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Abstract—The real-time monitoring of water quality param-
eters using optical sensors has become widespread. How-
ever, the price of commercial sensors and the ability
to integrate them into customized sensing networks can
limit their application in research and monitoring pro-
grams. This study introduces the design, verification, and
validation of an innovative, low-cost, portable, low-power
fluorometer–nephelometer device, employing long-range
wide area network technology. The developed Internet of
Things capable device can measure temperature, turbid-
ity, phycocyanin fluorescence (a proxy for cyanobacteria
biomass), and chlorophyll-a(Chl-a) fluorescence [a proxy
for phytoplankton (cyanobacteria plus algae) biomass] in
aquatic ecosystems. The fluorometer–nephelometer struc-
ture employs one digital thermistor probe, three distinct
light-emitting diodes (LEDs) that are amber (590 nm) to excite
phycocyanin pigments of cyanobacteria, blue (465 nm) to
excite Chl-a pigments of phytoplankton, and near-infrared
(NIR) (870 nm) to measure turbidity through light scattering. Two orthogonal silicon photodiodes are used as detectors
set in line with long-pass filters of 830 nm for turbidity and 630 nm for phytoplankton. A peristaltic pump circulates
water through a polymethylmethacrylate cuvette within a 3-D-printed fluorometer assembled in a weatherproof box.
The activation by personalization long range wide area network (LoRaWAN) protocol is utilized for real-time wireless
transmission of water quality data, while a micro-SD card is employed for storing the data locally. The optical sensor
tests are conducted in the laboratory using standard turbidity solutions and pigments. The turbidity, phycocyanin, and
Chl-a sensing ranges are 3–200 FTU, 0.025–2.5 mg-PC/L, and 1–50 µg-chl/L, respectively. In repeated laboratory tests,
the relative percent difference is consistently less than 10%.

Index Terms— Algae, chlorophyll-a (Chl-a), cyanobacteria, Internet of Things, long range wide area network
(LoRaWAN), optical sensor, phycocyanin.

I. INTRODUCTION

PHYTOPLANKTON are a diverse group of photosyn-
thetic microorganisms, including eukaryotic algae and
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procaryotic cyanobacteria, which play a significant role in
the aquatic ecosystem food webs and nutrient cycles and
the global carbon cycle. While essential for ecosystems as
primary producers and mediators of ecosystem structure and
function, evidence suggests algae and cyanobacteria over-
growth events (i.e., blooms) have increased in intensity,
frequency, and toxicity throughout the Anthropocene [1],
[2], [3]. These blooms have substantial negative economic,
recreational, public health, and environmental impacts [2],
[4]. Climate change and inorganic nutrient pollution from
wastewater, agriculture, land use change, industrialization,
and urbanization are often credited as the main drivers of
blooms [1], [3], [5], but recent evidence suggests that the
picture is more complicated. Phytoplankton blooms can also
thrive in low-nutrient environments, under cold-water con-
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ditions, and by using organic nutrient pollutants [6], [7],
[8]. To better understand the mechanisms by which blooms
develop and to protect communities from exposure to blooms
and their byproducts, we must expand the spatial and tem-
poral capability to sense phytoplankton within and across
aquatic ecosystems and enable rapid data communication to
communities.

Phytoplankton biomass, abundance, and potential for toxic-
ity are measured directly or estimated in a variety of ways from
laboratory processing of discretely collected water samples to
satellite remote sensing. There is not one standard method
employed across the world. Still, environmental sensors are
an increasingly popular choice to provide time-series data
of a single location or discrete sampling-point data within
and across waterbodies. Sensor data can be used to estimate
phytoplankton biomass and other water quality conditions
as well as for ground-truth satellite imagery and ecological
hypotheses testing at global scales [9], [10]. Water quality
sensor systems can also be used for adaptive management and
to issue community-wide alerts about the current conditions
of a local waterbody. The problem, however, is that com-
mercially available water quality sensors (both handheld and
deployable models) are expensive to purchase and maintain
and are often out of reach for researchers, government agen-
cies, and communities with limited resources [11], [12], [13].
Furthermore, commercial sensors and sensing systems often
do not communicate wirelessly, rely on proprietary software,
or require substantial infrastructure for communication [14],
[15]. Hence, the grand challenge of the reliance on sensor
systems to monitor water quality is the global availability
and accessibility of sensors and the timely transmission and
communication of their data to communities directly affected
by the environment.

Low-cost, open-source environmental sensors are one way
to flatten the system and make sensors and communication net-
works customizable to the end user’s needs and requirements.
In addition, low-cost sensor alternatives can provide expanded
spatial and temporal coverage of aquatic ecosystems with
pre-existing sensor systems and networks. Low-cost sensors
can be as technologically sound and reliable (precise, accurate,
and durable) as commercially available versions [9], [12], [13],
[14], [15], [16], [17]. By integrating sensing, data collection,
transmission, visualization, and communication along with
customizability, low-cost sensor networks can expand the
scope of environmental sensing.

Currently, there exist several low-cost, IoT, and real-time
water quality monitoring sensor designs available [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33] [34], [34].
However, only a few published designs integrate multiple
water quality sensors into a wireless device. Spectrophotome-
ters are developed for water quality monitoring in [12], [15],
[17], and [23]. Parra et al. [26], Fay and Nattestad [29],
and Wang et al. [30] focus on sensors for measuring water
turbidity, while others concentrate on phycocyanin (PC) or
chlorophyll-a (Chl-a) monitoring [18], [19], [20], [32], or flu-
orometers for laboratory use [21]. Fluorometer designs are
available for both PC and Chl-a measurements [22]. Some

techniques rely on satellite imaging. While satellite imaging
offers a remote sensing solution [31], it is an indirect mea-
surement and does not measure water condition parameters.
In situ water quality monitoring using uncrewed aerial vehicles
(UAVs) has been previously explored as a solution for water
sample collection [24], but it does not perform continuous time
water sensing.

This work presents a novel wireless multisensor water
quality, phytoplankton, and cyanobacteria monitoring system
built upon the open-source designs of Porter et al. [21] and
Leeuw et al. [18]. Our sensor system incorporates a three-
in-one 3-D-printed fluorometer to estimate phytoplankton
biomass as Chl-a (µg/L) and cyanobacteria abundance as PC
(mg/L). Additionally, it integrates a nephelometer to measure
water turbidity in Formazin Nephelometric Units (FTU) and
a temperature (◦C) sensor. This combination results in a user-
friendly, portable, low-power, and cost-effective device that
can be deployed in a field for wireless monitoring. Our
approach employs optical sensors to capture signals from
water particles and avoids utilizing chemical reagents. The
sensor system transmits water quality data wirelessly to a
remote data server and also stores it locally on a micro-SD
card for backup. It is adaptable to long range (LoRa) mesh net-
works, facilitating multiple node deployments across various
water bodies or different parts of a water body for extensive
monitoring.

The sensor node is housed within an 1150 waterproof
case for protecting the electronic circuitry, the three-in-one
fluorometer–nephelometer, and batteries from environmental
elements, such as water, humidity, and ambient light. Our
sensing system is customizable and open source, allowing
users to modify it to meet their specific application needs.
The system presented in this article can be used for collecting
point sample measurements or being deployed for short-term,
high-frequency measurements of water conditions at a fixed
depth.

The remainder of this article is organized as follows.
Section II presents the sensing system architecture and elab-
orates on different functional units’ design and fabrication.
Section III presents the laboratory test results for performance
validation. Section IV discusses the sensor features and their
application values. Section V contains the concluding remarks.

II. SENSING SYSTEM ARCHITECTURE

This section provides a detailed description of the design
and fabrication processes of our sensing system. It cov-
ers the design of the sensing principles and sensor node,
encompassing the microprocessor, fluorometer–nephelometer,
transimpedance amplifier, and subsequent sensor operation.

A. Fluorometer–Nephelometer Sensing Principles
Phytoplankton are a diverse group of organisms with various

photosynthetic pigments and form the food web base in
many aquatic ecosystems. In limnology and oceanography
fields, the concentration of pigments is commonly used as
a surrogate measure of cyanobacteria and algal abundance
and biomass [23]. Chl-a is the primary photosynthetic pig-
ment of most phytoplankton. The optical intensity of this
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pigment is often sensed as an indicator of total phytoplankton
biomass, which includes eukaryotic algae and prokaryotic
cyanobacteria. Fluorometric analysis, particularly useful for
in situ phytoplankton assessment [18], [19], [20], [21], [22],
involves artificially exciting Chl-a with light wavelength
between 400 and 500 nm (deep blue) and measuring the
light emission peaks around 670–690 nm (red) released from
the phytoplankton cell [18]. Cyanobacteria contain phycobilin
assessor pigments, of which PC is most used to sense their
abundance in freshwaters. In PC fluorometry methods, light
artificially excites PC pigments at around 600 nm (amber) and
the light emitted by PC is measured at approximately 650 nm
(red) [18]. Turbidity and temperature fluctuations influence
the excitation signals, necessitating concurrent measurement
with Chl-a and PC for enhanced reliability in estimating
phytoplankton and cyanobacteria levels.

Water turbidity, reflecting cloudiness and murkiness, results
from various biological, mineral, chemical, and optical
properties of particles and dissolved solids within aquatic
environments. To distinguish emitted or reflected light signals
from particles in water, a near-infrared (NIR) light source is
developed, which minimizes light absorbance within the water
matrix. Our nephelometer employs an 870-nm NIR LED for
turbidity detection via 90◦ light scattering by particles in water
samples [25]. This method is effective across clear and turbid
waters. Like phytoplankton, turbidity signals are influenced by
water temperature variations due to their impacts on water’s
optical properties. Hence, the simultaneous measurement
of temperature alongside turbidity is essential for accurate
assessment.

B. Sensor Node Components
As Fig. 1 shows, the sensor node electronics centers on an

Adafruit Feather M0, integrating an RFM95 LoRa transceiver
and an ATSAMD21G18 ARM Cortex M0 processor clocked
at 48 MHz. It utilizes an Adafruit motor shield to drive a
peristaltic pump and includes additional components, such as
a real-time clock (RTC) and a micro-SD card module. Two
LEDs LED590L and LED450L are used to excite PC and
Chl-a pigments and their light emissions, while a nephelome-
ter measures light scatter from particles using an LED870L
LED. All emissions are detected at a 90◦ angle perpendicular
to the LED light source. All LEDs are sourced from Thorlabs
Inc. (NJ, USA).

C. Fluorometer–Nephelometer Fabrication
The CAD design illustrated in Fig. 2 presents a multifunc-

tional fluorometer–nephelometer with dual orthogonal incident
light paths for each photodetector. Fig. 2(a) and (c) outlines
the device’s structure, while Fig. 2(b) illustrates light paths
and sample positioning within the polymethyl methacrylate
(PMMA) cuvette. Fig. 2(d) showcases LED and photodiode
holders. To counter interference from background red-light
wavelengths on the fluorometer photodiode (P2), a Thorlabs
Inc. FGL630 red glass long-pass filter is used. An FGL830
infrared glass long-pass filter is employed for the nephelome-
ter detector (P1). The PMMA cuvette is modified into a

Fig. 1. IoT-capable water quality sensor system block diagram. The
electronics are assembled inside the waterproof case.

Fig. 2. Fluorometer–nephelometer CAD structure with NIR, blue, and
amber LEDs, filters, and holders. (a) 45◦ angle front side view. (b) Top
view and filter holder cap: illustrates the paths of incident light and
90◦ scattered light as they interact with the suspended particles and
cells in the sample inside the cuvette. (c) 45◦ angle backside view.
(d) Photodiode and LED holders: two top pieces are for LED housing
and two bottom halves are for enclosing the FDS100 photodiodes.

flowthrough cell by removing its bottom, and 3-D-printed
tube barb caps are attached to each end using marine epoxy.
These components are 3-D-printed using polylactic acid (PLA)
filaments.

D. Circuit Design and Fabrication
The sensor node printed circuit board (PCB) consists

of the microcontroller stack, three complementary metal–
oxide–semiconductor (CMOS) drivers, each for one LED,
a DS18B20 waterproof digital temperature sensor (Adafruit
Industries), and two low-noise transimpedance amplifiers
(TIAs).

1) Power Supply: The power supply system, depicted in
Fig. S1 (in the supplemental document), comprises a CMOS
power switch, linear voltage regulators, and a resistive divider.
It generates a 5-V source for LEDs, a 9-V voltage source for
precision operational amplifiers, and a 3.3-V voltage source
for the feedback multiplexer (MUX) and temperature sensor.
The resistive divider’s output (CAP) monitors the main battery
voltage using an analog-to-digital converter (ADC) pin.

2) Transimpedance Amplifiers: TIAs are pivotal in our sens-
ing system, converting photodiode currents to measurable
voltages. This step is crucial due to photodiodes’ current
being proportional to incident light intensity. As the cur-
rent amplitude is very small, it poses big challenges for



21514 IEEE SENSORS JOURNAL, VOL. 24, NO. 13, 1 JULY 2024

TABLE I
FLUOROMETER AND NEPHELOMETER TIA DESIGN PARAMETERS

direct measurement. Precision operational amplifiers utilizing
OPA191 amplify photodiode currents. The amplifiers for the
fluorometer and nephelometer are configured for their specific
needs, with the nephelometer featuring a fixed RC network
(Fig. S2) and the fluorometer employing a variable feedback
RC network (Fig. S3) for resolution adjustment. The SAMD
M0 microprocessor’s 10-bit ADC measures the TIAs’ output
voltage with a stable 3.3-V reference voltage. The detailed
design characteristics are summarized in Table I.

The TIAs’ design process involves calculating the feedback
resistor (RF ) using (1) and the maximum allowable feedback
capacitor (CF ) using (2). In (1), VO,Max, and VO,Min determine
the desired output voltage range for the op-amps

RF = (VO,Max − VO,Min)/Iin,Max (1)

CF ≤ (2π RF f−3 db)
−1 (2)

where f−3 db is the pole frequency (cutoff frequency) set by the
RC feedback network. Equations (3) and (4) ensure amplifier
stability and suitable op-amp selection

fGBW > (CIN + CF)/
(
2π RF C2

F

)
(3)

CIN = CJ + CD + CCM. (4)

The photodiode junction capacitance is CJ (24 pF for
FDS100), the op-amp’s differential input capacitance (CD)

is 1.6 pF, and the common-mode input capacitance of the
amplifier (CCM) is 6.4 pF. Using (3), the chosen op-amp must
have an fGBW > 237 KHz for the nephelometer–fluorometer.
The op-amp outputs have a saturation voltage of 9 V.

Since the 10-bit ADC of M0 operates at a 3.3-V logic
level, the output voltages for both TIAs are adjusted using a
low-power voltage divider to match these levels. Additionally,
a 1-µF capacitor (Cout) is employed for noise attenuation. The
dc output voltage is determined by the following:

Vout = (RF IPhoto)× (R2/(R1 + R2)). (5)

The TIA circuit for PC and Chl-a photodiodes, as depicted
in Fig. S3, incorporates an RC network selector multiplexer
with input (IN) and enable (EN) pins for control. This func-
tionality is utilized for resolution selection. Table II provides
the truth table for RC selection.

3) LED Drivers, Pump Switch, and Temperature Sensor:
Each LED has a 100-� series resistor and a driver in
Fig. S4(a). The temperature sensor requires a 4.7-� pull-
up resistor on the data bus in Fig. S4(b). The pump switch
functions as a current source switch because of the motor
shield’s active low logic in Fig. S4(c).

TABLE II
TRUTH TABLE FOR RESOLUTION SELECTION

Fig. 3. Fabricated double-sided sensor node PCB. (a) Top view.
(b) Bottom mirrored view.

Fig. 4. LoRa Fluorometer–nephelometer waterproof box assembly.

4) PCB Fabrication: The PCB, Fig. 3, contains all the
components, including the microprocessor stack (M0, RTC,
and motor shield modules), TIAs, drivers, and switches.
The 1.6-mm-thick double-sided PCB is manufactured using
surface-mount circuit components with FR-4 material. The
simulated PCB is provided in Fig. S5.

5) Sensor Box Assembly: The sensor node is housed within
a Pelican1 1150 case, depicted in Fig. 4, and secured to a
3-D-printed frame (yellow frame). Inside the case, there are
two lithium-polymer (LiPo) batteries, one with a voltage of
12.6 V (for the PCB) and the other with 4.2 V (for the
M0 microcontroller). Additionally, the temperature sensor and
input/output pipes are mounted on the side of the case.

Fig. S6 presents a flowchart illustrating the sensing
sequence. The sensing process starts with the connection of
both batteries (main PCB power and M0), followed by the ini-
tialization of modules, including the RTC module and the
motor shield. After a brief 5-s delay, the M0 triggers the
CMOS power switch shown in Fig. S1, powering up all
components of the PCB, and initiating the fluid pumping into
the cuvette and sample analysis.

1Trademarked.
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TABLE III
COMPONENT POWER CONSUMPTION

6) Power Consumption: In our design, we utilize a
12.6-V battery for the circuit and a separate 4.2-V battery
for the Feather M0 stack, extending the sensor node’s overall
operational life. A main CMOS switch (Fig. S1) disconnects
components during sleep mode to conserve power. Refer to
Table III for component power consumption. The operational
duty cycle includes 5-s activation of LEDs, 7-s pump activa-
tion, 5-s data transmission (TX), and 15 min of sleep time.
Because of the low activation duty cycle, the overall energy
consumption remains low.

E. LoRaWAN Technology
LoRa is a type of low-power wide area network (LPWAN)

wireless communication technology designed to transmit small
data packets over long distances while operating on low battery
power. It utilizes a proprietary spread spectrum modulation
scheme based on chirp spread spectrum (CSS) modulation,
allowing for efficient long-range communication. LoRa wide
area network (LoRaWAN) is the protocol layer built on
LoRa, enabling bidirectional communication between end
nodes and gateways [34]. This technology enables wire-
less transmission of water quality data from field-deployed
fluorometer–nephelometers to a LoRa gateway station to
forward data packets to the cloud. In this project, LoRa
communication is set up via a 915-MHz Adafruit Feather M0
LoRa end node, registered on The Things Network (TTN)
server using the Activation by Personalization (ABP) protocol
for efficiency. Our tests show that the ABP protocol is more
efficient than the Over the Air Activation (OTAA) method, as it
skips the joining procedure required with OTAA, reducing the
time by about 1 min for a network rejoining. Session keys
(NwkSKey and AppSKey) and device address (DevAddr) are
stored in nonvolatile memory on the end device (Feather M0).
The frame counter is manually reset upon sensor node deploy-
ment. Data transmission occurs every 15 min at +20-dBm
transmission power, achieving a maximum distance of around
0.8 km in urban areas.

F. On-Chip Signal Processing and Wireless Transmission
Algorithm 24 outlines the sampling and wireless data

transmission processes in Arduino code format. It initializes
variables for data management and LoRa transmission setup
using the LMIC library. The setup section includes func-
tions for LoRa transmission, pump control, and photodiode
readings. In the main loop, a single iteration of the LMIC
event loop is executed, sensor data are collected, and sleep

mode is managed. Sampling involves activating LEDs for 5 s
for stability and taking 100 photodiode readings, from which
mean and standard deviation are calculated ON-chip. Data are
encoded into a 14-byte payload, with each parameter split into
high and low bytes for transmission. The packet includes seven
parameters, including temperature, turbidity, battery voltage,
PC (high and low), and Chl-a (high and low).

Algorithm 1 Arduino Program for the LoRa
Fluorometer–Nephelometer

1: Define variables: uint_8 data [14], osjob_t sendjob,
int16_t int16_Sensor.

2: Setup:
3: Initialize modules and configure pin modes and

mappings.
4: Function 1: do_send (osjob_t∗ j)
5: data [k] = (byte) (int16_Sensor ≫ 8)
6: data [k+1] = (byte) (int16_Sensor & 0x00FF)
7: LMIC_setTxData2 (7, data, 14, 0)
8: Function 2: Pump (mode, speed)
9: Input: Pumping modes such as in, out, idle, and

pumping speed.
10: Motor shield ← run (mode), setSpeed (speed).
11: Function 3: Get_data ()
12: Read the time, date, battery voltage, and

temperature.
13: Turn on the corresponding LED using

analogWrite (LED, 255).
14: Set the resolution using IN and EN for PC and

Chl-a channels.
15: for (j = 0; j < 100; j ← j + 1)
16: AccValue ← AccValue + analogRead (TIA)
17: Sensor [j] ← analogRead (TIA)
18: end
19: Turn off the LED and calculate average

int16_Sensor values.
20: Store data to SD card and transmit it using

do_send (&sendjob).
21: Loop:
22: Activate the CMOS power switch and execute

os_runloop_once ().
23: Pump fluid in, Get_data (), pump fluid out.
24: Turn off the power switch and go to sleep

(15 minutes).

G. Cloud Data Management and IoT
The IoT platform depicted in Fig. 5 comprises the end

device (sensor box), the LoRa gateway (transceiver), the Web
of Things (The Things Stack), and a webhook (Datacake
website). The RFM95 LoRa module in class A LoRaWAN
transmission mode has a bandwidth of 125 KHz. The water
quality data are collected every 15 min, and the 14-byte data
array requires approximately 14 s of transmission time. The
MultiTech Conduit gateway is connected to the cloud via
Wi-Fi, and it receives the uplink from the end node and relays
it to TTN server. From there, it is directed to the Datacake



21516 IEEE SENSORS JOURNAL, VOL. 24, NO. 13, 1 JULY 2024

Fig. 5. Datacake IoT platform for on-cloud data management.

webhook and decoded into individual bytes using a JavaScript
decoder. It starts by extracting battery voltage from the first
two bytes of the payload and then interprets the next two bytes
as a temperature value, considering a signed value followed
by two bytes for turbidity. Finally, it decodes four bytes for
PC (high and low) and four for Chl-a (high and low).

III. RESULTS AND SENSOR VALIDATION

This section describes the calibration and testing of sensors
for measuring water quality parameters, including temperature,
turbidity, PC, and Chl-a sensors. It also shows the data
management on the data server.

A. Experimental Test Bench
This part provides details regarding all sensor tests and the

test bench setup.
The low-cost temperature sensor is tested for 12 days along-

side a commercial Aqua TROLL 500 sensor. Measurements
are taken every 15 min using two setups. The first involves a
20-gallon aquarium filled with tap water, initially cooled with
eight freezer packs. After 48 h, a new set of packs is used.
The aquarium is incubated in low light. The second setup uses
a 1-gallon container on a window ledge, which is exposed to
direct sunlight and induces diurnal temperature changes.

Turbidity, PC, and Chl-a testing are conducted at room
temperature (19 ◦C) under low light. Fresh standards are
prepared weekly, and the sensor is sampled every 10 s. Pump
tubing is cycled through standards starting with the lowest
and mixed before each sampling. After measuring the highest
standard, the system is rinsed with deionized water for three
cycles. Battery charging maintains consistent power levels.
Testing spans two weeks.

Chl-a standards are made by extracting Spinach in methanol
for 24 h at −20 ◦C, followed by filtering extract through
a 0.7 µm glass fiber filter. The concentration is then
determined using a spectrophotometric method [35]. Phy-
cocyanin standards are made using freeze-dried Spirulina
nutritional supplements (Blue Spirulina, 35% phycocyanin,
Double Wood Supplements). Rhodamine WT working stan-
dards (0–2000 µg/L), a secondary dye standard that is more
stable and affordable than pigment standards, were made from
2.5% manufactured stock solution by serial dilution.

Working turbidity standards (0–200 FTU) are made by
serial dilutions of a 1000 FTU Formazine manufactured stock

Fig. 6. (a) Temperature comparison between low-cost sensor system
and commercial sonde (black line is linear smooth, and gray line
is 1:1). (b) Low-cost turbidity channel response at room temperature
to standard reference matter using a 3-mm-diameter LED aperture and
4-mm-diameter LED aperture.

solution. Turbidity tests are conducted with two LED aperture
sizes (3 and 4 mm). Altering the aperture size allows for
sensitivity adjustment without changing the electronics, which
enables the sensing system to work within a wider range of
environmental conditions common to wetlands, ponds, and
shallow lakes.

B. Temperature and Turbidity Calibration
Temperature tests range from 7 ◦C to 20 ◦C, with both

low-cost and commercial sensors showing similar responses in
Fig. 6(a). They correlate strongly (R2

= 0.9995) with a slope
close to 1.01. However, a significant y-intercept difference
indicated an average deviation of 0.75 ◦C between their
measurements. Our sensor offers ±0.5 ◦C accuracy, while
the commercial one provides ±0.1 ◦C. Despite the deviation,
the strong linear relationship suggests reliable correction for
magnitude differences.

In the low-cost turbidity sensor test, both aperture sizes
show a linear response across the working standard set, with
R2 values of 0.9998 for 3-mm aperture and 0.9999 for 4-mm
aperture [Fig. 6(b)]. The 3-mm aperture exhibits a lower blank
voltage (1.96 V) and can detect up to 200 FTU before satura-
tion, whereas the 4-mm aperture saturates just over 100 FTU
but offers better sensitivity (1 FTU compared to 3 FTU). Our
turbidity sensor’s performance is suitable for typical wetland,
pond, and lake environments with their turbidity levels being
below 200 FTU. Additionally, it is unaffected by dissolved
pigments, watercolor, and dyes, indicating that the signal is
solely influenced by the amount and density of the suspended
solids in the water.

C. Phycocyanin Detection and Calibration
The cyanobacteria sensor response is tested using two

pigment standards (Chl-a and PC), a secondary standard
(Rhodamine WT), and a turbidity standard. The PC and Chl-
a sensors use a transimpedance amplifier (Fig. S3) to select
detection resolutions via logic values for EN and IN pins
(Table II). The cyanobacteria sensor responds linearly to all
standards at both detection resolutions (R2 range is from
0.9638 to 0.9987 in Fig. 7). Chl-a standard signal indicates
nontarget pigment interference, while the turbidity standard
signal represents parasitic wavelengths from the amber LED
scattering off Formazine particles. These interferences can
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Fig. 7. Response of phycocyanin (PC) sensor to four standard
materials. This sensor channel targets rhodamine WT and phycocyanin
standards. Turbidity and Chl-a standards are parasitic signals from the
LED that can be mathematically corrected in this channel.

be corrected in the target pigment voltage by accounting for
additional voltage caused by turbidity-induced light scatter and
nontarget pigment. Considering these nontarget and parasitic
signals, the cyanobacteria sensor has a detection range of
0.025–2.5 mg-PC/L for turbidity ≤ 100 FTU.

D. Chlorophyll-a Detection and Calibration
The phytoplankton biomass sensor response is tested using

the same standard sets as the cyanobacteria sensor. The Chl-
a sensor shares the same amplifier as the PC; hence, the
MUX switch selects two resolutions. This sensor responds
linearly to all standards at both detection resolutions (R2

≥

0.9946 in Fig. 8). Target standards for phytoplankton biomass
are Chl-a and rhodamine WT. The phytoplankton biomass
sensor is only weakly impacted by nontarget pigment (PC)
interference. Nontarget signal interference is less than 0.1 V
when PC is below 1 and 0.25 mg-PC/L for low and high reso-
lution, respectively. At these interference levels, PC will only
meaningfully interfere with total phytoplankton biomass esti-
mations during very dense cyanobacteria blooms. Similarly,
the parasitic blue LED signal caused by increasing turbidity
and light scattering is weak and does not impact target voltage
below 25 and 50 FTU for high and low sensitivity, respectively.
Hence, the phytoplankton signal is reliable in most situations
without correction and has a biomass detection range of
1–50 µg-Chl-a/L when turbidity ≤ 250 FTU.

IV. DISCUSSION

This study presents the design and functionality of a fully
customizable sensor and communication system. Our low-cost,
portable, low-power fluorometer–nephelometer device func-
tions well within commonly observed ranges of temperature,
turbidity, cyanobacteria, and phytoplankton in aquatic systems.
The sensor system responds linearly to target standards with a
relative difference of 10%. Interference from nontarget signals
and parasitic LED wavelengths is minimal for turbidity and
phytoplankton biomass sensors and within correctable limits
for the cyanobacteria sensor. Excluding labor, the sensor

Fig. 8. Response of Chl-a sensor to four standard materials. This
sensor channel targets rhodamine WT and Chl-a standards. Turbidity
and phycocyanin standards are parasitic signals from the LED that can
be mathematically corrected in this channel.

system tested in this study costs approximately US$367. The
system can be used for field or laboratory measurements of
discretely collected water samples or deployed at the surface
of an aquatic ecosystem for short-term continuous monitoring.
With the LoRaWAN system and enabled IoT, information
can be transmitted wirelessly in real time to allow adaptive
management of ecosystems and for recreation to inform the
public about the current water conditions in real time.

The sensor system presented in this study is designed and
customized for low to moderate-nutrient wetlands, ponds, and
lakes that experience episodic phytoplankton and cyanobacte-
ria blooms. It has detection ranges of 3–200 FTU for turbidity,
0.025–2.5 mg-PC/L for cyanobacteria, and 1–50 µg-Chl-a/L
for phytoplankton biomass. As depicted in Table IV, the detec-
tion ranges of our sensor system expand upon the range and
capabilities reported by Leeuw et al. [18] (the original design)
and that of a smartphone image detector (SmartFluo in [20])
and an OceanOptics detector-based submersible LED sensor
system [19]. Our system enhances low-cost or custom designs
by integrating multiple sensors. While direct comparison is
challenging due to cyanobacteria’s lack of standard units, our
system can detect levels within and below World Health Orga-
nization guidelines [23]. Our sensor system saturates when
guidelines are exceeded. Yet, the combination of turbidity
and phytoplankton sensors can still alert about potentially
hazardous water quality conditions.

Our sensor system features a peristaltic pump to draw
water into a dark flow cell. The flow cell is designed to
block ambient light from the sample. Additionally, our system
offers internal data logging like commercial sensors, along
with wireless transmission for real-time monitoring of water
quality parameters. It provides reliable detection, accuracy, and
precision at a fraction of the cost of commercial systems.

This sensor system design is highly adaptable, following
an open-source approach. For instance, in environments with
high nutrient levels causing algal and cyanobacteria blooms,
resistance can be adjusted for less sensitive estimations.
In river deployments, turbidity gain adjustments or adding
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TABLE IV
COMPARISON BETWEEN OUR SENSOR SYSTEM AND THE LITERATURE

a turbidimeter-capable detector could be considered. Also,
changing the LED aperture diameter in Fig. 2(d) alters sys-
tem sensitivity. While the current design samples at a fixed
depth, adding extra motors could enable the intake tube to
move through the water column, providing the estimates of
conditions at multiple depths. Overall, the design is robust
and easily customizable to meet specific user needs.

V. CONCLUSION

Our sensor system integrates a 3-D-printed fluorometer–
nephelometer, LoRa technology, and peristaltic pump to
monitor phytoplankton biomass, cyanobacteria levels, water
clarity, and temperature in a user-friendly portable, low-
power, and low-cost wireless device. This sensor system
is customizable and reliable and significantly advances its
applicability across early detection of harmful algal blooms
in recreational waters, ongoing surveillance of drinking water
sources, academic research, and long-term ecological studies
investigating the impact of environmental factors on aquatic
biodiversity. Additionally, it is suitable for deployment in
remote or challenging-to-access locations.

The limitations of the system are the LoRaWAN commu-
nication range, sensor sensitivity to sediments and biofouling
in the cuvette, and the limited battery life. These limitations
could be improved by adjusting the spread factor (SF) and
transmission power, replacing the sample cuvette on time,
utilizing solar panels alongside the sensor box for improved
battery time, and utilizing low-power pumps accordingly.

Future work involves the deployment of several sen-
sor boxes in the field for continuous monitoring of algal
blooms in addition to water quality and incorporating the
fluorometer–nephelometer boxes into a smart IoT LoRa
network.
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