected from non-
wearable or wearable devices into source and target subsets.
However, fine-tuning is conducted only once, and there is a
lack of continual learning. Alternatively, a study developing
continual learning methods [17] addresses the challenge of
training the model with a small initial dataset and gradually
adding data to update the model. It does not pretrain a model
with a large-scale dataset. In studies that use PPGs to develop
routinely applicable BP estimations, customized wearable PPG
equipment can initially yield only small datasets; however, sev-
eral large-scale datasets are publicly available [18], [19]. If a
backbone (BB) model is pretrained using such a dataset and
incrementally updated using a small-scale dataset collected
from wearable devices, it may be useful over time and can
effectively track hypertension development.

Thus, in this study, we investigated the performance of
deep-learning BP estimation models that were pretrained using
a large-scale dataset and were then fine-tuned with data from
a wearable device over a one-month period. The routine use of
BP estimation models based on wearable PPG devices requires
stable estimation performance over the long term; however,
the distribution of PPG data can vary with changes in sensor
positions [20] and in human conditions [21]. In addition, it is
unclear how well the pretrained and fine-tuned BP estimation
models perform when they are adjusted and how often they
should be adjusted. We compared two types of fine-tuned
models.

1) A model in which the pretrained model was fine-tuned
only once with data from the first day of the long-term
period, called the just-once fine-tuned (JO-FT) model.

2) An incremental model in which the pretrained model
was incrementally fine-tuned with data from every mea-
surement day, called the incremental fine-tuned (INC-
FT) model.

To evaluate the performance of the pretrained and fine-
tuned models, we used two datasets: a large-scale public
dataset, called the Multiparameter Intelligent Monitoring in
Intensive Care III Waveform Database Matched Subset ver-
sion 1.0 (MIMIC-III dataset) [19], and a small-scale private

dataset recorded from 11 participants on four days within a
one-month period using our customized wearable wristband-
type device.

A deep-learning BP estimation model using a large-scale
dataset from a hospital intensive care unit (ICU) was fine-tuned
to a wearable sensed small-scale dataset from healthy par-
ticipants to confirm the improvement in accuracy over time.
The two types of fine-tuned models were more accurate than
models trained on the respective datasets alone and met the
Advancement of Medical Instrumentation (AAMI) [22] and
British Hypertension Society (BHS) [23] standards except
for some long-term validation measurement dates. In partic-
ular, the INC-FT model achieved the best performance. The
results suggest that pretraining with a large-scale dataset and
fine-tuning with a small-scale dataset are effective in deep
learning-based BP estimation for PPGs and that performance
can be improved by incorporating data that increase incre-
mentally through wearable sensing. This study represents a
significant contribution to the development of an implicit BP
measurement method that can be readily applied in routine
well-being monitoring.

Il. MATERIALS AND METHODS

In this study, three deep learning-based BP estimation
architectures (i.e., PP-Net [7], modified PP-Net (mPP-Net) [9],
and spectral-temporal residual network (ST-ResNet) [5]),
described in our previous study [24] were used as the BB mod-
els. These models were then fine-tuned with a small amount
of calibration data from a private dataset measured using a
customized wearable wristband-type PPG device to assess the
feasibility of using the fine-tuned model over a one-month
period. The details of the datasets, pretraining/fine-tuning
methods, and evaluation procedures are described below.

A. Public Dataset (MIMIC-IIl Dataset)

To train the BB deep learning-based BP estimation models,
the MIMIC-III dataset published by PhysioNet [19] was used.
This dataset contains physiological parameters and biological
signals measured in approximately 30 000 patients in the ICU.
PPG data and BP were measured using bedside monitors at
a sampling rate of 125 Hz. Signals were measured using a
pulse oximeter attached to the fingertip and a catheter inserted
directly into the blood vessels.

The processing stream used to create the training dataset is
shown in Fig. 1. Waveform and numerical data were collected
from the MIMIC-III Waveform Database Matched Subset. The
physiological signals, such as the PPG and arterial BP, were
recorded from the waveform data. Then, files with too little
data, files with physiological signals missing for more than
10 min in the waveform data, and files with missing BP or
heart rate in the numerical data were removed. The collected
data were converted to the MATLAB native format (i.e., *.mat
file) with the WaveForm DataBase Toolbox.

After data collection and cleaning, the PPG data and BPs
were segmented into 8-s intervals with a 6-s overlap using a
sliding window approach, according to the previous studies of
PPG-based BP estimation [7], [9], [25]. Abnormal segments
were removed by setting range thresholds for the SBP and
DBP values (i.e., SBP > 260, SBP < 60, DBP > 125, and
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MIMIC-IIl Waveform Database Matched Subset (v 1.0)

Data Collection

- Download all .dat and .hea format files
- Add XXXXXXX.hea files from MIMIC-IIl Waveform DB
- Transform into .mat format files

Data Cleaning
- Remove files < 17kB
- Remove files without PPG, ABP, and ECG in

waveform records
- Remove files without ABP and HR in numerics records
- Remove files < 10 min duration

Data Segmentation
and Selection

- Synchronize waveform and numerics records

- Extract 8-s segments with 6-s overlap from
continuous PPG, ABP, SBP, DBP, and HR signals
- Remove segments, HR < 30 or 220 < HR,
SBP = 60 or 260 = SBP, or DBP = 40 or 125 = DBP
- Remove segments having flat line or flat peak
- Remove segments having no hand-crafted features
- Remove abnormal segments by visual inspection

Preprocessing and
Data Split

- Filter PPG data through 4th order Butterworth
bandpass filter (cutoff frequencies [0.5, 8] Hz)

- Normalize PPG data (zero-mean and unit variance)
- Calculate VPG and APG and concatenate them
- Split all data into training data and testing data

Fig. 1. Processing stream up to the creation of the dataset modified
from [24].

DBP < 40) [7], [26]. The remaining segments were filtered
by a fourth-order Butterworth filter with cutoff frequencies of
0.5 and 8 Hz [5]. In addition, the PPG data were normalized
to a zero mean and unit variance. Based on the segments,
the first and second derivatives [i.e., velocity PPG (VPG) and
acceleration PPG (APG)] were calculated and concatenated
to the PPG segments, resulting in 3-D 8-s segments [i.e., the
shape of a segment is (3, 1000)]. The data of 1811 participants
were split into 80% training patients (1453 patients) and 20%
testing patients (358 patients). In the subject-dependent case,
80% of the data from each of the 358 testing patients were
added to the training set (see Fig. 2). In this study, we did not
use the testing data X g in the figure because only the training
data were needed for pretraining BB models. To reduce the
computational cost, the segmented signals were down-sampled
using a scaling factor of 4 [i.e., the shape of a segment was
(3, 250)] [7].

B. Pretraining Backbone (BB) Model

PP-Net [7], mPP-Net [9], and ST-ResNet [5] were pretrained
as BB deep learning-based BP estimation models using 3-D
8-s segments of the MIMIC-III dataset. This model is referred
to as the BB model. PP-Net and mPP-Net process PPG, VPG,
and APG signals using two and three convolutional layers

1811 subjects

80%

X train
Xiest| 20%
1453 358
subjects subjects

Fig. 2. Training and testing data in the subject-dependent case modified
from [24].

TABLE |
LoSS FUNCTION, BATCH SIZE, INITIAL LEARNING RATE, STEP SIZE,
AND DROP LEVEL OF LEARNING RATE DECAY, NUMBER OF EPOCHS,
OPTIMIZER, AND NUMBER OF TRAINABLE PARAMETERS IN THREE
DEEP-LEARNING-BASED BP ESTIMATION ARCHITECTURES

PP-Net mPP-Net  ST-ResNet
Loss function MSE Huber L1
Batch size 100 100 100
Initial learning rate 0.001 0.001 0.001
Step size 50 50 10
Drop level 0.1 0.1 0.1
# of epochs 200 200 30
Optimizer Adam Adam RMSprop
# of trainable parameters 187,431 398,883 1,064,207

and two long short-term memory layers (see [24, Fig. 5]).
ST-ResNet processes PPG, VPG, and APG signals using an
ST block and five residual blocks. The ST block captured
spectral and temporal representations by transforming a signal
into a spectrogram using a gate recurrent unit (GRU) layer.
The residual block had two streams: 1) a shortcut 1-D convo-
lutional layer and 2) three 1-D convolutional layers. After the
residual blocks, the learned features were further processed
using a GRU layer. The feature vectors from the ST block,
residual blocks, and GRU layer were concatenated for two
dense layers [24, Fig. 6]. In this study, the models were trained
without normalizing the output values.

The BB models were implemented on the PyTorch platform
version 1.10.0. The loss function, batch size, initial learning
rate, step size, and drop level of the learning rate decay, num-
ber of epochs, optimizer, and number of trainable parameters
of the three deep-learning-based BP estimation architectures
are shown in Table I. These conditions are the same as those
used in a previous study [24].

C. Private Dataset

To assess the performance of the fine-tuned deep
learning-based BP estimation model in a real-life
environment over a long period, we measured a private
dataset from healthy participants using a customized
wearable wristband-type PPG device. SBP, DBP, and PPG
were measured in 11 healthy participants (eight men,
age: 31.1 + 4.3 years and three women, age: 31.0 =+
11.3 years). This dataset has been made publicly available
at: https://github.com/aistairc/One_Month_Wrist_PPG_Dataset.
Each participant participated in the experiment approximately
weekly for a total of four days (within approximately one
month). Each day, the participants lay on their backs in
a relaxed position in a row of well-cushioned chairs [see
Fig. 3(a)], during which the PPG was measured for six min
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Fig. 3. (a) Experimental status of a participant during PPG and BP mea-
surements. (b) Cuff-type sphygmomanometer. (c) Customized wearable
wristband-type PPG device. (d) Self-made smartphone application that
communicates with the PPG device and collects data.

in two sessions. In a previous study, the deep learning model
was able to converge using transfer learning when 50 samples
of 5-s windows without overlap (i.e., 250-s calibration data)
were prepared [14]. Based on this study, we decided to
set the length of one session to 6 min, because we could
provide 240-s calibration data for fine tuning. SBP and DBP
were measured in the left upper arm after each 6-min PPG
session using a cuff-type sphygmomanometer (KM-370 II,
Kenzmedico Company Ltd., Honjo, Japan), as shown in
Fig. 3(b). As cuff-type sphygmomanometers apply pressure
to the measurement area during BP measurement, which
changes the condition of the blood vessels, a 2-min break
was taken after each measurement, and a second 6-min
PPG measurement was taken after the vascular condition
had returned to normal. The customized wristband-type
PPG device shown in Fig. 3(c) consists of a microcontroller
(ESP32-WROOM-32D, Espressif Systems Pte. Ltd., Shanghai,
China) and a pulse oximeter (MAX30101, Maxim Integrated,
San Jose, CA, USA), which were housed in a 3-D printed
case. PPG measurements were conducted at a sampling rate
of 200 Hz from the right wrist using a pulse oximeter. The
data were continuously sent to a smartphone (ELS-NXO9,
Huawei Technologies Company Ltd., Shenzhen, China),
as shown in Fig. 3(d), via Wi-Fi by the microcontroller. This
study was approved by the Institutional Review Board of
the National Institute of Advanced Industrial Science and
Technology (AIST), Japan (HF2022-1204). All participants
provided their informed consent for the content and risks of
the experiment as well as the open sourcing of the data prior
to starting the experiment.

In addition to the MIMIC-III dataset, 6-min PPG measure-
ments were segmented into 8-s intervals with a 6-s overlap
using the sliding window approach. No abnormal segments
for SBP or DBP values in this experiment were noted because
all the participants were healthy. All the segments were filtered
using a fourth-order Butterworth filter with cutoff frequencies
of 0.5 and 8 Hz. An example of a filtered 8-s PPG signal is
shown in Fig. 4. In addition, the PPG values were normalized
to a zero mean and unit variance. Based on the PPG segments,

200

Amplitude
o

—200

0 2 4 6 8
Time (sec.)

Fig. 4. Example of a filtered 8-s PPG signal.

the VPGs and APGs were calculated and concatenated to the
PPG segments, resulting in 3-dimensional 8-s segments. Here,
the shape of the concatenated segment was (3, 1600) because
the sampling rate was 200 Hz. To match the shape to the
MIMIC-III dataset, the segmented signals were downsampled
by a scaling factor of 8 after cubic spline interpolation [i.e.,
the shape of a segment was (3, 250)]. No abnormal segments
in SBP or DBP values were present; however, some noisy data
were present due to the use of wearable sensors. To determine
whether the segment was clean or noisy, we extracted 46-D
handcrafted features containing the amplitude, time, and area
features described in a previous study [24]. If even one of
the 46 features could not be extracted, the segment was deter-
mined to be noisy and eliminated from the dataset. Through
this segment quality-check process, the average number of
segments in each session and each participant decreased from
175.0 &£ 2.0 to 77.0 £ 64.8. The remaining segments were
assigned duplicate SBP and DBP values that were measured
every 6 min.

D. Full-Scratch (FS) Model

To compare the performance of the fine-tuned pretrained
models, the same architectures described in Section II-B
were fully scratched using a small amount of calibration
data obtained during the first section of each day in the
private dataset measurement using the customized wearable
wristband-type PPG device (see Fig. 5). The hyperparameters
for this model, except for the initial learning rate, were the
same as those described in Table I. The initial learning rate
was set to 0.01 due to the small amount of data.

E. Fine-Tuning BB Model (JO-FT and INC-FT Models)
The BB models described in Section II-B were fine-tuned
using a small amount of calibration data. Fine-tuning can
transfer the represented knowledge of a model pretrained on
a large dataset to a new dataset by updating the parameters
of some or all of the layers in the pretrained model, even
if the new dataset is small [27]. Therefore, we attempted to
transfer the represented knowledge of the PP-Net, mPP-Net,
and ST-ResNet models trained with the MIMIC-III dataset
to our private dataset by updating the parameters of all the
layers in the BB models with calibration data. Two fine-tuning
approaches were used: 1) fine-tuning using calibration data
from only the first week and 2) incremental fine-tuning using
the calibration data from each week (see Fig. 5). These models
are hereafter referred to as the JO-FT model and the INC-
FT model. The hyperparameters for these models, except for
the learning rate decay step size and number of epochs, were
the same as those described in Table I. The learning rate and
number of epochs were set to 10 and 30, respectively.
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Fig. 5. Four training, tuning, and testing streams for the BB, FS, JO-FT, and INC-FT models.

F. Evaluation

To evaluate the performance of the fine-tuned deep learning-
based BP estimation models over a one-month period with
wrist PPG data, we compared the performances of the BB,
FS, JO-FT, and INC-FT models of three deep learning
architectures. In all models, data from the second session
on all days were used as the testing data and the mean
absolute errors (MAEs) between the true and estimated BP
values were calculated. Multiple group comparisons across
the three models based on MAEs were examined using the
Kruskal-Wallis test, and paired comparisons among the three
models were performed using the Dwass—Steel-Critchlow—
Fligner test. In addition, the mean, variance, and range of
the estimated values were calculated to verify the diversity
of the output values of the models. Violin plots of the

predicted and true BP values in the calibration and testing
sessions are presented as a qualitative evaluation. Furthermore,
we examined whether the accuracy of BP estimation met the
AAMI and BHS standards, which are highly regarded in the
medical field. The AAMI standard assesses performance based
on whether the mean error (ME) for SBP and DBP is below
5 mmHg and the standard deviation (SD) of the error is below
8 mmHg. The BHS standard defines the specific performance
requirements for each grade, as listed in Table II. Grade A
represents the highest level of accuracy that modeling studies
strive to achieve. Abnormal values were estimated for some
of the segments. Thus, a postprocessing thresholding process
was used to exclude segments for which the estimates were
abnormal in one of the models (i.e., SBP > 260, SBP < 60,
DBP > 125, and DBP < 40). The distributions of SBPs and
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TABLE Il
BHS GRADING SCALE FOR BP ESTIMATION

Cumulative absolute difference between true and estimated (%)

Grade < 5(mmHg) < 10 (mmHg) < 15 (mmHg)
A 60 85 95
B 50 75 90
C 40 65 85
. [T] =1 SBP
S 300000 == DBP
)
2200000
(=]
ié 100000
=
4
0 ‘ ‘ ‘
0 50 100 150 200
Blood pressure (mmHg)
Fig. 6.  Distributions of SBP and DBP in pretraining data for the

1811 participants of the public dataset after excluding segments for
which estimates were abnormal in any one model (i.e., SBP > 260, SBP
< 60, DBP > 125, and DBP < 40).

Week 1 Week 2 Week 3 Week 4
500
400
300 I
2 100
§° i il I W W
E 500 = DBP
_“.é’ 400 [ SBP
Z 300 M M
I b ody nd
100
]l L ) oLl s
75100 125 75100 125 75100 125 75100 125
Blood pressure (mmHg)
Fig. 7.  Distributions of SBPs and DBPs in first (top) and second

(bottom) sessions for the 11 participants in each week of the private
dataset after excluding segments for which estimates were abnormal
in any one model (i.e., SBP > 260, SBP < 60, DBP > 125, and
DBP < 40).

DBPs in the pretraining data for the 1811 participants of the
public dataset and in the first and second sessions for the
11 participants each week of the private dataset, excluding
segments with abnormally estimated values, are shown in
Figs. 6 and 7.

I11. RESULTS

The results of the Kruskal-Wallis test across the four models
based on the MAEs with three deep learning architectures
are shown in Table III. In all architectures, both SBP and
DBP were significantly different among the four models for
all weeks (p < 0.01). The MAEs of the BB, FS, JO-FT,
and INC-FT models over four weeks and the results of the
Dwass—Steel-Critchlow—Fligner test for the four models are
listed in Table IV. The results of the JO-FT and INC-FT
models at week 1 were the same because the conditions
were the same. FS models were more accurate than the
BB models, confirming that within-dataset analysis can show
better performance than cross-dataset analysis. The fine-tuned
models (i.e., the JO-FT and INC-FT models) exhibited smaller
MAEs than did the BB and FS models. Both SBP and DBP

TABLE IlI
RESULTS OF THE KRUSKAL—WALLIS TEST ACROSS THE FOUR
MODELS BASED ON MAES WITH THREE DEEP LEARNING
ARCHITECTURES

SBP DBP

Architecture  Week

Kruskal-Wallis H p value Kruskal-Wallis H p value
1 H(3, 1347) = 1042.0 H(3, 1347) = 170.7
2 H(3, 2310) = 11424 H(3, 2310) = 218.7
PP-Net 3 H(3, 1884) = 858.6 < 0.01 | H(3, 1884) =233.7 < 0.01
4 H(3, 2151) = 1365.8 H(3, 2151) = 83.4
Avg.  H(3, 7701) = 3923.3 H(3, 7701) = 600.9
1 H(3, 1347) = 1211.4 H(3, 1347) = 256.9
2 H(3, 2310) = 1512.1 H(3, 2310) = 276.9
mPP-Net 3 H(3, 1884) = 1087.3 < 0.01 | H(3, 1884) =446.8 < 0.01
4 H(3, 2151) = 1333.3 H(3, 2151) = 89.8
Avg.  H(3, 7701) = 4726.4 H(3, 7701) = 764.8
1 H(3, 1347) = 11124 H(3, 1347) = 1105.5
2 H(3, 2310) = 1650.4 H(3, 2310) = 1716.6
ST-ResNet 3 H(3, 1884) = 15209 < 0.01 | H(3, 1884) = 1399.0 < 0.01
4 H(3, 2151) = 1478.3 H(3, 2151) = 1263.3
Avg.  H(3, 7701) = 5603.6 H(3, 7701) = 5464.6

differed significantly between the fine-tuned and BB models
and between the fine-tuned and FS models for all weeks
(p < 0.05), except for week 4 of the JO-FT model based
on PP-Net for SBP estimation. The INC-FT model had the
smallest MAEs for SBP and DBP for all weeks among the
four models except for week 3 of the JO-FT model based on
mPP-Net for both SBP and DBP estimation and week 4 of
the JO-FT model based on ST-ResNet for DBP estimation.
Of the three architectures, ST-ResNet had the best average
performance in the FS, JO-FT, and INC-FT models for both
SBP and DBP estimation. Thus, in this study, ST-ResNet will
be treated henceforth.

The means, SDs, and ranges of the true and estimated SBP
and DBP values from the BB, FS, JO-FT, and INC-FT models
based on ST-ResNet over the four weeks are shown in Table V.
In addition, violin plots of the true and estimated SBP and
DBP values from the BB, FS, JO-FT, and INC-FT models
based on ST-ResNet over the four weeks are shown in Fig. 8.
In our dataset, the true values ranged from 95 to 133 mmHg
for SBP and from 55 to 87 mmHg for DBP; however, the
BB model estimated BP values that were far from the mark
(71.45-184.91 mmHg for SBP and 40.05-124.37 mmHg for
DBP). In contrast, the estimated BP values from the FS, JO-
FT, and INC-FT models were close to the range of true
values, with few segments showing extremely high or low
values (FS model: 75.45-165.89 mmHg for SBP and 45.23—
104.91 mmHg for DBP; JO-FT model: 91.57-165.89 mmHg
for SBP and 51.58-120.78 mmHg for DBP; and INC-FT
model: 86.02-127.83 mmHg for SBP and 52.77-98.34 mmHg
for DBP).

A comparative analysis of the AAMI standards for the BB,
FS, JO-FT, and INC-FT models based on ST-ResNet over the
four-week period is presented in Table VI. The AAMI standard
requires that the ME between the true and estimated SBP/DBP
values be less than 5 mmHg and that the SD of the error be less
than 8 mmHg in at least 85 participants [22]. Although only
11 participants were included in the study, the AAMI standard
was used as a reference for evaluation. On average, across
all weeks, the JO-FT and INC-FT models met the AAMI
standard, whereas the other models did not. The ME and SD
of the error estimated using the BB model deviated from the
reference criterion of the AAMI standard for all weeks. In
the FS model, SBP did not meet the criteria, and DBP met
the criteria in two of the weeks. In the JO-FT model, SBP
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TABLE IV
MAESs oF BB, FS, JO-FT, AND INC-FT MODELS BASED ON THREE DEEP-LEARNING ARCHITECTURES OVER FOUR WEEKS AND RESULTS OF
THE DWASS—STEEL—CRITCHLOW—FLIGNER TEST (p > 0.05: ns, 0.01 < p < 0.05: *, AND p < 0.01: **). THE RESULTS SHOWN IN
BoOLD ARE THE BEST RESULTS OF THE WEEK IN THE FOUR MODELS

SBP DBP

Architecture Model Week MAE Vs Vs Vs Vs MAE Vs Vs Vs Vs
(mmHg) BB FS JO-FT INC-FT | (mmHg) BB FS JO-FT INC-FT

1 2222 — EES B *k 8.03 _ *k Xk WF

2 27.15 - ok ok *k 7.47 _ ns ok *k

BB 3 18.20 - ok * ok 9.47 - ns s EEs

4 25.26 _ EES sk sk 8.39 _ ek ns %

Avg. 23.59 - wk Hok wok 8.32 - wE wE FE

1 10.79 HE - HE wE 9.22 wE _ F EE

2 16.38 Hok - Hok wok 7.75 ns - ok Hk

FS 3 14.46 wE - wx ** 9.55 ns _ ok E

4 8.87 wk - ns ok 9.89 ok _ *% ok

Avg. 12.74 wE - E E 9.07 FF _ FE ET3

PP-Net lg 3.06 FE FF _ — 4.90 R FE _ -

2 8.73 R - ns 5.14 KR Rk _ ns

JO-FT 3 7.26 Hok ok - ns 5.44 ok ok - ns

4 9.42 wE ns - wE 7.52 ns w* - *E

Avg. 7.76 HE oE — HE 574 T FE - s

1 3.96 EOORE - — 4.90 FE R - —

2 8.25 wE ok ns - 4.66 o w* ns -

INC-FT 3 6.41 Hk ok ns - 5.16 ok *k ns _

4 6.09 ** *k *k — 717 * sk ek _

Avg' 6_44 EEd ok EES — 5.56 ok EES ns _

1 28.66 — *ok EX] *k 11.00 _ * ok ]

2 32.78 - ok ok wk 7.65 _ ns ok w5k

BB 3 22.14 - ok *% ok 8.00 — ok ok ok

4 33.63 - ok wk ok 11.99 - * ok ok

Avg. 29.76 - wE Hok wk 9.59 — ns o FE

1 9.15 wE - *E E 383 * _ B FE

2 17.50 Hok - Hk ok 6.31 ns _ ok ok

FS 3 14.20 wk - *E ok 11.24 ok _ ok ok

4 8.30 HE - * wE 10.28 * - * ok

Avg. 12.56 HE — HE wE 9.10 ns - oE E

mPP-Net = e = - e i -

2 8.67 wE ok - wE 5.20 ok wE - ns

JO-FT 3 5.66 wk * - ns 3.70 ok Kk _ 3k

4 935 ®% * _ EE] 928 T * _ EX ]

Avg. 7.10 HE ok — wE 6.00 F EE — s

1 2.53 R — = 4.95 R - —

2 7_11 ek £ ek — 4'07 £ ek ns _

INC-FT 3 5.81 GO ns - 5.24 *E o dkk ok _

4 7.08 ek sk ek — 7'99 sk ek sk —

Avg. 6.00 wE ok wE - 5.66 ok wE ns -

1 49.60 - Hok Hk Hok 38.18 _ FF T F

2 51.50 — ok LS kK 35.80 _ TS ok ks

BB 3 47.90 - ok Hok wok 35.57 - ok ok ok

4 48.64 — ok 3k *k 34.26 _ sk Kok sk

Avg. 49.50 - wk Hk wk 35.78 - HE woE wE

1 7.45 * — FE B 778 FF — EF3 EE

2 11.80 w* - A w3k 5.96 #k _ Hk 3

FS 3 7.74 ok - ok sk 6.62 ok _ sk sk

4 6.73 sk _ sk sk 891 sk _ sk ns

Avg. 8.63 R — FE HE 7.6 T — B3 T

ST-ResNet 1g s I - - IED - - -

2 7.51 ®E k% - ns 5.88 Bk ok _ ok

JO-FT 3 9.32 ok ok - ok 491 ok ok _ ns

4 4.72 Hk wk - * 7.15 ok ok _ s

Avg. 6.62 FEOFE _ F 5.65 FE O FE - s

1 4.10 HE wok - - 4.15 woE wE - -

2 778 ok sk ns _ 2.96 sk sk sk _

INC-FT 3 4.90 HE ok wE - 4.57 ok wE ns -

4 4'07 ek sk * - 838 sk ns sk —

Avg. 5.39 Hok ok Hok - 5.07 wE FE ns =

met the criteria for two weeks, and DBP met the criteria for
three weeks. In the INC-FT model, both SBP and DBP met
the criteria for three of the four weeks.

The results of a comparative analysis of the BHS standards
for BB, FS, JO-FT, and INC-FT models based on ST-ResNet

over the four weeks are summarized in Table VII. The BHS
standard requires Grade A used in medical settings [23]. Even
the INC-FT model did not satisfy this requirement. The results
based on the BHS standard were less than Grade C for both
SBP and DBP in all weeks in the BB model. The average
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TABLE V
MEAN, SD, AND RANGE OF TESTING/TRUE AND ESTIMATED BP VALUES FROM THE BB, FS, JO-FT, AND INC-FT MODELS
BASED ON ST-RESNET OVER A FOUR-WEEK PERIOD

Week SBP (mmHg) DBP (mmHg)
Mean S.D. Range Mean  S.D. Range
True 117.12 573 104.00 — 124.00  71.65  9.57 55.00 — 82.00
BB 148.08 3855 755618393 9531 2896 40.05 - 118.69
FS 1 11155 596 96.87 — 165.89  69.71 387  61.54 - 10491
JO-FT
INC-FT 114.04  4.68 102.73 - 123.94 7233  7.67 54.72 — 98.34
True 11446 1039  95.00 - 127.00 7095  6.38 59.00 — 86.00
BB 14221  41.28  75.22 - 18491 90.59 31.27 40.17 - 119.13
FS 2 104.44  6.64 92.01 - 122.29  67.68  3.62 59.81 — 77.56
JO-FT 11292 745 96.28 — 164.22  68.80  7.87  51.58 — 120.78
INC-FT 106.92  8.01 86.02 — 120.73  69.35  6.64 52.77 — 81.98
True 121.02 841 95.00 — 133.00  73.83  7.55 57.00 - 87.00
BB 151.79  36.10  72.38 — 183.71 96.96  26.74  40.14 - 120.60
FS 3 114.89  6.57 90.48 — 129.71 69.14  4.05 55.05 - 78.48
JO-FT 113.47 498 99.91 - 156.21 7297 740  54.49 — 104.06
INC-FT 11835 641 90.65 — 12695  70.64  6.57 58.65 — 81.51
True 113.58 6.25 98.00 — 123.00  71.63 10.55  56.00 — 87.00
BB 141.72 4173  71.45-183.40 89.89 31.13 40.21 - 124.37
FS 4 11398  6.12 7525 -12827 6812 5.71 45.23 — 81.55
JO-FT 112.89 451 91.57 - 14295 69.54 6.18  53.10 - 101.39
INC-FT 115.25  5.96 101.40 — 127.83  70.13  8.16 56.00 — 89.06

TABLE VI
COMPARATIVE ANALYSIS WITH THE AAMI STANDARD FOR THE BB, FS, JO-FT, AND INC-FT MODELS BASED
ON ST-RESNET OVER THE FOUR-WEEK PERIOD

SBP (mmHg) DBP (mmHg)
Model Week ME S.D.  Conformity ME S.D. Conformity
1 3096 4021 No 23.66 32.34 No
2 2820  46.19 No 19.69  31.79 No
BB 3 30.43  38.80 No 23.03  29.02 No
4 2831  42.12 No 19.84  30.60 No
Avg. 2930 4231 No 21.30  30.96 No
1 -5.59 6.95 No -1.97 9.05 No
2 -10.02  8.89 No -3.27 7.01 Yes
FS 3 -6.26 6.82 No -4.75 6.66 Yes
4 0.56 8.51 No -343  10.21 No
Avg. -5.36 8.96 No -3.45 8.37 No
1 -3.08 4.07 Yes 0.67 6.20 Yes
2 -1.08 8.62 No -2.11 8.53 No
JO-FT 3 -7.89 7.03 No -3.07 6.56 Yes
4 -0.51 6.25 Yes -3.07 6.56 Yes
Avg. -3.02 7.55 Yes -1.42 7.84 Yes
1 -3.08 4.07 Yes 0.67 6.20 Yes
2 -7.54 5.98 No -1.60 3.28 Yes
INC-FT 3 -2.68 5.89 Yes -3.19 476 Yes
4 1.67 5.02 Yes -1.50 9.46 No
Avg. -3.00 6.44 Yes -1.56 6.48 Yes
AAMI <5 <8 - <5 <8 -

weekly results for the FS model were less than those for
Grade C for SBP and Grade C for DBP. The average weekly
results for the JO-FT model were Grade C for SBP and
Grade B for DBP. The results for the INC-FT model were
Grade B for both SBP and DBP.

IV. DISCUSSION

A. Performances Between Pretrained, Full-Scratch, and
Fine-Tuned Models

As the applicability of deep-learning models for BP pre-
diction from PPG data to other data and the frequency of
fine-tuning required when using such models over the long
term have been unclear, we assessed the performance of a
deep-learning-based BP estimation model that was pretrained
on a large-scale dataset or trained on a small-scale dataset
from full scratch and explored its adaptability and adjust-

ment frequency during fine-tuning with wearable sensed data
over a one-month period. We revealed the effectiveness and
adaptability of pretrained and fine-tuned BP estimation models
for long-term wearable sensing data. We showed that tuning
the models regularly resulted in greater performance than did
tuning only once on the first day.

Many deep learning models have been developed for the
accurate estimation of BP from PPG data (sometimes with
other modalities), and high-performance estimation models
based on large datasets have been proposed, with an increas-
ing number of models meeting the standards for evaluating
BP estimation [10], [11], [24]. Yen et al. [11] proposed
a two-scale long-term recurrent convolutional network with
PPGs and electrocardiograms (ECGs) that showed low MAEs
(i.e., 3.46 mmHg for SBP and 3.65 mmHg for DBP), meeting
the AAMI standard and Grade As for both SBP and DBP
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TABLE VII
COMPARATIVE ANALYSIS OF THE BB, FS, JO-FT, AND INC-FT MODELS BASED ON ST-RESNET OVER THE FOUR-WEEK
PERIOD ACCORDING TO THE BHS STANDARD

Cumulative error percentage

SBP (mmHg) DBP (mmHg)
Model Week <5 <10 <15 Grade <5 <10 <15 Grade
1 0.00 0.00 0.00 - 0.00 0.00 1.11 -
2 1.31 2.50 4.99 - 0.00 0.00 0.66 -
BB 3 0.16 0.16 0.32 - 0.16 0.32 0.32 -
4 0.79 1.26 2.36 - 0.47 1.26 14.78 -
Avg. 0.66 1.15 2.22 - 0.12 0.37 4.31 -
1 20.18  39.69  71.18 - 41.46 6142  80.49 -
2 26.33  39.69  66.02 - 50.71  75.62 99.22 B
FS 3 44.02  64.11 94.74 - 4992 7656 97.13 C
4 40.47  79.01 91.30 C 36.74 61.74  80.52 -
Avg. 3190 61.36 83.29 - 4324 68.13 91.74 C
1 82.71  96.01 98.44 A 78.05  92.68  98.45 A
2 15.64  62.29 85.94 - 5729 7792 88.70 C
JO-FT 3 4171 57.17 9291 - 65.86 8937 94.69 B
4 38.36  65.57 78.30 - 3223 6447 74.69 -
Avg. 4224  79.83 95.40 C 59.12  81.80 92.69 B
1 82.71  96.01 98.44 A 78.05 92.68 98.45 A
2 37.09 67.32 80.03 - 69.91 99.48 99.87 A
INC-FT 3 58.35 7250  99.36 C 66.14  96.82 99.21 A
4 67.97 8476  100.00 B 31.61 6531 90.49 -
Avg.  59.10 8343 93.88 B 59.57 8737 96.06 B
>60 >85 > 95 A >60 >8 >95 A
BHS >50 >175 > 90 B >50 >75 >90 B
>40 > 65 > 85 C >40 >65 >285 C
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BB, FS, JO-FT, and INC-FT models based on ST-ResNet over a four-
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according to the BHS standard. Zhang et al. [10] retrained
the final layer of a pretrained bidirectional long short-term
memory (Bi-LSTM)-attention neural network with PPGs from
a small number of target subjects in the MIMIC-III dataset
for transfer learning. The MAEs were 2.82 mmHg for SBP
and 1.88 mmHg for DBP, achieving the AAMI standard and
Grade As for both SBP and DBP of the BHS standard.
Kanoga et al. [24] reported that the MAEs of an ST-ResNet
model based on PPG data were 4.88 mmHg for SBP and
2.60 mmHg for DBP using the MIMIC-III dataset, meeting the
AAMI standard and achieving Grade B for SBP and Grade A
for DBP according to the BHS standard. They have shown very
accurate estimates using deep-learning models when validated
on the same dataset.

Several studies have validated PPG-based BP estimation
performance of deep learning models via fine-tuning [13],
[14], [15], [16] or incremental and continuous learning [17].

The BP estimation performance was improved by splitting a
dataset into source and target subsets or by treating different
datasets as source and target subsets and by renewing the
model entirely or partially by fine-tuning it to correspond
to the target subset [13], [14], [15], [16]. In particular,
Meng et al. [15] pretrained the MIMIC-III dataset consist-
ing of 50 participants based on an architecture containing
convolutional, Bi-LSTM, and dense layers and then used it
on a self-collected dataset consisting of 20 participants. The
cross-dataset analysis was performed by fine-tuning only the
parameters of the final layers of the convolutional and dense
layers with 5 min of the self-collected dataset, demonstrating
the usefulness of fine-tuning (the MAEs were 3.21 mmHg for
SBP and 0.919 mmHg for DBP) [15]. However, fine-tuning
was conducted only once, and there was a lack of incremental
and continuous learning. Wang et al. [17] measured BPs and
PPGs for more than three months and continuously updated
the parameters of an error feedback incremental support vector
regression and reported that the MAEs of the model were
3.11 mmHg for SBP and 2.47 mmHg for DBP. This study
addressed the challenge of training the model with a small
initial dataset and gradually adding data to update the model.
However, it did not pretrain a model with a large-scale
dataset. Thus, the effectiveness and adaptability of pretrained
and fine-tuned BP estimation models for long-term wearable
sensing data are unclear.

As indicated by the results in Section III, the performance
of the model pretrained with the MIMIC-III dataset (i.e.,
BB model) was poor when using the private dataset obtained
from the customized wearable wristband-type PPG device,
showing that neither SBP nor DBP met the criteria of the
AAMI and BHS standards for all weeks. The BHS standard
sets Grade A as a requirement for introduction into medical
scenarios. However, the BB model did not meet Grade C.
The FS model was much more accurate than the BB model
because 6 min of first-session data were used to fully scratch
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Fig. 9. BB, FS, JO-FT, and INC-FT models for 4-week summary t-SNE
mapping.

the model. However, the FS model could not meet the AAMI
standard because of the small amount of data compared to
the complexity of the model, and in the BHS standard, the
SBP was below Grade C, and the DBP was only Grade C.
The performances of the fine-tuned (i.e., JO-FT and INC-FT)
models were better than those of the BB and FS models. These
results indicated that fine-tuning of the BB model is more
effective than using the original BB model directly on different
datasets or rather than simply constructing an FS model with
a small amount of first-session data. In addition, we found no
significant differences in the estimation performance between
the JO-FT and INC-FT models with regard to DBP estimation
(see Table IV). Fine-tuning may not need to be performed
every week in some cases, although the performance is better
if fine-tuning is performed every week and not only on the first
day. However, even the most accurate fine-tuned model, the
INC-FT model, did not simultaneously meet the AAMI and
BHS standards for all weeks and has not reached the level
at which it can be used for medical applications. Therefore,
improving the estimation performance remains a challenge.

To show the feasibility of estimating BP from fine-tuned
models, we used the t-distributed stochastic neighbor embed-
ding (t-SNE) method, which nonlinearly reduces the original
dimension to a lower dimension in an unsupervised manner
and preserves the clustering relationships (Fig. 9). The clusters
are independent in the BB and FS models but are similarly
scattered between the JO-FT and INC-FT models. This may
be because the feature space obtained from the MIMIC-III
dataset, which is the source, is being shifted to the feature
space of the private dataset, which is the target. In addition,
the INC-FT model incorporates features from multiple days,
resulting in a larger variance. Therefore, BP estimation with
the INC-FT model may have been more accurate because it
was able to use a good combination of sources and target
features that successfully incorporated data from multiple
days.

B. Long-Term Use of BP Estimators and Fine-Tuning
Approaches

It is important to achieve a high overall performance for
routine daily BP determination; however, BP estimation mod-
ules that are likely to be used over a long period, such as
health monitoring, need to be able to provide stable and high
performance. Several studies have reported on the long-term
use of BP estimators. Su et al. [28] investigated the long-
term follow-up performance of deep recurrent neural network
models using PPGs and ECGs for estimating BPs at the
first, second, and fourth days and again six months later by
fine-tuning the final layer of the model that was pretrained in
84 participants with some data obtained from 12 participants
on the first day. They found that the model showed low
root mean square errors (1.80-5.21 mmHg for SBP and
DBP of 3.84-5.81 mmHg for DBP from the first day to six
months later). Yao et al. [29] trained artificial neural networks
with data obtained from 33 individuals with an integrated
multidimensional feature set of wrist PPGs as input and tested
their long-term estimation performance from 3 to 15 days
for two individuals. Liu et al. [30] evaluated several machine
learning and deep learning models established using large
datasets of PPGs and ECGs obtained from 3077 individuals
via smartwatches and tracked their long-term accuracy. Their
models were calibrated with individualized first-day BP values
every other week over a one-month period and showed an
increase in error [30].

Although BP estimation over a long-term period has been
performed in the abovementioned studies [28], [29], [30], our
study showed the effectiveness of fine-tuning a BP estimator,
which was pretrained on a public dataset, for application to
other long-term datasets. The BB, FS, JO-FT, and INC-FT
models were assessed using PPG and cuff-based BP data
obtained from 11 subjects on four days in a month. The
amount of PPG data obtained per person per day was 12 min.
As shown in Fig. 7, the BP values did not follow a simple
normal distribution and varied slightly from week to week.
If training and test data have the same distribution, this
complex representation can be acquired by a deep learning
model, and the test performance will be high. However, if the
data distribution fluctuates, as in this study, it is better to
fine-tune the estimated BP for each week, even if this is done
only once, to obtain the true value. In this study, this approach
yielded a significantly closer estimate (see Fig. 8). As seen
from the BPs estimated by using INC-FT, the estimated BPs
were still closer to the true distribution when fine-tuning was
carried out occasionally by using the calibration data for the
relevant week. Measuring the calibration data daily would be
ideal for maintaining the model’s performance. Nevertheless,
such cumbersome requirements reduce the usefulness of the
application. Reconciliation of the trade-off between conve-
nience and performance remains a practical challenge in this
field.

Another interesting point is that the public and private
datasets were successfully tuned despite different measurement
locations, devices, and subject groups. The public dataset,
which included data obtained from individuals’ fingertips
using commercial pulse oximetry devices, and the private
dataset, obtained from individuals’ wrists by means of a
customized wearable wristband-type device, involved different



21264

IEEE SENSORS JOURNAL, VOL. 24, NO. 13, 1 JULY 2024

measurement locations and devices. In addition, the subject
groups differed significantly between ICU patients and healthy
subjects. However, over a longer period (i.e., one month), fine-
tuning significantly improved the BP estimation. If a model
can be pretrained with large-scale datasets to obtain a variety
of representations and use a small amount of calibration data,
it would be possible to construct a BP estimator that meets
the AAMI and BHS standards.

C. Limitations

To achieve robust BP estimation in daily life while meeting
the AAMI and BHS standards, the number of participants
needs to be increased, and the measurement days need to
be more closely spaced. This study measured PPG and BP
data from 11 healthy participants over a one-month period to
evaluate the pretrained and fine-tuned deep learning models.
The young, healthy participants included in this study had
a narrow distribution of BP wvalues; thus, models trained
using these data cannot be generalized to a wider range of
BP distributions or age groups [30]. In other words, the
performance of the fine-tuning model shown in the present
study may not be directly applicable to older or unhealthy
people (e.g., hypertensive patients) who were not included in
the private dataset. In addition, the number of measurement
days was limited because this dataset included only four days
per month.

However, data measured over a long period, as in
this study, are valuable, as our findings may promote
further studies in this field. Therefore, we have made
this dataset publicly available at: https://github.com/aistairc/
One_Month_Wrist_PPG_Dataset.

V. CONCLUSION

This study sheds light on the effectiveness and adaptability
of pretrained and fine-tuned BP estimation models when
using long-term wearable sensor data. We investigated the
performance of deep-learning BP estimation models that were
pretrained using a large-scale dataset (MIMIC-III) and then
fine-tuned with data from a smaller cohort obtained via a
wearable wristband-type PPG sensor over one month.

Our findings demonstrated the superior performance of the
fine-tuned models compared with their non-fine-tuned coun-
terparts. The daily fine-tuning of the model yielded greater
performance than did the fine-tuning of the model only once
on the first day. This delicate balance between convenience and
performance presents practical challenges. Despite the accu-
racy of our most finely tuned model, it consistently falls short
of meeting medical standards, posing a significant obstacle
to medical application. Enhancing the estimation performance
remains a challenge in this field.

INSTITUTIONAL REVIEW
The study was conducted in accordance with the guidelines
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