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Abstract—Human gait activity recognition can be crucial
to adapt the assistance provided by lower limb exoskeletons,
as well as for biomechanical analysis. With this purpose,
deep learning techniques can be applied to develop a clas-
sifier based on the acquisition of the lower limb kinematics.
In this article, we present a 1-D convolutional neural net-
work (CNN) to classify different activities from the hip, knee,
and ankle flexion/extension angles, measured with wear-
able inertial sensors. The proposed CNN classifier achieves
99.56% accuracy with users not involved in the learning
process. In addition, the gradient-weighted class activation
map (Grad-CAM) and the t-distributed stochastic neighbor
embedding (-SNE) were used to understand the CNN model
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decision-making. Finally, how the accuracy of the CNN model is impacted by input reduction was analyzed to adapt the
CNN model to multiple situations, and it can be concluded that the CNN maintains high accuracy with a single joint angle

as input.
Index Terms— Deep learning, gait analysis, human activity

recognition (HAR), magneto-inertial devices.

[. INTRODUCTION
UMAN locomotion is a complex and dynamic process
that involves the coordination of multiple body seg-
ments and muscles. The analysis of human gait can provide
valuable information about the health and functional status
of an individual [1]. In this context, the analysis of human
gait can be used to analyze the range of motion (ROM)
of the lower limb joints, which may be reduced in patients
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suffering from neuromuscular pathologies, such as cerebral
palsy, Parkinson’s disease, or hemiplegia [2], [3]. In addition,
lower limb kinematics analysis could help make detailed
diagnoses, plan optimal treatment, or evaluate the results of
rehabilitation therapies [4]. However, traditional gait analysis
methods require expensive and specialized equipment, and
they are also limited by the laboratory setting, which may not
reflect the natural and dynamic environment of daily living [5].
Therefore, to perform a correct biomechanical analysis in a
natural environment, the recognition of the activity that the
user has performed is needed.

Gait analysis and activity classification techniques can be
used to personalize lower limb exoskeletons, which are wear-
able devices designed to assist or enhance leg movements [6].
These exoskeletons have diverse applications, such as rehabili-
tation, assistive technology, and human augmentation [7], [8].
The exoskeleton must be able to recognize the user’s inten-
tions and adjust its parameters accordingly to ensure a
natural and comfortable interaction between the user and
the device [9]. Joint sensors and inertial measurement units
(IMUs) are generally used for movement recognition [10],
[11], [12]. In addition, the activity performed is the most
important factor in determining the operation and high-level
behavior of assistive walking devices. Different methods have
been proposed to detect and adapt the control of lower
limb exoskeletons, including cameras [13], [14], infrared
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distance sensors [15], and a combination of infrared sensors
with IMUs.

Machine learning algorithms can be employed to classify
various gait activities of daily living (ADLs) based on the
information provided by inertial sensors [16]. This classifi-
cation is vital for biomechanical analysis and adaptation of
lower limb exoskeleton assistance in a natural environment.
Extracting temporal and frequency domain features from the
IMUs can be used to train machine learning models for gait
activity classification [17]. By contrast, deep learning methods
can autonomously extract features from the signals collected
by the IMUs [18]. Convolutional neural network (CNN) is one
of the most commonly used models for deep learning in image
processing [19]. Some authors have transformed accelerometer
and gyroscope signals from IMUs into images to apply 2-D
CNN s for gait activity classification [20]. However, generating
2-D images for the analysis of time series can be computa-
tionally expensive. Therefore, a fixed-size time series can be
used instead of images to train and recognize ADLs with a
1-D CNN [21].

Although the accelerometer and gyroscope data provided
by the IMUs have been used to develop gait ADL classifiers,
the use of the angles of the lower limb joints has not been
explored. This method can be easily embedded in the control
system of the lower limb exoskeletons, since joint sensors are
generally used. In addition, this method could also be used to
perform biomechanical analysis with wearable measurement
devices. In this article, we present a deep learning model that
uses the angles of the lower limbs to classify different gait
activities. For this purpose, we have developed a 1D-CNN
architecture that can effectively extract features and classify
several gait activities from the trajectories of the lower limbs
measured with wearable IMUs. In addition, we have used
the gradient-weighted class activation map (Grad-CAM) and
the t-distributed stochastic neighbor embedding (t-SNE) to
understand the decision-making of the developed 1D-CNN
model. Finally, we have analyzed possible variations of the
model, so that it can be adapted to multiple lower limb
exoskeletons as well as to perform a biomechanical analysis
from one to three joints.

[I. RELATED WORK

Human activity recognition (HAR) is a complex problem
that has many practical applications, such as human-robot
interaction, rehabilitation, or health monitoring [22]. With
recent advances in wearable technology, analyzing human
biomechanics and recognizing different ADLs has become
more affordable, accurate, and feasible.

Vision-based approaches have been explored to perform
activity recognition and adapt lower limb exoskeletons or
prostheses. Varol and Massalin [23] study the feasibility of
using a depth camera placed on the leg to adapt lower
limb prostheses. The authors detected five different situations
(standing, running, ground-level walking, ascending stairs, and
descending stairs) using a support vector machine (SVM) with
a 99% accuracy. On the other hand, Laschowski et al. [24]
proposed to use a chest-mounting camera, which provides less

relative body movement than head or lower limb mounting.
In that work, the authors used a deep learning model to analyze
the images from the camera to detect ground-level walking and
ascending/descending stairs with a 94.85% accuracy.

In addition to vision-based methods, the use of inertial
sensors for HAR has also been widely studied. Pham et al. [25]
used accelerometers embedded inside the insoles of the shoes
to recognize different activities. They used accelerometer
signals as inputs of a CNN to recognize six activities with
a 93% accuracy (running, walking, cycling, kicking, standing,
and jumping).

Other authors propose to use the IMU of smartphones to
recognize different activities. Ronao and Cho [26] used the
gyroscope and accelerometer signals as inputs of a 1D-CNN,
where the proposed model achieved a 95.57% accuracy using
the fast Fourier transform of the input signals. Another exam-
ple is the model proposed by Lee et al. [21], where they used
the Euclidean norm of the accelerometer signals to detect
different activities, with a 92.71%. Moreover, Yi et al. [27]
propose to classify different activities by extracting statistical
features from the accelerometer of smartphones, achieving a
95.89% accuracy with a CNN model.

More related to our work is the approach proposed by
Badawi et al. [28], where they used the public dataset
HuGaDB [29] to classify different gait ADLs. The authors
trained a random forest model using as inputs different
extracted features from the accelerometer and gyroscope sig-
nals placed over the thigh, shank, and foot, achieving an
accuracy of 98.6%. Instead of extracting features to train the
models, in [20], a deep learning approach was used. Maki-
hara et al. [30] transformed the accelerometer and gyroscope
signals from the OU-ISIR public dataset to use a 2D-CNN.
They show that their trained model achieved a 93% accuracy
when detecting ground-level walking, ascending/descending a
ramp, and going down/up stairs. In addition, Semwal et al. [31]
used a single IMU placed at the center of mass position of each
user to recognize different gait activities (jogging, ground-
level walking, standing, and climbing stairs). The authors
employed a hybrid model based on ensemble learning, and
they achieved an accuracy of 99.34%. However, the main
limitation of this approach relays on the computational cost,
since the ensemble learning approach is composed by four
deep learning models, which would be not suitable for real-
time inference. In addition, the authors do not include, in the
work, an evaluation with users who were not participated in
the learning process of the models. Hence, it is not clear
how accurate this method would be if used with different
users.

In addition to only employing inertial sensors, some studies
propose to perform HAR by fusing the IMU data with other
sensors. Liu et al. [32] propose to employ an IMU placed
over the waist together with laser measurements to recognize
the terrain for adapting powered lower limb prostheses. They
used a decision tree to perform a terrain classification with a
98% accuracy. Another sensor fusion approach is presented
in [33], where pressure insoles and IMUs placed on the
thigh and shank were used. An intelligent fuzzy algorithm
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was used to recognize different gait ADLs with an accuracy
of 95.52%. Another approach is presented in [34], where
several IMUs and strain gauges placed on the lower limbs
were used to classify different gait activities. The authors used
an autoencoder to perform dimensionality reduction, followed
by a deep learning model that combined convolutional and
recursive layers, achieving an accuracy of 98.9%.

Despite different methods for HAR using wearable sensors
have been proposed, they all come with certain limitations.
Vision-based techniques are computationally expensive due to
the need for image analysis to detect user activity. In contrast,
the use of IMUs seems to be portable and cost-effective,
and the computational cost is affordable enough to perform
HAR with wearable devices. Nonetheless, in the IMU-based
methods proposed, accurate placement of IMUs is essential,
as any error in the IMU positioning may cause disturbances
in the signals, thus reducing the accuracy of the activity
classification.

To the best of our knowledge, no study has explored the use
of the angles of the lower limb joints to perform HAR. In order
to propose an affordable approach, while solving the possible
errors due to IMU positions, we have implemented a method
to measure the angle of the hip, knee, and ankle in the sagittal
plane, which does not depend on the position and location
of the IMUs. Therefore, variations in IMU placement on
the lower limbs would not impact the classification accuracy.
While previous studies have proven effective in HAR, the use
of explainability methods to understand model operation is not
common in this field. Thus, we have used the t-SNE method
and Grad-CAM to determine how our model extracts features
and which parts of the input are most critical.

[1l. MATERIALS AND METHODS
A. Lower Limb Joints Measurement

An IMU-based algorithm was used to measure the flex-
ion/extension angles of the hip, knee, and ankle joints. The
joint motion analysis method proposed by Seel et al. [35] was
applied to estimate the lower limb joint angles during gait.
This method does not require the knowledge of the IMUs’
position and orientation on the user’s lower limb, and it only
assumes that each joint has two inertial sensors on its upper
and lower segments and uses the measured accelerations and
angular rates.

To align the IMU reference systems with the joint axis,
some methods in the literature require specific and accurate
calibration movements [36]. On the other hand, the method
by Seel et al. [35] determines the location of the sensors on
the joint they measure by using arbitrary calibration move-
ments and joint movements during gait, taking advantage of
kinematic constraints. The direction vectors j1 and j2 of the
hip, knee, and ankle joints’ flexion/extension axes are found
using gyroscope data in the local coordinates of the IMUs
during the calibration. The acceleration data are also used to
estimate the joint position coordinates ol and 02.

The method by Kumar et al. [37] has demonstrated a root-
mean-squared error between 3° and 5° in flexion/extension
movements. This suggests that the method is accurate enough
for gait analysis and gait ADL detection. In addition,

Hip IMU

Thigh IMU —

Leg IMU

Foot IMU

) Descending ramp

Climbing stairs

Fig. 1. Setup and performed gait activities during the experimental
session. The left image shows the positions of the attached IMUs
used to measure joint angles. The participants walked on a treadmill
to simulate ground-level walking, as well as ascending and descending
a ramp of 12% slope. In addition, stair climbing was simulated using a
stair treadmill.

Seel et al. [35] demonstrated that this method conserves the
accuracy even at low acquisition rates. Therefore, this method
is robust and suitable to perform real-time measurements.

B. Experimental Session

Twelve non-disabled participants (nine male and three
female) aged 23-52 years old (29.8 *+ 7.4), with heights
ranging between 165 and 187 cm (176.2 £+ 7.4 cm) and
weights between 56.1 and 90.2 kg (76 £ 12.5 kg) participated
in the experiment. They provided written, informed consent
before participating in the experimental session.

Four gait activities were simulated to collect lower limb
movement data using four XSens Dot IMUs at 60 Hz. In order
to simulate and collect data during various ADLs, we used an
h/p/cosmos 150/50 treadmill to simulate ground-level walking,
ramp ascent, and ramp descent. A stair treadmill was used to
simulate stair climbing. The experimental setup and the ADLs
performed are shown in Fig. 1.

The IMUs were attached to the pelvis, thigh, shank, and foot
using elastic triggers and stickers. The participants calibrated
the IMUs by moving their legs for 30 s and walking on the
treadmill for 1 min at their preferred speed.

After the calibration concluded, the angles of the hip, knee,
and ankle were measured during four different activities:

1) ground-level walking at 4.5 km/h for 5 min;

2) 12% positive slope walking at 2.5 km/h for 5 min;

3) 12% negative slope walking at 2.5 km/h for 5 min;

4) climbing stairs at 50 stairs/min for 3 min.

We followed the INESCOP Footwear Technology Center
protocols for footwear certification to set the walking speeds
and slope. The stair-climbing time was shortened to 3 min to
prevent excessive fatigue.

C. Acquired Data
This section describes the IMU data acquisition and pro-
cessing to be used as inputs of the classifier model. This

procedure is shown in Fig. 2, which is based on previous
studies [38], [39].
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Fig. 2.

IMUs placed on the lower limbs were used to measure acceleration and angular velocity for the estimation of the flexion/extension

angles. We also detected the foot-ground contact from the hip acceleration, which is used to segment the joint angles into steps and gait cycles.
We normalized each gait cycle (0%—100%) and fed them to the CNN as inputs. The hip, knee, and ankle flexion/extension joints are normalized
between their minimum and maximum to be introduced as inputs of the model. The proposed model is composed of three 1-D convolutional layers
with a kernel size of 3 and 64 filters. Also, a padding operation is applied to have feature maps with lengths equal to the inputs. The ReLu is used as
the activation function of the convolutional layers, and batch normalization is applied. A global average pooling layer is used to reduce the generated

feature maps connected to the output layer.

Acceleration and angular rate data were used to measure the
flexion/extension angles of the hip, knee, and ankle. To per-
form a gait analysis, kinematics data are usually transformed
from the time domain to the gait cycle domain (0%—100%),
which requires identifying the start and end of each gait
cycle. Therefore, we applied this transformation to all signals.
We used the hip acceleration [40] to detect the ground-foot
contact and applied a forward—backward low-pass filter [41]
with a 2-Hz cutoff. The local maxima in the filtered signal
correspond to the left and right foot contacts. We followed
the convention of using the right foot contact to calculate the
gait cycle.

It is important to note that the CNNs require a fixed
window size as input. In our case, as we want to classify
each step within one of the ADLs, it seems reasonable to
use a window size of 100 joint values calculated from the
gait cycle. Therefore, we will use, as CNN inputs, three
windows of size 100, with the values of hip, knee, and ankle
flexion/extension angles during a step.

D. Gait Activity Classifier

1) Proposed CNN Architecture: As introduced, we plan to
train a CNN model to detect four gait activities. Typically,
1D-CNN classifiers consist of two parts [42]: the convolutional
and pooling layers, and the fully connected layers or multilayer
perceptron (MLP).

In the first part of the model, the CNNs have an input layer
of N x k, where N is the length of the univariate time series
and k is the number of input series. After the input layer,
convolution and pooling operations are used to generate deep
features of the inputs. In the convolutional layers, convolution
operations are performed on the time series of the previous
layer with convolutional filters (kernel), whose final output is
known as a feature map. In addition, a nonlinear function,

such as the rectified linear unit (ReLu) function, is used after
each convolution operation. In the pooling layers, the feature
maps are divided, and each segment is represented by its
average or maximum value. Finally, after the convolution and
pooling layers, the original time series is represented by a
series of feature maps.

The feature maps are usually connected to an MLP in the
second part of the model. The classification task is performed
by these layers based on the features and filters of the previous
layers. A global average pooling layer can replace this part,
which aims to produce one feature map per class [43]. The
average of each feature map is taken by this layer, and the
resulting vector goes straight to the softmax layer. The global
average pooling layer also fits better with the convolution
structure by creating correspondences between feature maps
and categories, and it prevents overfitting at this layer, since
it has no parameter to optimize.

The architecture of the CNN model proposed to classify
four gait activities is a fully CNN (Fig. 2). The hip, knee,
and ankle flexion/extension angles are introduced as the CNN
inputs, which have been normalized by their maximum and
minimum values. We have used three convolutional layers,
and 64 filters are applied with a kernel size of 3. Moreover,
we applied padding on the convolution operations to have
feature maps with a length N equal to the inputs. After
each convolutional layer, we operate with the ReLu as the
activation function, and batch normalization is applied. After
the convolution operations, we used a global average pooling
layer connected to a dense layer with four neurons (one
per gait ADL) with the softmax as the activation function.
The number of convolutional layers, the number of filters,
the size of the kernels, and the rest of the hyperparame-
ters of the model have been tuned to achieve the highest
performance.
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Ground level walking (4.5 km/h) Ascending ramp (2.5 km/h)

Descending ramp (2.5 km/h) Climbing stairs (50 stairs/min)

Gait cycle (%)

Gait cycle (%)
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Fig. 3. Collected kinematics data during the experiment. The flexion/extension angles of the hip, knee, and ankle joints (top, middle, and bottom
row) for different types of walking (flat surface, ascent ramp, descent ramp, and stairs) are shown and normalized by the gait cycle. The figures
above show the median of the 12 participants, and the shaded areas indicate the range between the first and third quartiles.

2) Preprocessing and Model Training: We divided the data
from 12 participants into three subsets to evaluate the per-
formance of the model. Time series from nine users were
randomly divided by steps to train and to validate the accuracy
of the model with (intraparticipants): 80% was used for
training and 20% for validation. Data from the remaining three
users were used to evaluate model accuracy with participants
not involved in the learning process (interparticipants). In addi-
tion, the training data were scaled between the minimum and
maximum angle values of the hip, knee, and ankle, so that the
values of the inputs are between O and 1. The training scaler
was also used to evaluate the model with the intraparticipant
and interparticipant data.

The proposed 1D-CNN model has been trained with the
Keras Python Library. The model was trained for 50 epochs
and a batch size of 8. To adjust the weights of the network,
we used the Adam algorithm as the optimizer, and the categor-
ical cross entropy (CE) was used as the loss function, defined
as follows:

c
CE= - log(§) (1)

where y; is the actual class, y; is the CNN score for each
class, and C is the number of classes.

E. Model Explainability

It is common to think of machine learning models as black
boxes, since insights into decision-making are mostly opaque
to humans. However, understanding decision-making can be
critical in areas, such as healthcare. In our particular case,
it may be interesting to know how the trained CNN model
discriminates between the four ADLs performed during the
experimental session.

Some methods have been proposed to explain model predic-
tions to solve the black-box problem. We used the Grad-CAM
algorithm [44] to examine the class activation map [45]. The
Grad-CAM method has been used to explain deep learning
models in image analysis by noting the impact of the pix-
els on the prediction. Extending this method to time-series
analysis with a CNN, we can use Grad-CAM to highlight
segments of the joint trajectories to understand how our model
distinguishes each gait activity. In addition, in Section IV-C,
the contribution of the hip, knee, and ankle flexion/extension
trajectories will be analyzed.

IV. RESULTS
A. Model Evaluation

In Fig. 3, the hip, knee, and ankle flexion/extension angles
have been represented during the ADLs performed during the
experimental session.

We evaluated the performance of the CNN model trained
with data from the intraparticipants and interparticipants. The
inference process was made in a PC with an Intel' Core?
i7-1165G7 at 2.80 GHz with 16 GB of RAM, and each
inference took 1 £ 0.37 ms. In addition, the performance
of the proposed model is compared with four state-of-
the-art models proposed in different studies: ResNet [46],
t-LeNet [47], MCDCNN [48], and Time-CNN [42]. Table I
collects the accuracy and the CE with the intraparticipant
and interparticipant data with the proposed model and the
state-of-the-art models. The results show that our classifier
achieves an accuracy of 99.65% and a CE of 0.0054 with
intraparticipant data, and an accuracy of 99.56% and a CE of
0.0025 with interparticipant data. For a better comprehension

'Registered trademark.
2Trademarked.
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TABLE |
ACCURACY AND CE OBTAINED WITH THE INTRAPARTICIPANTS
AND INTERPARTICIPANTS

Model Dataset Accuracy(%) CE
Proposed 1D-CNN  Intra-participants 99.65 0.0054
Inter-participants 99.56 0.0025
ResNet [46] Intra-participants 100.00 0.0004
Inter-participants 99.46 0.0082
t-LeNet [47] Intra-participants 99.98 0.0132
Inter-participants 99.21 0.0287
MCDCNN [48] Intra-participants 99.98 0.0036
Inter-participants 99.46 0.0039
Time-CNN [42] Intra-participants 99.98 0.0003
Inter-participants 98.09 0.0102

Intra-participant(validation). Accuracy: 99.65%
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Inter-participant(validation). Accuracy: 99.56%
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Fig. 4. Confusion matrices obtained with the proposed CNN classifier
for intraparticipants and interparticipants. The rows of the matrix show
the ADL that was performed, and the columns show the ADL that was
predicted. The matrices include the four gait ADLs that were done in the
experiment: walking on a flat surface, going up a ramp (Up), going down
a ramp (Down), and climbing stairs.

of the classification results, confusion matrices are represented
in Fig. 4 with the intraparticipant and interparticipant data. The
results show that CNN could confuse ground-level walking,

60

40

2 "
.y
L

-40

76—060 -40 =20 0 20 40 60

® Ground level walking ® Ascending ramp ® Descending ramp Climb stairs

Fig. 5. Two-dimensional representation of the feature map generated
by the CNN model proposed for two intraparticipants and two interpartic-
ipants. The projection was obtained using the t-SNE embedding. Each
gait ADL is represented by a color: blue for ground-level walking, red for
ascending a ramp, green for descending a ramp, and yellow for climbing
stairs.

ascending a ramp, and descending a ramp. For the intrapartic-
ipants, 99% of the descent ramp steps are classified correctly,
where 0.32% of the steps are confused with ground-level
walking, and 0.97% is confused with ascending a ramp. The
interparticipant results show similar behavior, since 1.5% of
the descent ramp steps are classified incorrectly as ground-
level walking.

B. Model Interpretability

We applied the t-SNE to project the 64-D feature map
obtained by the convolutional and global average pooling
layers into a 2-D graph [49]. Fig. 5 shows the representation
of the generated feature maps for two intraparticipants and
two interparticipants, using perplexity and early exaggeration
values of 50. This graph shows diverse groups of points, also
known as clusters, where each point represents the feature map
obtained by the CNN for each step, and clusters represent a
group of similar steps.

In Fig. 6, we have represented the mean joint trajectories
of the lower limbs during the four gait ADLs over the
class activation maps obtained with Grad-CAM for the last
convolutional layer. The activation map is represented as a
heatmap that highlights the important parts of the inputs.
Blue parts of the graph can be seen as low attention parts
of the inputs, and red values as high attention parts. The
ground-level walking activation map shows high activation
during the terminal stance phase (45%—65%), the swing phase,
and the initial contact; the ascending ramp activation map
shows strong activation during the loading response and mid
stance phase (around 10%—-50%) and the terminal swing phase;
the descending ramp activation class shows high activation
during the terminal swing phase (75%-90%), and the climbing
stairs activation map has an strong activation during the swing
phase (70%-90%).

In addition, the Grad-CAM method could also help us
to understand why some steps are classified incorrectly.
Fig. 7 collects two steps classified wrongly as descending
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mean class activation maps. The class activation maps have been obtained with the Grad-CAM method, where blue parts represent low activation

and red parts represent high activation.
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the joint trajectories are represented, and the softmax values for the
predicted and actual classes are collected.

a ramp. The joint angles and the class activation maps are
represented, and the softmax values for the actual class and
the predicted class are specified.

C. Model Adaption

Several models have been trained with the same proposed
architecture, but changing the number of inputs of the models
to check the feasibility of adapting the CNN model presented.
With this purpose, we have trained seven 1D-CNN models for
a different number of epochs, all of them with the architecture
proposed.

In Tables II and III, the accuracy of the models is shown
according to the number of inputs and training epochs.

With the intraparticipant data, when the CNN model is
trained with the hip angle, the accuracy ranges from 26.91%
(25 epochs) to 97.82% (200 epochs); with the knee angle,
the accuracy ranges from 38.59% (200 epochs) to 93.21%
(250 epochs); with the ankle angle, the accuracy ranges
from 43.64% (10 epochs) to 99.91% (250 epochs); with the
hip and knee angles, the accuracy ranges from 38.41% (10
epochs) to 98.87% (250 epochs); with the hip and ankle
angles, the accuracy ranges from 82.32% (75 epochs) to 100%
(100, 150, 200, and 250 epochs); and with the knee and
ankle angles, the accuracy ranges from 30.49% (25 epochs) to
99.91% (200 epochs).

With the interparticipant data, when the CNN model is
trained with the hip angle, the accuracy ranges from 25.71%
(25 epochs) to 98.28% (200 epochs); with the knee angle,
it ranges from 35.23% (200 epochs) to 85.97% (250 epochs);
with the ankle angle, it ranges from 37.24% (10 epochs)
to 98.18% (150 epochs); with the hip and knee, it ranges
from 37.63% (10 epochs) to 89.94% (250 epochs); with the
hip and ankle angles, it ranges from 63.54% (75 epochs) to
99.95% (150 epochs); and with the knee and ankle angles,
the accuracy ranges from 29.83% (150 epochs) to 90.72%
(200 epochs).

As detailed in the previous sections, the results show that
the model trained with all the angles of the lower limb joints
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INTRAPARTICIPANT ACCURACY (%) ACCZ,IAREII_I\IIEG”TO EPOCHS NUMBER DURING TRAINING
Epochs
10 25 50 75 100 150 200 250
Hip, knee, and ankle 100.00 100.00 100.00 99.91 100.00  100.00 99.65 100.00
Hip 37.54 26.91 70.73 76.05 46.34 93.73 97.82 96.52
Knee 47.30 65.85 70.12 51.74 45.12 71.52 38.59 93.21
Ankle 43.64 57.49 81.10 86.24 60.28 96.43 44.16 99.91
Hip and knee 38.41 45.56 91.46 67.07 72.30 99.39 72.83 98.87
Hip and ankle 92.42 99.65 99.91 82.32  100.00  100.00  100.00  100.00
Knee and ankle 41.20 30.49 69.60 4791 69.33 31.97 99.91 84.84
TABLE Il
INTERPARTICIPANT ACCURACY (%) ACCORDING TO EPOCHS NUMBER DURING TRAINING
Epochs
10 25 50 75 100 150 200 250
Hip, knee, and ankle 100.00 99.80 99.90 100.00 100.00 100.00 99.90 100.00
Hip 37.63 2571  70.17 55.30 39.99 68.45 98.28 85.97
Knee 37.44 60.84  81.31 39.60 44.46 67.22 35.23 85.77
Ankle 37.24 46.37  89.11 85.33 59.67 98.18 34.44 97.55
Hip and knee 37.63 43.67  79.00 57.85 62.71 92.89 75.47 89.94
Hip and ankle 86.16 96.42  99.46 63.54 99.71 99.95 99.26 99.31
Knee and ankle 44.50 3199  69.92 43.92 60.94 29.83 85.57 90.72

achieves accuracy close to 100% for all the range of epochs
with the intraparticipant and interparticipant data.

V. DISCUSSION

We trained a CNN to recognize four gait ADLs: ground-
level walking, ramp ascent, ramp descent, and stair climbing.
Several authors have proposed using accelerometer and
gyroscope data from IMUs to recognize different gait activi-
ties [20], [21], [25], [26], [28], [29], [32], [33]. We propose a
different approach from other studies, since we used multiple
IMUs to capture the joint angles of the lower limb in order to
classify the gait activities. This way, we can do a biomechani-
cal analysis and also adjust the assistance given by lower limb
exoskeletons. Hence, the hip, knee, and ankle flexion/extension
angles were introduced as inputs to a 1D-CNN. Our method,
based on the study of Seel et al. [35] approach, has the
advantage of estimating joint angles without depending on
the position and orientation of the IMUs. This means that
variations in sensor placement do not affect the error in gait
activity classification. Furthermore, the calibration method of
this algorithm is simple, and it does not require accurate move-
ments, as it only requires walking and performing random leg
movements for a short period of time.

We can extract features describing the gait using the angles
of the lower limb joints to distinguish between activities.
However, we decided to use a CNN model, since deep
learning methods can extract features autonomously from the
input data [18], also known as feature maps. The 1D-CNN
proposed shows promising results, with 99.65% accuracy for

intraparticipants and 99.56% accuracy for interparticipants
(Fig. 4). In addition, the results collected in Table I show that
our model outperforms other state-of-the-art architectures with
the interparticipant data. However, it must be noted that the
accuracy and the CE are in a similar range for all the trained
models. These results suggest that introducing the lower limb
joint trajectories is a robust method for gait ADL recog-
nition, outperforming other approaches proposed previously
(Section II). Furthermore, the computational time results with
our model are around 1 ms for each inference on a laptop,
suggesting that our method can be employed to perform
HAR in real time. Despite our CNN model achieved high
accuracy with both intraparticipants and interparticipants, the
ground-level walking and walking on a ramp are sometimes
classified wrong, which can be observed in the confusion
matrices. The t-SNE and Grad-CAM methods could be the
basis to clarify this behavior.

In Fig. 5, we have represented the projection of the 64-D
feature maps extracted with the proposed CNN model with
data from four users: two intraparticipants and two inter-
participants. The resulting graph shows diverse groups of
points (clusters), where each point represents the feature map
obtained by the CNN for each step, and clusters represent a
group of similar steps. The feature maps generated by our
CNN model for climbing stairs are grouped in four different
clusters, while the rest of the clusters could be composed of
one or two ADLs. This could be explained by the similarity
in the joint trajectories during the ground-level walking and
walking on a ramp (Fig. 3). In addition, although there are
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clusters formed with two ADLs, the ADLs are joined into
four different groups, which can be observed in the graph.
The number of groups coincides with the number of users
in the projection. This could mean that each participant has
a unique gait pattern, so the feature maps generated by the
CNN would not be equal for all the users. However, one
might wonder why a good classification result is achieved
when t-SNE does not show a clear separation of the extracted
features. This may be because neural networks can recognize
nonlinear boundaries, so that ADL can be separated in the
64-D space.

The t-SNE embedding method can help us understand how
the features extracted by the CNN are grouped. However,
it cannot verify which parts of the joint trajectories are impor-
tant in determining the user’s gait ADL. To examine which
parts of the joint trajectories are crucial in classifying each gait
ADL, we can use the Grad-CAM method. In Fig. 6, the class
activation maps for each gait ADL over the hip, knee, and
ankle flexion/extension angles are represented. For instance,
in the case of climbing stairs, the highest activation is produced
during 70%-90% of the gait cycle. When we compare the
hip, knee, and ankle trajectories during those periods with the
rest of the gait ADLs, there is a notable difference. However,
the t-SNE graph and confusion matrices show that wrong
classifications occur more often during ground-level walking,
ascending a ramp, and descending a ramp. Specifically, certain
steps descending a ramp are misclassified as ground-level
walking or ascending a ramp.

The Grad-CAM method can be a powerful tool to under-
stand why our CNN model makes incorrect predictions. To this
end, we can use joint trajectories and activation maps for two
incorrect classifications, as shown in Fig. 7. The left graph
represents a step performed while descending a ramp but
classified as ground-level walking. The class activation map
shows high activation between 40% and 50%. This activation
occurs around the peak of the ankle angle, which suggests
that the gait pattern is more similar to flat walking. This is
because, at this instant, the ankle angle is greater than the hip
angle, which does not occur when walking on a descent ramp.
In the case of the step classified as ascending a ramp, a high
activation can be observed during the loading and stance phase,
which is from 10% to 50%. This activation corresponds to the
activation map of the ascending ramp steps and could be due
to the similarity of the knee trajectory during this section of
the gait cycle.

The feasibility of reducing the number of inputs to
the 1-D CNN was also examined. The results collected
in Tables II and IIT show that high accuracy can also be
achieved by reducing the number of inputs. It should be noted
that by introducing a single input of the 1-D CNN, the model
achieves an accuracy of 97.82% (intraparticipants) and 98.28%
(interparticipants) when using the hip angle, and an accuracy
of 93.21% (intraparticipants) and 85.77% (interparticipants),
and an accuracy of 99.91% (intraparticipants) and 97.55%
(interparticipants) for the ankle angle trajectory. Although
the accuracy is reduced compared with the introduction of
hip, knee, and ankle flexion/extension, these results suggest
the feasibility of adapting the model to different situations.

Thus, the 1D-CNN classifier could be adapted to analyze
the biomechanics of a single lower limb joint as well as
to detect gait activities for different types of lower limb
exoskeletons.

Although the results obtained by adapting the model suggest
that our method can be used with exoskeletons, it must be
noted that we intend to further develop and test the proposed
method. Furthermore, we intend to integrate this HAR system
to adapt the assistance of active lower limb exoskeletons
and to provide adequate assistance on different types of
surfaces.

VI. CONCLUSION

This work presents a deep learning model to perform HAR
during gait. The classifier is based on a 1D-CNN and uses the
flexion/extension angles of the hip, knee, and ankle measured
with IMUs. It is worth noting that the method used in this
study to measure the lower limb angles does not depend on
the position or location of the sensors, making the method
very reliable.

The CNN classifier proposed achieves high accuracy with
intraparticipants (99.65%) and interparticipants (99.56%), so it
can be assumed that the proposed model presents a high
generalization. The t-SNE and Grad-CAM algorithms were
used to understand this behavior, and it can be concluded that
this is due to anomalous steps or a high similarity of joint
trajectories between activities.

Furthermore, we have trained the 1D-CNN varying the num-
ber of inputs. The results suggest that the ID-CNN architecture
proposed could be adapted to analyze the biomechanics of a
single lower limb joint as well as to detect gait activities for
different types of lower limb exoskeletons.
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