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GreenScan: Toward Large-Scale Terrestrial
Monitoring the Health of Urban Trees
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Abstract—Healthy urban greenery is a fundamental asset
to mitigate climate change phenomena such as extreme heat
and air pollution. However, urban trees are often affected
by abiotic and biotic stressors that hamper their functional-
ity, and whenever not timely managed, even their survival.
While the current greenery inspection techniques can help in
taking effective measures, they often require a high amount
of human labor, making frequent assessments infeasible
at city-wide scales. In this article, we present GreenScan,
a ground-based sensing system designed to provide health
assessments of urban trees at high spatio-temporal res-
olutions, with low costs. The system uses thermal and
multispectral imaging sensors fused using a custom com-
puter vision model to estimate two tree health indexes. The
evaluation of the system was performed through data col-
lection experiments in Cambridge, USA. Overall, this work
illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high
temporal resolutions with low costs.
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I. INTRODUCTION

URBAN greenery improves the resilience of cities to
climate change. Nowadays, protecting, managing, and

restoring greenery ecosystems is fundamental for climate-
resilient development, given the multiple risks posed to
humanity and nature by global warming and climate change
as per the latest UN-IPCC report [1]. In cities, tree canopies
and vegetation provide a wide range of ecosystem services
such as air filtering, carbon sequestration, reduced energy
consumption, increased biodiversity, and decreased local tem-
peratures [2], [3]. However, urban trees are experiencing an
ample amount of abiotic stressors (e.g., soil salinity, heat
waves) and biotic stressors (caused by living agents such
as insects and bacteria) that are exacerbated due to climate
change [4], [5], [6]. As a result, their functionality, produc-
tivity, and survival are of increasing concern [7]. Trees with
poor health cannot provide most of their beneficial ecosystem
services [8], [9]. For instance, trees with low transpiration rates
do not cool the environment sufficiently and trees with low
growth rates have a reduced shading effect. By 2050, it is
expected that about two-thirds of urban tree species worldwide
will fail to provide the desired climate-positive benefits [10].

The practice of measuring and monitoring urban trees began
over a century ago [11]. Today, the health of trees can be
monitored using manual inspection by arborists with good
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TABLE I
COMPARISON OF SENSING APPROACHES ALONG WITH THE WORKING MECHANISM,

COST, AND QUALITY OF ASSESSMENT TO ANALYZE TREE HEALTH

quality results [12]; yet the high labor cost leads to assessments
performed infrequently at very low temporal resolutions such
as once every 3–5 years. Technology-assisted monitoring
methods can complement manual inspections [13]. However,
these methods are impeded by variable data quality, low
spatial granularity (remote sensing), or high operational costs
(airborne sensing) [14]. Furthermore, most of these methods
are unable to quantify the vegetation elements below the tree
canopy such as green walls, short trees, or shrubs [15], [16].
All these challenges lead to the lack of urban tree health
data in cities and appropriate urban forest management. For
instance, adverse health conditions in trees being discovered
only after severe damage are already inflicted. Furthermore,
from an urban planning perspective, intricate relationships of
urban trees with other micro-scale ecosystem services such
as air quality improvements and benefits to public health are
difficult to quantify. For instance, inappropriate placement of
trees in outdoor environments can be detrimental as they can
serve to trap air pollutants [17].

Recently, several projects have investigated developing
novel alternatives for environmental sensing. For instance,
applying artificial intelligence (AI)-based methods on Google
Street View (GSV) images to detect the presence of trees [15],
[18], or using drive-by strategies to measure air pollution [19],
[20] in a cost-efficient way. For instance, it was demonstrated
that just ten random taxis could capture data over one-third
of streets in Manhattan (New York City) in a single day
using drive-by sensing [21]. In addition, citizen-science-based
approaches [22] have also been successful in measuring urban
environmental parameters [23]. All these methods are set
within the domain of opportunistic sensing and are aimed
at developing platforms that can be deployed and operated
without the need of an expensive or a dedicated infrastructure.
Thus, allowing democratic access to even underresourced
cities that are affected by climate change in a disproportionate
manner [24].

Following on this trend and the critical need for protecting
and managing urban forestry, in this work, we develop a novel
system, named GreenScan, which measures the health of urban
trees on city-wide scales from ground level (terrestrially).
The system fuses high-quality data from low-cost thermal and
multispectral imaging sensors using custom computer vision

models to generate two complementary tree health indexes,
namely, normalized difference vegetation index (NDVI) and
canopy temperature depression (CTD), which, respectively,
indicate the photosynthetic capacity and water stress levels
of a tree. GreenScan was designed both for deployment in
citizen-science paradigms by being carried by pedestrians,
or in drive-by sensing approaches by being mounted on urban
vehicles such as taxis and garbage trucks. Thus, enabling ter-
restrial urban tree health measurements with high spatial and
temporal resolutions at low costs for cities and municipalities
around the world.

In this article, we first give a brief overview of the state-of-
the-art technology tools and methods to monitor the health of
urban greenery with focus on low-cost solutions. We present
the design of GreenScan and describe the implementation
of the hardware and software components. We evaluate the
system with 40 urban trees in uncontrolled outdoor environ-
ments and analyze the performance of the system. Finally,
we conclude by identifying the immediate future research that
can be enabled through large-scale deployment of GreenScan
while discerning the limitations of this work.

II. RELATED WORK

Currently, the health of trees is monitored through manual
inspection by human experts, remote and airborne sensing
through satellites or UAVs, direct installation of embedded
sensors on/near the tree, handheld imaging-based sensing,
or opportunistic sensing using street view imaging [13].
A comparison of these methods in terms of working mech-
anism, cost, and quality of assessment is shown concisely
in Table I.

Manual inspection involves the work of arborists (human
experts) inspecting trees visually, often with the aid of tools
such as borers (to extract a wooden core sample from the tree
for laboratory analysis) or resistographs (to measure the elec-
trical resistance of the trunk). These methods usually provide
a high-quality assessment, but they are time-consuming due
to the amount of human labor involved to perform a tree-by-
tree assessment. Furthermore, although effective, methods that
require drilling and penetration in the living wood may create
an entry path for pathogens or may alter the structural integrity
of a tree. For a review on these methods, see [12].
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Embedded sensing involves the deployment of sensors in
the bark of a tree (the outer wooden part of a tree) or
in the soil. These sensors can rely on physical, chemical,
or electrical phenomenon to detect the presence of parasites,
e.g., detecting sudden minimal bark vibrations produced by
parasites’ locomotion and feeding [25] as well as water uptake
and transpiration, e.g., measuring electrical impedance using a
pair of electrodes placed in the trunk at opposite positions [26].
These methods generate data at high temporal resolutions with
little or no human supervision required; yet at the cost of
installing and maintaining one or more sensors per tree. For a
review on these methods, see [27].

Imaging-based methods involve the use of optical sensors
such as thermal imaging sensors, HMI (hyperspectral or
multispectral imaging) sensors, or light detection and ranging
(LiDAR). Thermal imaging is based on infrared (IR) radiation
emitted from materials and it is mainly used to: 1) measure
cavities and physical damages in the living wood [28], [29];
2) detect infections caused by insects and bacteria [30], [31];
and 3) calculate water stress levels by measuring the temper-
ature of the leaves in the canopy [14]. On the other hand,
HMI sensors capture various bands in the electromagnetic
spectrum, usually near-IR and parts of the visible spectrum.
These captured data are used to calculate various vegetation
indexes, the most popular being NDVI. HMI sensors are often
used for remote sensing applications [32], although static
sensors also exist [33]. Calibration methods are critical to
achieve quality results [34]. LiDAR sensors can be used to
measure geometrical parameters such as the leaves surround-
ing a branch and trunk diameter and to estimate the leaf area
index (LAI) [35]. However, contradictory studies have been
observed on the usage of LiDAR with some works such as [36]
claiming no increase in health classification performance with
its addition. Usually, LiDAR and HMI sensor approaches are
often deployed in tandem in both airborne [35] and ground-
based [37] approaches.

Recently, street-view-based methods based on red, green,
and blue (RGB) images usually involving the use of Google
Street View images have become popular. These methods are
used to quantify the presence of urban greenery [15], [38],
catalog species [39], and shading effects [40]. While these
approaches are cost-effective and scalable, they are only able
to quantify the extent of urban greenery at a terrestrial level
rather than its health.

When imaging-based sensors are deployed on satellites,
airplanes, or unmanned aerial vehicles (UAVs), high spatial
coverage can be achieved. However, satellites have a low tem-
poral resolution due to infrequent revisit time and data quality
being dependent on the availability of clear skies [14]. Data
collection using UAVs and airplanes involves high operational
costs and is unsuitable for highly urbanized environments
due to aviation regulations. Most importantly, both airborne
sensing and satellite imagery can only capture an overhead
view of urban tree canopies. As a result, lower vegetation
elements such as green walls, short trees, or shrubs are often
missed or misinterpreted [15].

For a systematic review of the technological methods and
tools for greenery health monitoring, see [13].

TABLE II
CONCISE COMPARISON OF OUR WORK WITH EARLIER WORKS

IN THE FIELD MEASURING TREE HEALTH TERRESTRIALLY

A. Research Gaps and Influence on Design
We seek to provide a scalable system that provides

high-quality data with low costs. Comparing the different
approaches in Table I, it emerges that ground-based (ter-
restrial) sensing approaches combined with imaging-based
methods can look at vegetation elements in a holistic manner
with high-quality data gathered either through drive-by sensing
or citizen science paradigms. In addition, the advances in
deep-learning-based computer vision models for imaging data
in the past decade enable the development of a system that
is broad in scope. Narrowing this down, the past studies
measuring tree health from ground level and using low-cost
imaging sensors are also shown concisely in Table II. These
studies are limited by requiring manual analysis of images
by humans [41], outputting only raw data without ground-
truth validation [14], [42] or requiring controlled system
deployment and operation [14], [43], [44].

Our work builds upon all these insights. Hence, in Green-
Scan, we use HMI imaging and thermal imaging sensors to
autonomously measure two health indexes, namely, NDVI and
CTD from ground level. GreenScan is designed to be com-
pletely autonomous (by using computer vision model based on
deep learning) and is suitable to be deployed in noncontrolled
environments, and the early results are compared with a
ground-truth dataset provided by a municipality. While data
from HMI and thermal imaging can be used to generate a
number of health indices, we carefully chose NDVI and CTD
indices after explicit considerations. Our choices are driven
by: 1) NDVI remains one of the most important and popular
indices used in the domain [34] and the ground-truth dataset
provided by the municipality contains remote NDVI for a fair
scientific comparison and 2) CTD is one of the relatively
simpler metrics for assessing properties of a tree such as
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Fig. 1. Visualization of the current GreenScan system and the concept
casing. (a) All the hardware components encased with the 3-D-printed
case. Dimensions in inches: 7.32′′

× 2.50′′
× 1.74′′. (b) Concept casing

with magnets. (c) System attached on the top of a car. (d) Close-up view
of the system on the roof of a car.

water consumption and its resilience to drought and heat stress
events [45], and it uses different wavelengths than NDVI
(thermal imaging sensors instead of HMI sensors), in turn,
generating two complementary health parameters for urban
trees.

III. METHODOLOGY

The GreenScan system integrates low-cost thermal and mul-
tispectral imaging sensors which are attached to a single-board
computer. The system processes the imaging data generated
by these sensors using a custom computer vision model to
generate the two tree health indexes, namely, CTD and NDVI.
All these components were encased in a 3-D-printed case
as shown in Fig. 1(a). The case was designed such that it
is suitable to be attachable to moving vehicles without any

alterations using magnets, as shown in Fig. 1(b)–(d). In this
section, we aim to explain all the major modules of GreenScan.

A. System Architecture
The block diagram of the entire GreenScan system archi-

tecture is shown in Fig. 2. The first five modules are related
to hardware, while the remaining four modules are related to
software.

1) Hardware Modules: In the following, we first provide the
generic description of each hardware module followed by the
concrete implementation of the same in the GreenScan system.

1) Thermal Imaging Sensor: A thermal imaging sensor with
radiometric calibration (to measure true temperature)
is attached to the central single-board computer and
captures long-wave IR images normalized to a suitable
temperature range with low pixel resolution. A narrow
temperature range is preferred to decrease the effect
of nonlinear noise across the sensor as the low-cost
thermal imaging sensors are constrained in terms of
resolution. These long-wave IR imaging data are used
for the generation of CTD which indicates the water
stress levels of a tree.
For concrete implementation, we used FLIR Lepton 3.5
(spectrum: long-wave-IR at 8–14 µm) attached to an
OpenMV cam H7 using an FLIR Lepton adapter
module. These captured thermal images with a pixel
resolution of 160 × 120 which are normalized to a
suitable temperature range (−10◦–40◦ C). This temper-
ature range was chosen based on the lowest and highest
temperature (±10 ◦C) of trees found during the data
collection experiments (in Section IV). The OpenMV
cam H7 communicates with Raspberry Pi via remote
procedure call (RPC) over USB.

2) Multispectral Imaging Sensor: A multispectral imaging
sensor is attached to the central single-board computer
and captures red, green, and near-IR (RGN) imag-
ing data with high pixel resolution. The near-IR and
red imaging data are used for the generation of the
NDVI. Furthermore, these high-resolution imaging data
are used for segmentation of the tree canopy from
the images using the custom deep learning model as
described in the image segmentation module.
For implementation, MAPIR Survey 3W (spectrum: red
at 660 nm, green at 550 nm, near-IR at 850 nm)
was attached to the Raspberry Pi over USB and cap-
tured RGN imaging data with a pixel resolution of
4000 × 3000. To control the MAPIR Survey 3W for
triggering the capture and transfer of images, pulsewidth
modulation (PWM) signals over the micro-HDMI port
of MAPIR Survey 3W are used.

3) GNSS Receiver: A global navigation satellite system
(GNSS) receiver with support for GPS, GLONASS, and
Galileo is used to find the current location of the system
and geo-tag all the images of the trees captured.
For this prototype, the RGN images captured were
geo-tagged using the standard GPS adapter available for
MAPIR Survey 3W.
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Fig. 2. Architecture diagram of the GreenScan system.

4) Single-Board Computer With/Without Edge TPU: A
single-board computer without/with onboard edge tensor
processing unit (TPU) or USB edge TPU accelerator
(such as USB TPU accelerator from coral.ai) acts
as the central brain of the system integrating all the
hardware and software components. The edge TPU
allows to speed up deep learning operations, improving
the images processed per second without sending any
data to the cloud.
Raspberry Pi 3 was used as the single-board computer
in the GreenScan system running the software modules
(see Section III-A2).

5) Power Supply/Solar Panel: A lithium-ion battery
(10 000 mAh) is used to ensure uninterrupted power
supply to the system along with support for charging
over a solar panel or a standard power adapter
(5 V/2 A).

2) Software Modules: Herewith, we provide the description
of each software module followed by the concrete implemen-
tation of the same in the GreenScan system. A visualization
of processing the images after each software module is also
shown in Fig. 3.

1) Control Module: This module handles all the embedded
communication with the hardware. It includes detecting
the event trigger, signaling the sensors to capture the

images, and transferring the captured images to the
central single-board computer.
The event trigger signals the beginning of processing on
the Raspberry Pi, and in the current prototype, a press
of a push button is used as an event trigger for the
data collection experiments. This event trigger can also
be the co-location of the system with particular GPS
coordinates fetched from a tree inventory database. For
the thermal imaging sensor, this involves the initiation
of callbacks requesting the transfer of the current image
frame from FLIR Lepton 3.5. For the multispectral
imaging sensor, this involves generating PWM signals to
capture an image, mounting the memory card installed
in the MAPIR Survey 3W with the Raspberry Pi, trans-
ferring the captured image to Raspberry Pi, and finally,
unmounting the memory card from the Raspberry Pi.

2) Image Registration: Image registration involves match-
ing or aligning images taken by two different sensors
into a single coordinate system for further analysis [48].
It includes detecting key points from one image and
mapping them to another image. Since both the multi-
spectral and thermal imaging sensors have different field
of views (FoVs) and are unaligned, this modules aligns
the multispectral images to the thermal images through
linear translation in both the horizontal and vertical
directions. Besides, to compensate for wider FOV of the
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Fig. 3. Visualization of processing the images at each software module
on the Raspberry Pi.

multispectral sensor, this module also handles zooming
in on the multispectral images.
For the current prototype, the values of translation in th
X - and Y -directions were found to be +50 (right) and
+150 (upward) pixels, respectively, and the zoom scale
was found to be 0.57 (where 1 indicates no magnification
and 0 indicates 100 % magnification) to perfectly over-
lay the thermal and RGN images. These parameters were
found by manually taking multiple RGN and thermal
images and overlaying them. An instance of inputs and
outputs using this module is shown in Fig. 3.
Furthermore, automatic image registration using three
image registration algorithms, namely, SIFT, SURF, and
ORB [49] was also tested. However, these algorithms
were not able to detect useful keypoints or features in
the thermal images possibly due to the low resolution
(160 × 120).

3) Image Segmentation: This is the most computationally
intensive software module of the system. Recall that
the aim of our system is to calculate the NDVI and
CTD values for each tree in the images. However,
these values should be calculated only for the leaves
in tree canopy excluding the wooden parts, such as the
trunk and branches. This is solved using a fusion of
custom-developed mask regional convolutional neural
network (Mask R-CNN) and pixelwise NDVI anal-
ysis. Mask R-CNN [50] is an object detection and
instance segmentation model that identifies and then

draws a precise mask around the detected object. Given
a multispectral RGN image captured using the multi-
spectral imaging sensor, this task can be broken into
two subproblems as follows.

a) Detect the Canopy Part of the Trees Even in Cases
Where the Image Contains Multiple Trees: This
is solved using a custom-developed Mask R-CNN
model. The Mask R-CNN model is trained using
transfer learning and discussed in more detail in
Section III-B. It segments the instances of the tree
canopies in the RGN image by generating a mask
(segmentation) over them as shown in Fig. 4.

b) Remove Noise: Once the canopy of the tree is
detected, there is segmentation of only the leaves of
the tree without the wooden branches and sky. The
nonvegetation elements such as trunks, branches,
and sky have very low NDVI values compared
with vegetation elements which have significantly
higher NDVI. Thus, we use a thresholding-based
method which first calculates the individual NDVI
of each pixel in the segmentation mask generated
by Mask R-CNN and then eliminates pixels with
NDVI values below a certain threshold. The calcu-
lation of NDVI for each pixel is computed by plug-
ging the raw values of the red and near-IR channels
of the pixel in (4). To eliminate noise along the
edges of tree canopy, median filtering is also used.

The end result using the above two-stage approach
gives segmentation of only leaves present in the tree
canopy while eliminating the sky, wooden branches,
trunk, and other street objects such as buildings and
cars in the multispectral image. Since both the thermal
and multispectral images are registered, the same mask
of leaves in tree canopy can also be used for thermal
images.
With the MAPIR Survey 3W used in the GreenScan
system, a value of 0.02 was used as the cutoff to
eliminate nonvegetation elements in the image. This
value was derived using the analysis of the images
captured during data collection experiments. An instance
of inputs and outputs using this module is also shown
in Fig. 3.

4) Analysis and Calculation Module: This module handles
the calculation of final NDVI and CTD for each tree
in the FoV of the imaging sensors.
The CTD value is computed by calculating the raw
temperature value for each pixel in the grayscale thermal
image as per (2), computing the mean temperature over
all the pixels in the canopy and subtracting the ambient
air temperature from the mean canopy temperature as
per (3). CTD is calculated as

CTD = Tcanopy − Tair (1)

where Tcanopy and Tair are the canopy temperature and
air temperature, respectively, in ◦C.
The temperature of each pixel is calculated as

Tpixel =
Pvalue

255
∗ (Tmax − Tmin) + Tmin (2)
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where Pvalue is the pixel value in normalized thermal
image, and Tmin and Tmax are the configured tempera-
ture range for the thermal imaging sensor, respectively
(−10 ◦C and 40 ◦C in our case). Then, as per (1), CTD is
calculated as

CTD = Tpixel − Tair (3)

where Tpixel is the average canopy temperature for all
the segmented pixels in the image, and Tair is the air
temperature.
To calculate the NDVI, each pixel in the RGN image
is split into its three constituting channels RGN. The
raw NDVI value for each pixel is calculated from red
and near-IR channels as per (4). To compensate for
the aperture adjustment, the focal adjustment, and other
mechanical adjustments performed by the multispectral
imaging sensor, the raw NDVI is normalized by applying
a correction factor similar to the dynamic range of a
camera [51] as shown in (5). NDVI is calculated as

NDVI =
NIR − Red
NIR + Red

(4)

where NIR and Red are the values of near-IR channel
and visible red channel for each pixel, respectively. The
corrected NDVI is calculated as

NDVIcorrected =
NDVIraw

|NDVImax|
∗ |NDVImin| (5)

where NDVIraw is the raw NDVI of a pixel, and
NDVImax and NDVImin are the maximum and minimum
NDVI values for all the pixels in the segmented image,
respectively.
Finally, the NDVI for the entire canopy is computed
by taking the mean over the corrected NDVI values for
all the pixels consisting of leaves in the segmented tree
canopy.

B. Development of Custom Mask R-CNN
For the system to operate autonomously, the images will

be captured in an unsupervised fashion. Thus, in addition
to multiple trees in a single image, they may contain other
objects such as cars, buildings, grass, and snow. Hence, it is
imperative to individually identify all the tree canopies in an
image and feed them to the analysis and calculation module.
The custom Mask R-CNN part of the image segmentation
module solves this by providing instance segmentation of the
tree canopies in the image. To our knowledge, there is no
preexisting model available for instance segmentation of tree
canopies or even trees in standard RGB images. The problem
is further complicated as our input are RGN images from
the multispectral imaging sensor instead of standard RGB
images. For instance, we found that pretrained models such as
Deeplabv3 [52], which can perform semantic segmentation of
trees and vegetation on standard RGB images, perform poorly
on RGN images.

Fig. 4. Performance of our custom Mask R-CNN. Note how the model
detects each instance of the tree canopy in the image and considers all
the other objects as background. (a) Input RGN image captured from
MAPIR Survey 3W. (b) Segmentation output from our custom Mask
R-CNN instance segmentation model trained using transfer learning.

1) Training Data: Any deep learning model requires train-
ing data to optimize the weights and activations of the
layers. However, there does not exist a dataset with labels
for instances of trees or tree canopies for RGN Images.
Hence, we manually created the dataset using the RGN
images collected during the data collection experiments (see
Section IV-B). Each tree canopy in the image was manu-
ally annotated using a popular image annotation tool called
LabelMe [53]. During annotation, only tree canopies that
were completely present in the image were labeled. After this
process, our dataset consisted of 51 annotated RGN images
with two classes, namely, tree canopies and background.

2) Training Process and Training Curve: Our dataset consists
of a relatively small number of images to train a deep learning
model such as Mask R-CNN from scratch. Transfer learning
combined with data augmentation was used to develop a
custom model using an existing model pretrained on a different
dataset. For this, we used a Mask R-CNN pretrained [54] on
COCO [55] (a dataset with 330K images) with ResNet101
as the backbone. We retrained only the head layers (the top
layers without the backbone) on our dataset. The batch size
was configured as four and the number of epochs was ten. The
training was performed on the Google Cloud Platform with
an N1 instance with 13-GB memory and 2vCPUs. We also
generated synthetic data by augmenting the original dataset
with flips in the horizontal and vertical directions and applying
Gaussian blur. This increased the training dataset size by 50%
and acted as a regularizer. The manually annotated dataset
(refer Section III-B1) consisting of 51 images was split in
the ratio of 70: 30 for training: testing. During retraining,
each epoch took approximately 3 h on the N1 instance. The
training curve of the model is shown in Fig. 5. It is seen from
the training curve that only a small number of epochs are
sufficient to reach the optimal validation loss on the test set
owing to the retraining of only the head layers. The visual
output results from our model are shown in Fig. 4.

3) Model Quantization: Mask R-CNN is a relatively heavy
model both from training and inference points of view. Hence,
the developed Mask R-CNN was optimized to run on the
edge at the cost of possible minute performance reduction.
For this, the model built on TensorFlow was converted
into TensorFlow-lite with dynamic range quantization [56].
Dynamic range quantization means that only the weights of
the layers in 32-bit FLOAT of the full model are stored as
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Fig. 5. Training curve of Mask R-CNN with epochs = 10 and batch
size = 4. The red point indicates point of minimum loss and training
losses are as defined in [50].

8-bit INTs while the activations of the layers are quantized
during runtime. Our custom-made Mask R-CNN built over
TensorFlow took around 15 s per inference of an image on a
Raspberry Pi 3 while the TensorFlow-lite model reduced the
inference time to 7 s with one-fourth of the CPU usage as the
original TensorFlow model.

IV. EVALUATION

The system was evaluated using a dataset obtained from
the municipality of Cambridge, USA, as the ground-truth
reference. We also conducted three data collection experiments
to collect data of urban trees using the GreenScan system.
In this section, we elaborate on this dataset and the data
collection experiments followed by the obtained results.

A. (Ground Truth) Tree Health Dataset
Municipalities in cities obtain tree health data through

city-wide surveys over years. For instance, in the city of Cam-
bridge, USA, a survey is performed every five years whereas,
for the city of Delft, The Netherlands, a survey is performed
every one–two years depending on the previously rated con-
dition of the tree. For the evaluation of our work, we obtained
the tree health dataset for the city of Cambridge, USA through
the Cambridge Urban Forest Master Plan [16] to be used as the
ground-truth reference. A 2018 dataset was obtained from the
municipality. This dataset was created through a combination
of manual in-person arborist visits, satellite-based remote sens-
ing, and aerial LiDAR [16]. The dataset classifies the health
conditions of trees into three categories, namely, good, poor,
and fair. The dataset contains information about 47 063 trees,
out of which 35 821 are in good health, 5176 are in fair health,
and 6066 are in poor health. Hence, most of the trees (>75%)
are rated as having a good health condition. In addition, the
dataset contains information about the tree species, common
name, the satellite-based NDVI, the latitude and the longitude,
location, the shape length and shape area of the canopy, and
other parameters. This dataset was provided as Shapefiles
[.shp, a data format used by geographical information systems
(GISs)] and was loaded to the online platform CARTO [57]
(a GIS and spatial analysis tool). On a side note, the staleness
of data in terms of time also necessitates the advancement in
this field of tree health monitoring.

Fig. 6. Trees were analyzed in these locations. The red boxes indicate
the red pine trees and the blue boxes indicate the eastern white pine
trees.

B. Data Collection Experiments
We collected multispectral (RGN) and thermal images

through the developed system on three separate days in
Cambridge, USA, during the month of February 2022. A push
button was used as the event trigger for the system. Hence,
we used the developed GreenScan system as a citizen science
project with the 3-D-printed casing (pedestrian moving at
walking speed in a straight line at a distance of 8–20 m
from the tree). In total, we collected data for 49 trees spread
over two species, namely, red pine and eastern white pine
trees. The multispectral imaging sensor was configured with
a shutter speed of 1/60 s and ISO of 50. The thermal
imaging sensor was configured to measure temperature in
range of (−10, 40) ◦C. The sites of data collection experi-
ments are shown in Fig. 6, chosen based on the species and
accessibility.

1) Species Constraints: There are two types of trees,
namely, evergreen and deciduous trees. During winters, decid-
uous trees lose their leaves, thus hampering NDVI calculation.
Hence, our analysis was constrained to evergreen trees due
to data collection in the winter. The species, namely, red
pine and eastern white pine, were selected because they
are evergreen and they are the most widespread and easily
accessible evergreen trees found from CARTO in the city of
Cambridge.

2) Data Cleaning: During the first day of the data collection
experiments, the Raspberry Pi hung up due to unknown
reasons leading to a forced restart. On the third day of the
experiments, owing to cold temperatures, the power supply had
to be changed during data collection. These interruptions and
restarts resulted in unstable values for a sequence of readings
related to the canopy temperature by the thermal imaging
sensor. As a result, these 11 data points were removed from
our dataset generated using data collection experiments. In the
end, our dataset was reduced to contain 40 trees. Distribution
of the data collected from each of the tree species after data
cleaning is shown in Table III.
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TABLE III
DISTRIBUTION OF TREES AFTER DATA CLEANING

Fig. 7. Outputs from the full and quantized custom Mask R-CNNs.
(a) Segmentation output from Mask R-CNN using full TensorFlow model.
(b) Segmentation output from Mask R-CNN using TensorFlow-lite
(quantized).

C. Performance of Custom Mask R-CNN
To measure the performance of our custom Mask R-CNN

model, we calculated the standard evaluation metrics as used
by COCO [58]. Specifically, we measured mean average pre-
cision (mAP)/average precision (AP) at different intersection
over union (IoU) thresholds (as per [58]). The performance
of our custom Mask R-CNN with and without quantization is
shown in Table IV. A comparison of inference time and model
size comparing both the full model and the quantized model
is also shown in Table IV. To measure the stability of our
results, k-fold cross-validation [59] was also performed with
k = 3, to evaluate the performance of the model on different
training and test splits as shown in Table V. These results for
different train–test splits as shown in Table V showcase the
reliability of our model.

From Table IV, it is seen that there is no significant reduc-
tion in performance using quantization. The inference time of
the quantized model is half compared with the nonquantized
model along with the reduction of the model size. An example
of segmentation outputs generated by the full model and
quantized model on the same image is also shown in Fig. 7.
This also showcases the similar performance for both the full
and optimized models in a visual form.

From Table IV, it may appear that AP(IoU=0.5:0.95:0.05) [58]
for the quantized model is increased slightly compared with
the full model. On further exploring this anomaly, it was
found that this behavior is exhibited due to our annotated
dataset where most of the images contain only one full tree
canopy as ground truth. Thus, a model (nonquantized model)
generalizing better to find partially visible tree canopies in
addition to the full tree canopy is penalized in terms of
precision (false positive). Furthermore, it is seen from Fig. 8
that the performance of the quantized model decreases more
than the full model at higher IoUs (IoU = 0.85 for quantized
model compared with 0.90 for full model) signifying that it
is slightly poorer at object localization compared with the full
model.

Fig. 8. AP scores with increasing IoU thresholds as per COCO
metrics [55] for the full and quantized models.

Fig. 9. Variation of measured NDVI versus remote NDVI for trees
observed during data collection experiments. The tree index refers to
an individual tree ID.

D. Results for the Health of Trees
We extracted three parameters from the ground-truth

dataset, namely, ground-truth condition (health), remote
NDVI, and area of the tree (measured using aerial LiDAR)
from all the parameters present in the dataset.

A comparison of our system-measured NDVI and remote
NDVI is shown in Fig. 9. As seen in this figure, our measured
NDVI is distributed similar to the remote NDVI for an
individual tree (denoted by tree index in Fig. 9).

Two datasets can be highly correlated but strongly disagree.
Hence, a Bland–Altman plot [60] widely used to showcase the
agreement between two monitoring methods measuring
the same attribute was used. It plots the difference between
the corresponding measurement values against the average of
those values. From the Bland–Altman plot shown in Fig. 10,
it is seen that there is a strong agreement between the two
methods (remote NDVI and our measured NDVI) with all
the points (representing data for each tree) except one lying
within the 95% limits of agreement (average difference within
±1.96 standard deviation of the difference, as the difference
between values follows a normal distribution).

Pearson’s correlation coefficient (r) was also measured to
calculate the strength of the linear relationship between our
measured values and ground-truth data. The correlation matrix
comprising all our measured values with the three ground-truth
parameters, namely, ground-truth condition, remote NDVI, and
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TABLE IV
PERFORMANCE OF CUSTOM R-CNN MODEL (FULL AND QUANTIZED MODELS)

TABLE V
RESULTS OF THREEFOLD CROSS-VALIDATION

OF CUSTOM MASK R-CNN MODEL

Fig. 10. Bland–Altman plot showcasing the agreement between our
measured NDVI and remote NDVI. The dashed-middle line shows the
mean difference. The top most and bottom most lines refer to the 95%
limits of agreement, respectively.

Fig. 11. Correlation matrix between our measured values (in bold) and
parameters from the ground-truth dataset.

area is shown in Fig. 11. Furthermore, the correlation results
between the measured NDVI and CTD with the ground-truth
parameters are shown in Table VI.

The distribution of CTD and NDVI with respect to
ground-truth health conditions is shown in Fig. 12. From the

TABLE VI
CORRELATION BETWEEN OUR MEASURED VALUES

AND GROUND-TRUTH PARAMETERS

TABLE VII
MEAN OF MEASURED NDVI AND CTD ACROSS SPECIES AND HEALTH

NDVI distribution in Fig. 12(a), it is seen that the extent of
agreement of NDVI with respect to the ground-truth health
conditions varies with respect to the species. For red pine
trees, the trees in good health condition have higher measured
NDVI values than trees in poor and fair condition. A similar
conclusion is drawn from the CTD distribution in Fig. 12(b).
The mean NDVI and CTD for each species are also shown in
Table VII.

1) High-Level Tree Health Analysis: From Fig. 11, it is
clear that there is almost no correlation between NDVI
and CTD. Thus, they are independently measuring two
different attributes related to tree health and useful to incor-
porate in the system. In recent works such as [61], the
correlation between remote NDVI measured using two dif-
ferent satellites was found to be 0.74 (moderately strong).
In this work, Table VI shows moderately strong correlation
(r = 0.54 with p < 0.05) between our measured NDVI
(ground-based) and remote NDVI. This moderately strong
correlation serves to showcase the validity of our approach for
ground-based NDVI measurement using multispectral imaging
sensors.

Since there is no ground-truth reference attribute for CTD
which indicates water stress of trees, we checked the corre-
lation of CTD with ground-truth health condition as shown
in Table VI. The weak–moderate correlation (r = 0.28 with
p < 0.05) between CTD and ground-truth tree health con-
dition can be attributed to the skewed distribution of the
dataset where more trees are rated as having good conditions
compared with poor and fair conditions. Further analysis of
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Fig. 12. Distribution of NDVI and CTD for the trees with respect to
health. (a) Distribution of NDVI for the trees. (b) Distribution of CTD for
the trees.

CTD distribution for all the trees in Fig. 12(b) shows the high
variability of CTD for trees in poor condition leading to this
overall weak–moderate correlation.

2) Specieswise Tree Health Analysis: From the NDVI distri-
butions for eastern white pine in Fig. 12(a), it is seen that the
good condition trees are generally distributed to have higher
NDVI values than poor and fair condition trees. Thus, a simple
threshold-based classification algorithm can easily flag trees
which might not specifically be in good health conditions. At a
scale of tens of thousands of trees in a city, this can lead to a
significant amount of cost savings.

From Fig. 12(b), while a higher CTD is found for red pine
trees in poor condition than good and fair health condition
trees, the same pattern is not applicable for eastern white
pine trees. This inference about CTD is similar to earlier
works such as [43] and [46], where the tree species under
observation has a significant influence on the results obtained
from thermal imaging. Hence, further studies with varied
species are required to measure the stability of CTD with
respect to ground-truth health conditions.

V. LIMITATIONS AND FUTURE WORK

Subsequent investigations stemming from this work and
using our approach as a foundational framework are expected

Fig. 13. Scatter plot between NDVI and CTD (in ◦C) for red pine
trees. The color of the points indicates the ground-truth health with red
denoting poor, yellow denoting fair, and green denoting good condition
trees.

to illuminate and solve several novel challenges, subset of
which are delineated as follows.

1) Feasibility of Modeling-Based Classification: From the
correlation matrix in Fig. 11, it is seen that there is no corre-
lation between CTD and NDVI values. Hence, in autonomous
models to classify tree health, both these measured parameters
are useful features. A scatter plot between NDVI and CTD
values for red pine trees is shown in Fig. 13. From the
scatter plot, it is seen that most of the fair and poor con-
dition trees are concentrated around a cluster between NDVI
(0.20–0.35) and CTD (0–7). Hence, simple white-box machine
learning algorithms such as support vector machines (SVMs)
with kernel [62] or logistic regression classifiers [63] can
autonomously distinguish between good, and poor or fair con-
dition trees. Furthermore, the methodology can be expanded
by adding human-in-the-loop validation at intermediate steps
to enhance the performance of the system.

2) Direction of Movement and Robust Positioning System:
At present, our methodology is contingent upon aligning
the system consisting the imaging sensors with the trees’
orientation. However, given the intended practical application
in real-world scenarios, the angle between the tree canopy
and the camera’s direction could potentially impact the seg-
mentation of tree canopies. This can be improved by adding
a simple image selection algorithm such that the majority
of image frame is occupied by pixels belonging to a tree
canopy. Furthermore, our current positioning method relies
on GPS coordinates sourced from the tree survey dataset and
the GNSS module within the system, which inherently faces
uncertainties in positioning. Thus, an alternative positioning
approach using real-time kinematics (RTKs) can enhance the
positioning robustness.

3) Scalability in Different Weather Conditions and Geographi-
cal Boundaries: First, the effect of different weather conditions
with reduction of visibility and sunlight directly facing the
imaging sensor lenses needs further exploration. Second, the
deployment and validation of the system in cities with different
topographies and with geographical domain shifts can help in
enhancing the generalization of the approach using large-scale
training and validation datasets.
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VI. CONCLUSION

Urban greenery provides various environmental services
such as carbon sequestration and cooling making them essen-
tial for building climate-adaptive cities. Currently, urban
trees are experiencing atypical amounts of natural and
human-induced stresses leading to their volatile health. Yet,
high costs make it infeasible for cities to perform frequent
inspections on a large scale, leading to adverse health condi-
tions being discovered only after severe damage. The current
popular methods for monitoring the health of urban trees
rely on an in-person inspection performed by arborists and
remote sensing based on satellites or airborne imagery. How-
ever, all these methods are riddled with various challenges
involving scalability, spatio-temporal resolutions, and quality
of assessment. In this work, we developed a novel system
called GreenScan to measure tree health autonomously from
the ground level in urban cities. The GreenScan system fuses
data from low-cost thermal and multispectral imaging sensors
using custom computer vision models optimized for efficiency
to generate the tree health indexes, namely, NDVI and CTD.
The custom Mask R-CNN model fine-tuned using transfer
learning was used to fuse the data collected by the imaging
sensors on the edge device. Deployment can be performed
both in a drive-by sensing paradigm on moving vehicles
such as taxis and garbage trucks and in a citizen-science
sensing paradigm by humans. Initial evaluation of the system
was performed through data collection experiments in Cam-
bridge, USA. The custom Mask R-CNN developed performed
admirably, with an APIoU=0.50

= 0.938 despite the small
dataset used for training. The tree health analysis revealed
moderately strong correlation between our measured NDVI
and the remote NDVI obtained from the ground-truth dataset.
Furthermore, our measured NDVI distributions can be used to
flag trees that are specifically not in good health conditions.
For the measured CTD, a pattern with a theoretical agreement
was applicable for one of the species observed. However,
further large-scale evaluation studies over multiple species
would help in improving the generalizability of the system.
In essence, this work illustrates the potential of autonomous
ground-based urban tree health monitoring on city-wide scales
at high temporal resolutions and motivates future research
at the intersection of environmental science and computer
science.
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