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Abstract—Endovascular interventions are minimally inva-
sive procedures that utilize the vascular system to access
anatomical regions deep within the body. Image-guided
assistance provides valuable real-time information about the
dynamic state of the vascular environment. However, the
reliance on intraoperative 2-D fluoroscopy images limits
depth perception, prompting the demand for intraopera-
tive 3-D imaging. Existing image registration methods face
difficulties in accurately incorporating tissue deformations
compared to the preoperative 3-D model, particularly in
a weakly supervised manner. Additionally, reconstructing
deformations from 2-D to 3-D space and presenting this
intraoperative model visually to clinicians poses further com-
plexities. To address these challenges, this study introduces
a novel deformable model-to-image registration framework
using deep learning. Furthermore, this research proposes
a visualization method through augmented reality to guide
endovascular interventions. This study utilized image data
collected from nine patients who underwent transcatheter
aortic valve implantation (TAVI) procedures. The registration
results in 2-D indicate that the proposed deformable model-to-image registration framework achieves a modified dice
similarity coefficient (MDSC) value of 0.89 ± 0.02 and a penalization of deformations in spare space (PDSS) value of
0.04 ± 0.01, offering an improvement of 3.5%–98.6% over the state-of-the-art image registration approach. Additionally,
the accuracy of registration in 3-D was evaluated using a dataset obtained from an intervention simulator, resulting in
a mean absolute error (MAE) of 1.51 ± 1.02 mm within the region of interest. Overall, the study validates the feasibility
and accuracy of the proposed weakly supervised deformable model-to-image registration framework, demonstrating its
potential to provide intraoperative 3-D imaging as intervention assistance in dynamic vascular environments.

Index Terms— Augmented reality, deep learning, deformation, image registration, image-guided interventions.

I. INTRODUCTION

THE rising demand for minimally invasive procedures
has expedited the acceptance and implementation of

endovascular interventions [1]. Endovascular interventions
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utilize the vascular system to access anatomical regions deep
within the body. For example, transcatheter aortic valve
implantation (TAVI) procedure, a percutaneous cardiological
intervention, facilitates the implantation of a miniaturized
biological valve prosthesis into the aortic root. This minimally
invasive approach is designed to address aortic valve patholo-
gies, specifically aortic stenosis and steno-insufficiency [2].

During endovascular interventions, image-based guidance
plays a crucial role in providing clinicians and robotics sys-
tems with valuable insights into the dynamic vascular environ-
ment [3], [4]. However, conventional 2-D images commonly
used for intervention guidance, such as 2-D X-ray fluoroscopy
and digital subtraction angiography (DSA), are often deemed
insufficient due to limited information and the absence of
depth perception. Consequently, there is a growing demand for
intraoperative 3-D imaging [5]. By fusing 3-D preoperative
data with 2-D intraoperative images, complex clinical
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procedures can benefit from enhanced visualization of
concealed structures and a more comprehensive anatomical
model [6], [7], [8]. The necessity for introducing a deformable
model-to-image registration approach stems from various
physiological factors such as heartbeat, respiration, patient
movement, and instrument insertion, all of which can induce
vascular deformations and adversely impact registration
accuracy [9].

Existing image registration methods to reconstruct vascular
deformation can be broadly categorized into optimization-
based approaches, which rely on iterative optimization
processes, and learning-based approaches that leverage neural
networks. Zhang et al. [11] proposed a method to recon-
struct a deformed intraoperative 3-D aortic model using a
preoperative 3-D model and intraoperative fluoroscopy images.
They formulated the deformation estimation process as a
nonlinear optimization problem based on the deformation
graph approach, utilizing the comparison between preopera-
tive model projection contours and intraoperative segmented
aortic shape contours. However, optimization-based methods
often suffer from high computational complexity [12], [13].
To illustrate, the iterative closest point (ICP) method, for
instance, necessitates more than 10 min for execution [12].
Haskins et al. [13] conducted a survey on learning-based
methods and highlighted a significant limitation: most studies
in the literature rely on landmarks or manually annotated
features, making them severely constrained by the laborious
task of generating datasets. In [14], a multichannel con-
volutional neural network (CNN) was employed to achieve
favorable registration results, demonstrating an average error
of approximately 0.3 mm. This approach, however, neces-
sitates the definition of a mathematical model for periodic
deformation, which is only feasible when a complete dataset
representing all phases of the periodic movement is available.
This requirement implies the need for a long exposure time
and significant amounts of contrast media. Hu et al. [15]
proposed a weakly supervised CNN, which, however, does
not include 3-D model deformation reconstruction. Overall,
existing methods encounter challenges in effectively handling
tissue deformations in a weakly supervised manner and accu-
rately reconstructing deformations from 2-D to 3-D space.

Augmented reality (AR) visualization has been widely
acknowledged in numerous studies for its ability to offer
crucial advantages during clinical procedures. These benefits
include providing valuable insights into the physiology of
deformable organs and enabling clinicians to integrate infor-
mation from multiple sources seamlessly, all while maintaining
a clear line of sight with the patient in the operating room [16],
[17], [18]. These advantages are particularly significant in
the context of minimally invasive interventions, where direct
visual observation is inherently limited [19]. Moreover, sev-
eral studies have highlighted the positive outcomes achieved
through the integration of AR with robotic-assisted procedures,
as evidenced by user-centric and ergonomic evaluation crite-
ria [20], [21], [22].

To overcome the aforementioned challenges, this article
presents a novel deformable model-to-image registration
framework using deep learning, specifically tailored for

augmented reality-guided endovascular catheterization.
Building upon our previous work [10], which proposed
an affine model-to-image registration approach to align
segmented fluoroscopy images with a preoperative 3-D
model reconstructed from computed tomography angiography
(CTA) scans, this study extends the registration pipeline.
We introduce a phase for deformation prediction and
reconstruction and incorporate immersive AR visualization
using a head-mounted display (HMD) device. The main
contributions of this research can be summarized as follows.

1) Proposal of an accurate deep-learning-based deformable
model-to-image registration framework for predicting
and reconstructing deformations from 2-D images
onto the preoperative 3-D model, using a deep residual
U-Net (DRU-Net) model with a customized loss func-
tion to adequately capture the registration accuracy.

2) Development of an immersive visualization interface for
intraoperative 3-D models using the AR HMD.

3) Validation of the registration accuracy both in 2-D using
a dataset comprising nine patients and in 3-D using a
dataset obtained from an intervention simulator.

The article is organized as follows: Section II provides
an overview of the proposed deformable model-to-image
registration framework. Section III explains the experimental
design and the performance metrics employed to evaluate the
accuracy of the results. Section IV showcases the results,
accompanied by a relevant discussion. Finally, Section V
concludes the article and outlines future directions for
research.

II. MATERIALS AND METHODS

The proposed deformable model-to-image registration
framework is illustrated in Fig. 1, consisting of six modules.

1) 3-D Model Reconstruction: Semi-automatic 3-D recon-
struction of the patient’s model from preoperative CTA
images. These images are obtained using two typi-
cal multidetector computed tomography (MDCT) scan
strategies [23]. The first strategy involves electrocardio-
gram (ECG)-synchronized CTA of the aortic root and
heart, followed by non-ECG-synchronized helical CTA
of the thorax, abdomen, and pelvis. The second strat-
egy comprises ECG-synchronized CTA of the thorax,
followed by non-ECG-synchronized helical CTA of the
abdomen and pelvis.

2) 2-D Fluoroscopy Image Segmentation: Acquisition of
intraoperative fluoroscopy images depicting various
field-of-view (FoV) along the insertion route, followed
by automatic segmentation using a DRU-Net to generate
binary images [10]. These fluoroscopic images predom-
inantly focus on two main FoVs during interventions:
the entry site, typically the femoral arteries, and the
target site, generally the aortic root. These fluoroscopy
images are typically captured at key stages of the inter-
vention: first, following the insertion of the needle into
the femoral arteries; second, before the inflation of the
balloon catheter; and finally, after the placement of the
stent at the aortic root.
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Fig. 1. Architecture of the proposed framework consists of multiple modules. 1) Reconstruction of a preoperative 3-D aortic model from CTA
slices. 2) Autonomous segmentation of vessels from intraoperative fluoroscopy images using a DRU-Net. 3) Generation of 2-D ROI projections
and registration with segmented images using a hybrid approach incorporating a CNN. 4) The DRU-Net model to estimate the registration matrix
and deformation field, respectively. 5) Application of these parameters to deform the preoperative 3-D model. 6) Visualization of the deformed 3-D
model alongside the intraoperative fluoroscopy image using an AR HMD (Microsoft HoloLens 21). The red dashed box highlights the extensions
introduced in comparison to our previous work [10].

3) Affine Model-to-Image Registration: Conversion of the
model-to-image registration problem into an image-to-
image registration problem through the projection of a
2-D view of the Region of Interest (ROI) from the 3-D
model, based on the fluoroscopy image. An CNN model
is employed to estimate an affine registration matrix,
which aligns the ROI projection with the binary image
segmented from the fluoroscopy image [10]. The ROI
of a patient-specific model is determined interactively
by delineating a bounding box on a projection image of
the 3-D model. This process involves the selection of
two distinct ROIs for each patient: one encompassing a
lower FoV, which includes the femoral arteries, and the
other covering an upper FoV, providing visibility of the
ascending aorta and aortic root.

Extensions in Comparison to Our Previous Work [10]:

4) Deformable Model-to-Image Registration: estimation of
the deformation field describing the vessel deformation
between the ROI projection and the segmented image
using a DRU-Net model.

5) 3-D Model Registration: application of the 2-D affine
registration matrix and deformation field obtained from
the previous modules to the preoperative 3-D model
using a free form deformation (FFD) algorithm [24].

1Registered trademark.

6) Augmented Reality Visualization: Visualization of the
deformed 3-D model, along with the fluoroscopy image
and deformation field, using the AR HMD device.

Our contribution to this extended framework introduced
in comparison to the previous work [10] is depicted by
the red dashed box in Fig. 1, including the model deforma-
tion prediction using a DRU-Net and the reconstruction of
deformations onto the preoperative 3-D model. Furthermore,
the visualization phase is enhanced by integration with AR.
Detailed descriptions of these extensions will be provided in
Sections II-B–II-D.

A. Image Dataset
For this study, a dataset was collected from nine patients

who underwent TAVI procedures at the Centro Cardiologico
Monzino (CCM) in Milan, Italy. The data collection process
adhered to the ethical protocol approved by the CCM under
the assigned code of 02_21 PA.

The patient dataset consists of five males and four females,
with an age of 81 ± 4. A collection of fluoroscopy images
was obtained for each patient. The number of frames extracted
varied according to the details presented in Table I. Before
analysis, all images utilized in this study were resized to
dimensions of 256 × 256. Subsequently, these images were
segmented and aligned with the corresponding preoperative
3-D model via the previously proposed affine registration
approach [10].
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TABLE I
NUMBER OF FLUOROSCOPY IMAGES EXTRACTED FROM EACH PATIENT

TABLE II
SUBDIVISION OF THE PATIENT IMAGE DATASET IN TRAINING,

VALIDATION, AND TESTING SETS

Fig. 2. Sketch of the DRU-Net architecture for deformable model-to-
image registration. Given a pair of input images, the DRU-Net model
predicts deformation field components along the x- and y -axes, enabling
the generation of a warped image by applying the deformation field to
the moving image.

To estimate deformations using a DRU-Net model, the
dataset was divided into training, validation, and testing sets,
as depicted in Table II. Notably, two distinct training phases
were introduced: (W 1) the initial phase involved standard
training to obtain a well-trained model, while (W 2) the
subsequent phase focused on rapid retraining utilizing intraop-
erative images obtained during the procedure for the specific
patient. This personalized fine-tuning phase is proposed to
enhance registration accuracy in patient-specific scenarios. The
acquisition of intraoperative data, such as fluoroscopy images,
and its integration into neural networks during procedures
have been demonstrated as feasible in the existing literature,
as exemplified by references such as [25] and [26].

B. Deformable Model-to-Image Registration (Module 4)
The DRU-Net architecture of the “deformable model-to-

image registration” module is illustrated in Fig. 2. In this
module, the fixed image (i.e., the intraoperative segmentation)
and the moving image (i.e., the preoperative ROI projection),
which have been previously aligned through the “affine

model-to-image registration” module [10], are concatenated
and fed into the DRU-Net.

The DRU-Net encoder consists of four residual blocks.
Each residual block is followed by a 2 × 2 max-pooling
layer to reduce the number of network parameters. Within
each residual block, there are two convolutional layers with
a kernel size of 3 × 3, followed by a ReLU activation layer.
The number of filters used in each block is denoted by n and
indicated in Fig. 2.

In the DRU-Net decoder, each block consists of a 2 × 2 up-
sampling layer followed by a residual block. Subsequently,
a convolutional layer with 2 filters having a kernel size of
1 × 1 and a linear activation function is used, followed by a
fully connected layer with a hyperbolic activation function that
produces output values within the range of [−1, 1]. To ensure
a meaningful range of deformation while preventing overfit-
ting, these values are scaled by a factor h, which represents
the maximum possible amplitude of the deformation field
value [27], [28]. As a result, the output values are confined
within the range of [−h, h]. The output of this fully connected
layer is a two-channel image containing the deformation field
components along the x- and y-axes. This deformation field
is applied to the moving image and concatenated with the
warped result, resulting in a single 256 × 256 × 3 output.
As shown in Fig. 2, the DRU-Net generates a three-channel
image, consisting of a warped binary image and deformation
field components along the x- and y-axes.

The model loss between the warped and fixed image is then
calculated and utilized to update the neural network parameters
during the subsequent training iterations. This iterative process
allows the DRU-Net to optimize its performance and improve
the accuracy of the deformable registration.

The network training utilizes an Adam optimizer [29] to
minimize a customized loss function, which is a linear com-
bination of two components

L = αLA + βLB . (1)

Here, L represents the combined loss proposed in this work,
while α and β are the weights assigned to each component.
The values of α and β can be determined based on their
respective importance within the loss function. LA corresponds
to a customized similarity loss, and LB refers to the cus-
tomized penalization of deformations in spare space (PDSS).
The following paragraphs present comprehensive explanations
and definitions of these two loss components.

To enhance the performance of the standard dice similarity
coefficient (DSC) [30], we introduce the concept of modified
dice similarity coefficient (MDSC). This approach involves
partitioning both images into N × N subregions, thereby
enhancing the performance of the traditional DSC metric in
image similarity analysis. The formulation is given by

MDSC =
2TP∑N

i=1
ai

ai +s bi +
bi

bi +s ai
(2)

where true positive (TP) represents the number of correspond-
ing white pixels (vessels) in both images. ai and bi represent
the number of white pixels in the i th subregion of the fixed
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Fig. 3. Workflow illustrating the application of predicted deformation field on the preoperative 3-D model. (a) Evenly distributed control points
(depicted in green) are generated within the ROI of the preoperative 3-D model (shown in red). (b) 2-D deformation field (the bottom image),
predicted between the preoperative vessels (highlighted in red) and the intraoperative vessels (depicted in blue), is subsequently applied to the
corresponding control points. (c) Resulting in a deformed 3-D mesh model (shown in blue).

and warped image, respectively, while s denotes a smoothing
factor.

Compared to the traditional DSC, the improvement intro-
duced in the denominator of MDSC reduces the dependence on
vessel pixels that are absent in either the fixed and the warped
images (where either ai or bi is equal to 0). This modification
mitigates the adverse effects caused by incomplete vessel
segmentation in fluoroscopy images, which has a substantial
impact on the accuracy of the registration process. The loss
component LA in (1) is then defined as

LA = 1 − MDSC. (3)

The loss component LB is introduced to penalize defor-
mations in sparse areas of the fixed image. To achieve this,
both the fixed image and the deformation field in both x and
y directions are divided into N × N subregions. LB is then
defined as follows:

LB = PDSS =
1

N 2

N∑
i=1

∥1 − ai∥

kai + 1

(
ci + di

2h

)
(4)

where ci and di represent the maximum absolute values of the
deformation field in the i th subregion along the x- and y-axes,
respectively. The parameter k serves as an amplification factor.

The first part of the summation approaches 1 when the
i th subregion of the fixed image is empty (i.e., ai = 0) and
approaches 0 otherwise. By doing so, it penalizes deformations
in subregions of the moving image that do not correspond to
any vessels in the fixed image.

C. 3-D Model Registration (Module 5)
The process of 3-D model registration involves reflecting

the affine registration matrix and the 2-D deformation field
onto the 3-D preoperative model. Specifically, the affine reg-
istration matrix obtained from Module 3, aligns the coordinate
frames of the 3-D model and the fixed image. Subsequently,
the estimated deformation field obtained from Module 4 is
reconstructed onto the preoperative 3-D model using a FFD
approach [24]. The details of the deformation reconstruction
on the 3-D model are presented as follows.

To discretize the 3-D ROI in the preoperative model,
an evenly distributed grid of size mx × m y × mz is employed.
Each voxel corresponds to a control point [Fig. 3(a)] that
applies a specific transformation in the three orthogonal axes
based on its position. The number of control points mx and m y

is set to be equal. The spacing between control points along
the depth direction (z-axis) is set to be equal to the spacing
in the other two directions.

Subsequently, the estimated deformation field obtained from
Module 4 is applied to the control points [Fig. 3(b)]. The
deformation between adjacent control points is determined
using nonlinear cubic B-spline interpolation. We assume that
the deformation field is consistent throughout the depth of the
model, as the deformation information along the depth is not
captured in fluoroscopy images. Thereafter, the resulting 3-D
deformed model is illustrated in Fig. 3(c).

D. AR Visualization (Module 6)
As shown in Fig. 4(a), the 3-D visualization interface of the

deformed 3-D model, along with the 2-D fluoroscopy image
and deformation field, is developed using Unity3D under
the support of Microsoft mixed reality toolkit (MRTK) [31].
Fig. 4(b) and (c) presents examples of the 3-D model visual-
ization at two distinct time stamps. This interface application
is deployed on the Microsoft HoloLens 21 AR device. Lever-
aging optical see-through display technology, digital elements
are overlaid on real-world views with limited interaction.

III. EXPERIMENT AND VALIDATION

A. Experimental Setup
The experimental setup for modules 1–3 remains consistent

with the configuration described in [10].
1) Deformable Model-to-Image Registration: The DRU-Net

was implemented in Python using the Tensorflow and Keras
frameworks and trained on an NVIDIA GeForce RTX2080Ti
GPU card.

The learning rate of the model was determined using
KerasTuner, a scalable hyperparameter optimization frame-
work for conducting hyperparameter search [32]. The search
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Fig. 4. Three-dimensional visualization interface. (a) Fluoroscopy
image, the deformation field, and the deformed 3-D model.
(b) and (c) Examples of 3-D model visualization at different time stamps.

process involved sampling values of the learning rate within
the commonly used range [1e − 5, 1e − 2] on a logarithmic
scale. The optimal learning rate was selected based on achiev-
ing the lowest loss after a number of epochs (e.g., 20). The
best learning rate was found to be within the range [5e − 5,
5e − 4]. A batch size of 4 was chosen to strike a balance
between gradient estimation precision and iteration time. The
training phases, W1 and W2, are each conducted for 30 and
20 epochs, respectively.

The weights in the loss function were set as α = 1 and
β = 0.1 to properly weigh the relative importance of image
similarity and the penalization of spare space. The MDSC
was computed using 16 × 16 subregions with N = 16 and
a smoothing factor of s = 1e − 15. The amplification factor k
in the loss function was set to 1e6, and h = 15 represented the
maximum possible amplitude of the deformation field value.

2) 3-D Model Registration and Visualization: The 3-D model
deformation is performed using the FFD approach, which is
implemented utilizing the PyGem library [33].

The length of the ROI and the depth of the model in the
corresponding volume were found to be similar across all
patients. Consequently, when dealing with 256 × 256 images
representing the estimated deformation field and
mx = m y = 256, the number of control points surpassed the
computational limitation of 1e6, making precise deformations
impractical. To address this constraint, the deformation field
was downsampled to 64 × 64 using an averaging filter. This
downsampling strategy reduced the number of control points
to mx = m y = 64.

B. Registration Accuracy Validation
To validate the accuracy of registration in 3-D, a dataset

was generated since ground-truth data for patients’ intra-
operative deformed mesh models was not available. This
dataset was generated using a Position-based Dynamics (PBD)
simulator [34]. External forces were applied at three different
locations on the left and right femoral arteries in the simulator,
resulting in three distinct groups of images and mesh models.
The three mentioned locations represent typical regions that
experience deformations due to catheter–vessel contact during
procedures [27], [28].

These groups comprised 64, 46, and 33 pairs of images and
mesh models, respectively. Subsequently, a split of 7:2:1 was
employed to assign each group to the training, validation, and
testing sets. The training set contained a total of 99 pairs of
images and mesh models, while the validation and testing sets
consisted of 27 and 17 pairs, respectively.

During the optimization process, the hyperparameter
framework determined that the optimal learning rate for the
DRU-Net was 2e − 4. Additionally, the maximum possible
amplitude of the deformation field value was set to h = 60.
The remaining parameters remained consistent with the
description provided in Section III-A1.

C. Performance Metrics
1) Registration Accuracy in 2-D: The performance metrics

employed to assess the quality of the deformable registra-
tion results included the DSC (5), Precision (6), Recall (7),
MDSC (2), and PDSS (4)

DSC =
2TP

2TP + FN + FP
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
. (7)

Here, TP represents the number of corresponding white
pixels (vessels) in both images, false positive (FP) represents
the number of pixels that are white in the first image
(warped image) but black (background) in the second (fixed
image), and false negative (FN) represents the number of
pixels that are black in the first image but white in the
second.

The first three metrics, namely DSC, Precision, and Recall,
are commonly used [35]. The DSC provides a comprehensive
assessment of the registration performance by considering both
FP and FN, while Recall and Precision offer insights into the
predominant type of matching error. On the other hand, the
MDSC and PDSS metrics were specifically introduced in this
study to address the challenges associated with deformable
registration in partial regions.

2) Registration Accuracy in 3-D: To assess the accuracy
of registration in 3-D, we employed the Mean Absolute
Error (MAE) metric, which measures the discrepancy between
the vertex positions of the deformed mesh model and the
ground-truth positions of the dynamic mesh model obtained
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from the simulator. The MAE values were computed for all
vertices and specific axes, denoted as e for overall MAE
and ex , ey , and ez for MAE along the x-, y-, and z-axes,
respectively,

e =

∑m
i=1 ||vi − v̂i ||

m
(8)

ex =

∑m
i=1 |

(
vi − v̂i

)
· (1, 0, 0)|

m

ey =

∑m
i=1 |

(
vi − v̂i

)
· (0, 1, 0)|

m

ez =

∑m
i=1 |

(
vi − v̂i

)
· (0, 0, 1)|

m
. (9)

Here, m represents the total number of vertices in the mesh
model. In the context of the deformed mesh model, vi denotes
the actual position of the i th vertex, representing the ground
truth. Conversely, v̂i signifies the position of the i th vertex in
the estimated mesh model, illustrating the approximation of the
vertex’s location. Moreover, we calculate the MAE specifically
for the vertices within the ROI, which is referred to as eROI.
Additionally, we calculate the MAE along specific axes within
the ROI: ex−ROI, ey−ROI, and ez−ROI, representing the MAE
along the x-, y-, and z-axes, respectively.

3) Execution Time: Execution time, in the context of our
study, pertains to the point at which the instructions within
the computer programs or code are carried out.

To provide clarity on this matter, we distinguish between
several key components: the execution time of the hyperpa-
rameter optimization phase, denoted as th, the execution time
of the deformable model-to-image registration training phase,
denoted as tr , and the execution time of the testing phase,
denoted as te.

4) Statistical Significance: To assess the statistically sig-
nificant differences between the method proposed in this
study and the state-of-the-art approaches, the nonparametric
Kruskal–Wallis test [36] was employed at a significance level
of 0.05.

Two state-of-the-art approaches were chosen as comparative
benchmarks: the traditional optimization-based Powell’s
method [37] and the state-of-the-art CNN approach [15]. It is
worth noting that multiple optimization-based registration
methods have been assessed in the work [37], with Powell’s
method, specifically Powell’s conjugate direction method,
consistently demonstrating reliability across various similarity
measures. Consequently, it was chosen as a comparative
benchmark.

Furthermore, the state-of-the-art CNN approach [15] was
selected for comparison, considering the constraints of the
available image dataset. In their work, Hu et al. [15] introduced
a weakly supervised CNN for multimodal image registration.
The primary distinctions between this existing state-of-the-art
CNN and the CNN proposed in this study lie in the unique
design of the loss function and the form of deformation output.
Specifically, the network proposed in this study generates a
deformation field as its output, whereas the model presented
by Hu et al. [15] employs a dense displacement field (DDF)
as its output mechanism.

Fig. 5. Boxplots of the testing data depicting the distributionof
performance metrics including DSC, Precision, Recall, MDSC,
and PDSS. The label P represents the traditional optimization-
based Powell’s method [37]. The label H corresponds to the weakly
supervised CNN proposed by Hu et al. [15]. The label W1 represents
the proposed deformable registration after the general training phase,
while the label W2 signifies the proposed deformable registration after
the patient-specific retraining phase. Significance (*p < 0.05) was
determined using the Kruskal–Wallis test. Note that a higher MDSC
value indicates better performance, while a lower PDSS value indicates
better performance.

IV. RESULTS AND DISCUSSION

A. Deformable Model-to-Image Registration
Fig. 5 presents the registration results of the patients’ testing

set, evaluated in terms of DSC, Precision, Recall, MDSC, and
PDSS. We present results for four distinct approaches: the tra-
ditional optimization-based Powell’s method [37] (abbreviated
as P), the state-of-the-art CNN approach [15] (denoted as H),
the DRU-Net model with general training only (W 1), and the
DRU-Net model enhanced through a patient-specific retraining
phase (W 2).

The testing results indicate that the retraining phase (W 2)
leads to a significant improvement across all performance met-
rics compared to the general training case (W 1). Specifically,
the mean and standard deviation values of DSC increased
from 0.60 ± 0.06 to 0.68 ± 0.05, Precision improved from
0.40 ± 0.06 to 0.50 ± 0.07, Recall increased from 0.77 ±

0.14 to 0.85 ± 0.13, and MDSC improved from 0.81 ± 0.02 to
0.89 ± 0.02. However, PDSS slightly increased from 0.02 ±

0.00 to 0.04 ± 0.01. These findings suggest that incorporating
a patient-specific retraining phase using intraoperative images
can effectively enhance deformable model-to-image registra-
tion accuracy. It is noteworthy that the retraining process
requires a relatively low number of epochs and minimal dataset
extension, indicating the potential practicality of this technique
in intraoperative applications.

In this specific image registration scenario, Recall emerges
as the most reliable metric among the conventional metrics
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(DSC, Precision, and Recall) for evaluating registration accu-
racy. This is attributed to Recall’s dependency solely on the
number of TP and FN in the predicted image, considering that
the fixed image typically represents a partial segmentation of
the vessels visible in the moving image. The relatively lower
Precision values obtained align with the expected outcome,
indicating that the majority of prediction errors correspond to
FP value.

When compared with the traditional optimization-based
Powell’s method [37] (P), our proposed approach (W 2)
demonstrates superior performance across all performance
metrics. Notably, we observe a significant enhancement, with
a remarkable 18% improvement in the median value of Recall
and a notable 9% improvement in the median of MDSC. It is
essential to note that Powell’s method is utilized to determine
the optimal registration matrix, without an estimation of the
deformation field. Consequently, computing the PDSS for
Powell’s method is less meaningful in this context.

In comparison to the state-of-the-art approach [15] (H), our
proposed approach (W 2) exhibits lower performance values in
terms of DSC, Precision, and Recall. However, it is important
to note that these metrics may not adequately capture the
registration accuracy in the specific scenario characterized
by vessels in the fixed image appearing in partial regions
of the moving image only. Fig. 6 showcases registration
examples using the traditional optimization-based Powell’s
method [37] (P), the state-of-the-art CNN approach [15] (H)
and our proposed approach (W 1, W 2). Notably, our approach
demonstrates improved performance in estimating deforma-
tions, particularly in regions where the vessels appear in
the moving image but not in the fixed image. It is worth
mentioning that due to the low contrast media dose, the fixed
image derived from fluoroscopy usually contains only partial
vessel branches present in the moving image. This incom-
plete segmentation introduces challenges to the stability of
the deformable registration network, resulting in deformation
artifacts in areas of projected vessels that do not exist in the
fixed image.

The performance metrics MDSC and PDSS provide a
more comprehensive representation of registration accuracy.
As illustrated in Fig. 5, the DRU-Net model (W 2) exhibits a
significant improvement in MDSC accuracy compared to the
results obtained through the literature [15] (H), with mean
and standard deviation values of 0.89 ± 0.02 (compared
to 0.86 ± 0.02). Moreover, the DRU-Net model achieves
a reduced penalization loss in terms of PDSS, with mean
and standard deviation values of 0.04 ± 0.01 (compared to
2.95 ± 0.15). Despite the incorporation of the component LB

in the loss function, residual artifacts persist even after the
retraining phase. Notably, these artifacts become more appar-
ent in regions where the fixed image contains smaller vessel
sections, posing a concern as they can potentially provide
incorrect guidance. It is therefore imperative to address this
challenge by introducing a postprocessing step that targets the
suppression of deformations outside the segmented vessel area
and enhances deformation smoothness.

An additional limitation inherent to the application of
our proposed method in medical contexts is its substantial

Fig. 6. Examples of model-to-image registration results obtained
using the Powell’s method [37] (P), the CNN method [15] (H), and
the DRU-Net general training (W1) and retraining (W2). The last two
columns display different elements of the confusion matrix between the
fixed and warped images using distinct colors: yellow represents true
positives (TP), gray represents true negatives (TN), cyan represents
false negatives (FN), and magenta represents false positives (FP).

TABLE III
EXECUTION TIME ACROSS VARIOUS METHODS AND PHASES

reliance on fluoroscopy images. The extraction of blood vessel
deformations necessitates the use of intraoperative fluoroscopy
images as primary data sources. Consequently, the accuracy of
the deformation estimations is inherently contingent upon the
quantity and frequency of injected contrast media. Variations
in contrast media administration can introduce variability in
image quality, potentially impacting the precision of deforma-
tion assessments. This dependence on contrast media may pose
practical constraints in scenarios where such agents cannot
be administered consistently or in desired quantities, thereby
influencing the method’s robustness in clinical applications.

Table III provides a summary of the execution time
for different methods and phases. Notably, the traditional
optimization-based Powell’s method [37] (P) has a signif-
icantly longer average execution time per testing image
compared to the learning-based approaches. After performing
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Fig. 7. Examples of model-to-image registration results using the dataset obtained from the intervention simulator. Starting from (a) moving image
and (b) fixed image, (c) deformable model-to-image registration is performed, and (d) 3-D model registration and visualization are presented. In the
third column (1c)–(3c), different elements of the confusion matrix between the fixed and warped image are represented by different colors: yellow
indicates true positives (TP), gray indicates true negatives (TN), cyan indicates false negatives (FN), and magenta indicates false positives (FP).
In (1d)–(3d), red represents the preoperative mesh model, blue represents the deformed mesh model predicted using the proposed approach, and
gray represents the ground truth of the deformed mesh model.

the DRU-Net patient-specific retraining (which takes approx-
imately 2.4 min), the average execution time of the testing
phase is notably reduced to 0.5 s. This low computation time
underscores the potential practicality and efficiency of our
technique, particularly in intraoperative applications.

B. 3D Model Registration and Visualization
The deformed models provide improved accuracy and

real-time representation of environmental changes during
intraoperative procedures, benefiting both robotic systems and
cardiologists. For a comprehensive demonstration of the 3-D
visualization, we refer readers to the accompanying video2

and Fig. 4. The visualization includes fluoroscopy images,
estimated deformation fields obtained from the DRU-Net,
and the corresponding deformed 3-D models. Consequently,
the model-to-image registration facilitates 3-D visualization,
enhancing visual guidance during procedures.

In our current methodology, we reconstruct 3-D models
from intraoperative fluoroscopy images, which inherently cap-
ture the time-varying nature of the subject matter, specifically
blood vessels. This temporal dimension, though implicit,
effectively manifests as a form of 4D reconstruction and
visualization [38], [39]. However, we acknowledge that our
current neural network framework does not explicitly consider
the temporal dimension. Future work could incorporate the

2https://youtu.be/3YbdejVkgzk

time factor into our model as [40] and [41]. This expansion
would enable us to not only represent blood vessels in three
spatial dimensions but also account for their dynamic changes
over time. Such an enhancement could potentially contribute to
predicting vessel deformation more accurately and ultimately
lead to improved performance.

C. Registration Accuracy Validation
Table IV presents the results of the model-to-image regis-

tration performed on the dataset obtained from the intervention
simulator [34]. The registration accuracy in 2-D exceeds 0.9,
indicating excellent performance. The mean 3-D registration
error for all vertices in the testing set is 0.39 mm, while
for vertices within the ROI, it is 1.51 mm. The mean 3-D
registration error observed within the ROI is notably higher
compared to the average registration error across the entire
dataset. This discrepancy can be attributed to the fact that the
ROI is subject to a greater degree of deformations compared to
regions that are more distant or less affected by such changes.
The majority of the error arises from the x-y plane rather
than the z-axis, indicating that our assumption of uniform
deformation along the depth direction is reasonable. Fig. 7
showcases examples of model-to-image registration results.
The preoperative mesh model (depicted in red) is transformed
into an intraoperative mesh model (shown in blue) using
the predicted deformation field obtained from our proposed
DRU-Net approach. The similarity between the predicted
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TABLE IV
PERFORMANCE METRICS ON THE DATASET OBTAINED

FROM THE INTERVENTION SIMULATOR

deformed mesh model and the ground truth (represented in
gray) confirms the feasibility and accuracy of the model-to-
image registration. For a comprehensive recording of the 3-D
visualization, refer to the accompanying video.3

In this study, the accuracy of the registration process is
validated by applying a force near the femoral arteries in the
simulator. This method effectively evaluates the precision of
the registration under specific simulated conditions. However,
this validation does not encompass the registration accuracy
when considering deformations attributed to physiological fac-
tors such as heartbeat and pulsation. Future work could extend
this validation process by incorporating these physiological
factors into the simulator as described in [34]. This advance-
ment would enable a more comprehensive assessment of the
registration accuracy, particularly under varying conditions
that mimic the realistic physiological environment of heartbeat
and pulsation.

Moreover, it is important to note that the accuracy of the 3-D
registration has not yet been validated using patient-specific
image datasets due to the lack of ground truth, specifically
intraoperative mesh models. This presents an opportunity for
future research to explore and validate the accuracy of the
proposed 3-D registration approach using such datasets, which
would further strengthen the findings of this study.

D. Ablation Study
In our ablation study, we systematically evaluate the per-

formance of the proposed loss function by comparing it with
different loss configurations.

1) T1: The combined loss, as proposed in this work (α = 1,
β = 0.1).

2) T2: A loss function exclusively focused on PDSS,
L = βLB (that is α = 0, β = 0.1).

3) T3: A loss function exclusively focused on MDSC,
L = αLA (that is α = 1, β = 0).

4) T4: The traditional dice loss (L = 1-DSC).
The results of this study, presented in Fig. 8, reveal notable

insights. The combined loss, when compared to the PDSS-
focused loss, exhibits significant enhancements across all
performance metrics, except for PDSS itself. Additionally,
when juxtaposed with the MDSC-focused loss, the combined

3https://youtu.be/2QFrwmTKIQs

Fig. 8. Boxplots illustrating the distribution of performance metrics in
an ablation study conducted with varying losses: T 1 (α = 1, β = 0.1),
T 2 (α = 0, β = 0.1), T3 (α = 1, β = 0), and T 4 (L = 1-DSC).
The comparison is made between the studies with altered parameters
and the originally proposed study T 1, assessing the significance of
differences using the Kruskal–Wallis test (*p < 0.05). Note that a lower
PDSS value indicates better performance.

loss showcases improvements in Recall, MDSC, and PDSS.
Furthermore, in comparison to the traditional dice loss, the
combined loss demonstrates improved performance in MDSC
and PDSS. It is important to note that the combined loss effec-
tively balances the tradeoff between maintaining vessel shape
fidelity in the fixed image’s spare space and ensuring accurate
deformation field predictions in the rest space according to the
fixed image.

V. CONCLUSION

In this study, we proposed a deformable model-to-
image registration framework based on deep learning for
augmented reality-guided endovascular interventions. The
proposed framework encompasses several key components:
1) autonomous vessel segmentation of intraoperative
fluoroscopy images through a DRU-Net; 2) affine model-
to-image registration, achieved by employing a CNN to
align the segmented images with the preoperative 3-D model
reconstructed from CTA scans; 3) deformable model-to-image
registration, accomplished by employing a DRU-Net model
to predict and reconstruct deformations from 2-D images
onto the preoperative 3-D model; and 4) an immersive
visualization of intraoperative 3-D models using augmented
reality. To provide a comprehensive evaluation of registration
accuracy, we introduced a customized loss function and
performance metrics, namely MDSC and PDSS.

This framework has the potential to assist clinicians during
procedures by providing augmented reality visualization of
patient-specific intraoperative vascular models. Our results
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demonstrate improved accuracy and real-time representation of
vascular changes compared to existing literature. The proposed
DRU-Net approach achieved an increased MDSC value of
0.89 ± 0.02 (compared to 0.86 ± 0.02 in the literature)
and a reduced PDSS value of 0.04 ± 0.01 (compared to
2.95 ± 0.15). It is important to note that the incorporation
of a patient-specific retraining phase effectively enhanced
deformable model-to-image registration accuracy.

To validate the registration accuracy in 3-D, we generated
a dataset using an intervention simulator. The mean 3-D
registration error for all vertices in the testing set was 0.39 mm,
while for vertices within the ROI, it was 1.51 mm. The
similarity between the predicted deformed mesh model and
the ground truth further confirmed the feasibility and accuracy
of the model-to-image registration approach.

Future work entails expanding the training set to enhance
the robustness of the registration model, implementing post-
processing techniques to address residual artifact suppression,
and conducting end-user evaluations in the operating room.
These endeavors will contribute to further advancements and
practical application of the proposed framework in clinical
settings.
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