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Abstract—In electrical impedance tomography (EIT), the
commonly used linear reconstruction algorithms are typically
suitable for imaging small resistivity changes. However,
in many applications of EIT, such as in imaging maximum
ventilation of the lung with EIT, the resistivity changes can be
very large. In such cases, the linear algorithms have reduced
accuracy and may affect the image interpretation. To address
this issue, a novel iterative decomposition algorithm (IDA)
is developed. In IDA, the large resistivity change target is
decomposed into small changes so that the final solution can
be obtained through multiple linear reconstructions, and the
sensitivity matrix is iteratively updated based on the result of
each linear reconstruction. To test the performances of IDA,
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Linear algorithm IDA for large resistivity changes

both simulation and in vivo experiments were conducted. The experimental results demonstrate that, in imaging large

resistivity changes in lung ventilation, the traditional linear

EIT algorithm caused nonnegligible linear approximation

errors (LAEs) and location errors (LEs). For IDA, it could reduce LAEs and LEs by 13.4% and 11.6% respectively. The
resistivity changes reconstructed by IDA had a better correlation with the lung volume changes. Therefore, IDA was
verified as an efficient method for imaging large resistivity changes.

Index Terms— Electrical impedance tomography (EIT), image reconstruction algorithm, large resistivity changes, lung

ventilation.

I. INTRODUCTION
LECTRICAL impedance tomography (EIT) is a non-
Einvasive, radiation-free, and low-cost method that can
image the electrical property (resistivity or conductivity)
distribution inside the human body using the sensor data
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obtained from surface electrodes [1], [2], [3]. It has been
widely studied in lung, brain, and abdominal monitoring
and was verified to have attractive clinical application
prospects, such as monitoring regional lung ventilation at the
bedside [4], [5], [6].

For EIT, high-quality imaging results are crucial for medical
diagnosis; therefore, the performances of reconstruction
algorithms in this field are of great importance. Researchers
have proposed numerous EIT reconstruction algorithms,
of which the linear EIT algorithms are the most popular [7].
The linear EIT algorithms typically assume the resistivity
change of the target is very small; thus, the solution can be
calculated by a global linearization of the observation model
with a constant sensitivity matrix [8]. Because iterations are
not required, linear EIT algorithms have the advantages of
easy implementation and fast imaging.

However, in many applications of EIT, the resistivity
changes can be very large. In maximum lung ventilation,
a large volume of insulated air content is enclosed in
the alveoli, enlarging its walls and significantly increas-
ing the resistivity of the lung. According to previous studies,
the change in lung resistivity at maximum ventilation is
approximately 250% [9]. It was estimated that when the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0003-4389-8888
https://orcid.org/0000-0002-6575-4204
https://orcid.org/0000-0003-1903-668X

20836

IEEE SENSORS JOURNAL, VOL. 24, NO. 13, 1 JULY 2024

filling factor (FF) of air content in lung tissue became 8, the
resistivity change could reach about 12 ©2-m [10]. Furthermore,
the shift of conductive fluids in the thorax and brain can also
cause large resistivity changes [11].

For large resistivity changes, the linear EIT algorithms
have reduced accuracy and may even become an obstacle for
image interpretation. It was reported that the reconstructed
large resistivity values tended to be underestimated with linear
EIT algorithms [12]. Ngo et al. [13] utilized the linear EIT
algorithm to map air volume changes during ventilation.
They found that the reconstructed lung resistivity had a
strictly linear relationship with air volume during normal
ventilation, but inaccuracy appeared at the peak flow of
maximum effort breathing [13]. Furthermore, because the
sensitivity matrix in the EIT algorithm is determined by
electromagnetic distribution and large resistivity changes can
make electromagnetic distribution have evident changes, the
use of a constant sensitivity matrix in linear EIT algorithms
would also bring reconstruction errors [14], [15].

To improve the quality of imaging large resistivity changes,
a novel EIT algorithm is proposed called the “iterative
decomposition algorithm” (IDA). In IDA, the large resistivity
changes of a target are decomposed into small changes so
that the final solution can be calculated through multiple
linear reconstructions, in which the sensitivity matrix is
iteratively updated based on the results obtained in each linear
reconstruction. To select the optimal iteration step, a method
based on human electrical properties is proposed. Finally,
simulation and in vivo experiments were conducted to compare
the performances of IDA and traditional linear EIT algorithms
in imaging large resistivity changes.

The remainder of this article is organized as follows:
Sections II and III introduce the linear EIT algorithm and IDA.
Section IV presents the experimental procedures for algorithm
comparison. Section V gives the results of simulation and
in vivo experiments. Section VI offers an analysis of the
experimental results and discusses the performances of IDA.
Section VII provides a brief conclusion.

Il. LINEAR EIT ALGORITHM
A. Theory of Linear EIT Algorithm
EIT can reconstruct the resistivity changes §p inside the
human body. The mathematic model of EIT can be written as

3p = pr2 — pni
Ui = F(pr1) + e (D
Upn = F(pn) + e

where p;; and p;, are the resistivity distributions at two time
instants. U;; and U, are the measured boundary voltages.
F () represents the forward operator which generates boundary
voltages using the finite element method (FEM) [16]. e; and
e, represent the Gaussian distributed measurement noise. With
the Taylor series expansion method, (1) can be formulated as

Ui = F(po) + J(pr1 — po) + 1o — po) + e
Uiy = F(po) + J(pr2 — po) +n(or2 — po) + ez ()

where J = (0F/9p)(py) is the sensitivity matrix calculated at
the initial resistivity estimate py and n(-) represents the high-
order derivative of the Taylor series.

By differencing U,; and U, (2) can be written as

U = Jép +n(pn — po) —n(pn — po) + e 3)

where 6U = U,,—U;, is the boundary voltage changes, e is the
Gaussian distributed measurement noise. When p,» & po and
P2 & po, namely Sp is very small, (3) can be approximated
as the linear equation

sU ~ Jép +e. 4)
To solve §p, (4) is converted to the minimization problem
do :argmin(||8U — 180||2+AP(80)) (5)

where A is the regularization parameter and P(8o) is the
regularization item. A popular regularization method is the L2
norm regularization method [17], which sets P (8p) as ||8p]|>.
Therefore, §p can be solved by

8p =TT +ADT"JTSU = RineardU (6)

where Rjinear represents the linear reconstruction matrix.

B. Linear Reconstruction Errors

As displayed in (4), in linear EIT algorithm, §p is assumed
to be very small, but when imaging large resistivity changes,
the omission of high-order derivations of the Taylor series will
cause reconstruction errors. In this study, we name it linear
approximation errors (LAEs) and LAEs will become large
with the increase in §p.

Further, the sensitivity matrix J in the linear EIT algorithm
is calculated at py and kept constant in the reconstruction.
But when ép becomes very large, the electromagnetic field
inside the human body will change significantly. In such case,
the real sensitivity distribution will have a large difference
from J. So, using the constant sensitivity matrix in a linear
EIT algorithm will also cause reconstruction errors in imaging
large resistivity changes.

[1l. ITERATIVE DECOMPOSITION ALGORITHM

To reduce the linear reconstruction errors, a novel IDA was
developed.

A. Theory of IDA

As shown in Fig. 1(a), IDA decomposes large resistivity
changes into n small ones, and the voltage change for the ith
small resistivity changes 8p; is

8U; =8U/n, i=1,2,3,...,n. @)
Because 8p; is small, it satisfies the linear reconstruction
8:01‘ = RlinearSUi- (8)

As mentioned before, Rjjear that calculated with the constant
sensitivity matrix J will bring reconstruction errors. Thus,
IDA iteratively updates the sensitivity matrix and calculates
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Fig. 1. llustration of IDA. (a) Decomposing large resistivity changes into small changes for linear reconstructions. (b) Selecting the optimal iteration

step based on electrical properties of lung.

the resistivity changes by

pi = pi—1+8pi-1
oF

Ji=—(@), i=2,3,...,n
ap
8pi = (I Ji + A1) I 8U; = RipA8U; ©)
where R{DA i = 2,3,...,n represents the reconstruction

matrix of IDA and RIIDA = Rijnear- Based on (9), the final
solution can be obtained by

8p =D Rips8Us. (10)

i=1

B. Method for Selecting Optimal Iteration Step

In IDA, the iteration step #n is crucial because it determines
the reconstruction accuracy and speed. As shown in Fig. 1(b),
a human electrical property prior information-based method
was proposed for selecting the optimal 7.

1) Estimating the Maximum Lung Resistivity Changes:
According to previous studies, the resistivity of lung tissue
at different ventilation states can be estimated as

T

p=—(FF+1) (11)

OAly
where T = 1.71,T = 1.710oa, = 0.7284 Q@ 'm~! and the
physiological FF is usually in the range of 2.0-6.0 [10]. So,
the maximum resistivity change §pma in lung ventilation is
approximately 9.4 Q-m.

2) Defining the Threshold for Linear Reconstructions: The
threshold for linear reconstructions is empirically defined as
the resistivity changes that make LAEs increase to 10%.
Based on the results of the following simulation experiments,
8Pthreshold 18 approximately 3 €-m.

3) Determining the Optimal Iteration Step for IDA: To satisty
the linear reconstruction, the resistivity changes in each
iteration step should be no more than §poreshold- S0, the optimal
iteration step for IDA can be determined as

Noptimal = 8Pmax / 8 Pthreshold (12)

Fig. 2. Simulation models. (a) Three-dimensional lung simulation model
with EIT electrodes. (b) Two-dimensional lung simulation model for EIT
image reconstruction.

where nopimal  TEpresents the optimal iteration step and
Noptimal = 94/3 ~ 3.

IV. EXPERIMENTAL PROCEDURES
To validate the performance of IDA in reconstructing large
resistivity changes, both simulation and in vivo experiments
are conducted and the experimental procedures are introduced
in this section.

A. Simulation Experiments

1) Generation of Simulation EIT Data: As displayed in
Fig. 2(a), a 3-D lung model is used to simulate large resistivity
changes and generate EIT data in this study. It consists of
44 064 elements and has real anatomical geometric boundaries.
The resistivity values of different lung structures are set
according to the dielectric properties of lung tissues reported
in previous studies [18]. Sixteen Ag/AgCl EIT electrodes are
uniformly placed on the boundary of the model. Adjacent
patterns are used for excitation and measurement [19]. With
the 3-D model, one can alter the lung resistivity to simulate
large resistivity changes during ventilation. Fig. 2(b) shows
the matched 2-D lung model for EIT image reconstruction.

2) Algorithm Evaluation Metrics: LAEs, location errors
(LEs), and mean reconstruction speed (MIS) are introduced
to evaluate the performances of different EIT algorithms in
imaging large resistivity changes.
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Referring to [12], without measurement noise, LAEs can be
calculated as

LAEs = n(8p) = (8U — J8p)/8U (13)

where n(8p) represents the high-order derivations in the Taylor
series.
LEs can be calculated as

LEs = —
l

where d represents the distance between the reconstructed and
predefined resistivity changes. [ represents the length of the
long axis of the reconstruction model.

MIS is defined as the mean time required for per image
reconstruction and can be calculated as

MIS = (étl)/m

where m is the total number of reconstructions and ¢;
represents the time for the ith reconstruction.

(14)

15)

B. In Vivo Experiments

1) Measurement Systems: In in vivo experiments, EIT
measurements are obtained by PulmoVista 500 (Drager
Medical) EIT device [20] shown in Fig. 3(a). Lung volume
changes are recorded by Ruichao-ST (Keluode Health)
cardiopulmonary function tester shown in Fig. 3(b).

2) In Vivo Experimental Protocols: Three healthy volunteers
(three males, aged 26-38) were recruited for the in vivo
experiments. Participants were asked to inhale deeply at
a constant speed. Lung resistivity changes were obtained
by EIT and the lung volume changes were recorded by
the cardiopulmonary function tester. Each measurement was
performed three times. Then the correlations between ARV
obtained by different algorithms and lung volume changes
were compared. The experiment was conducted in accordance
with the Declaration of Helsinki, and approved by the
ethics committee of the Fourth Military Medical University
(KY20234149-1, 2023-03-04).

V. RESULTS
A. Results of Simulation Experiments

1) Comparison of LAEs: Fig. 4 shows the results of
experiment one, in which the LAEs of different algorithms in
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Fig. 4. Results of experiment 1. (a) Reference images with lung

resistivity changes from 1 to 10 Q-m. (b) and (c) EIT images and LAEs
obtained by linear EIT algorithm and IDA. The red boxes show the
imaging results with large resistivity changes. (d) Normalized ARV of
the above imaging results and their correlation indexes with the ideal
ARV.

imaging large resistivity changes were compared. In Fig. 4(a),
based on the 3-D lung model, lung shape targets were
simulated with resistivity changes ranging from 1 to 10 Q-m.
Fig. 4(b) and (c) are the reconstructed images of different
algorithms and their corresponding LAEs. For EIT images
reconstructed by linear algorithm, the color of lung area
changed gradually with the increase of resistivity. How-
ever, as shown in the red dotted box, when §p went
from 8 to 10 Q-m, the images reconstructed by linear
algorithm had little difference, possibly causing an inaccurate
estimation that that there were no changes in the lung.
Compared with the linear algorithm, IDA could reflect
the large resistivity changes better and reduce LAEs by
approximately 13.4%. Fig. 4(d) shows the normalized average
reconstructed value (ARV) of the above imaging results and
their correlation indexes. ARV is calculated by averaging the
reconstructed values of all mesh elements. The greed line
represents the ideal ARV that changes linearly with the true
values. The blue line is the ARV obtained by linear EIT
algorithm, and its linearity was reduced when §p became very
large. The red line is the ARV obtained by IDA. It had better
linearity in mapping large resistivity and better correlation with
the ideal ARV.

2) Comparison of Les: Fig. 5 shows the results of experi-
ment two, in which the LEs of different algorithms in imaging
large resistivity changes were compared. In Fig. 5(a), the
resistivity change of the spherical target was set as —1 Q-m,
while the resistivity change of the lung shaped target could be
tuned from 1 to 10 Q- m. Fig. 5(b) and (c) are the imaging
results obtained by linear EIT algorithm and IDA. Because the
resistivity change and size of the spherical target were much
smaller than those of lung-shaped target, the reconstructed
spherical target could not be observed based on the original
imaging results. To solve this problem, a mask which set the
resistivity values in lung area as 0 was used to highlight the
location of the spherical target. From the results, we could
see that when lung resistivity changes became very large,
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Fig. 5. Results of experiment 2. (a) Reference images with large
resistivity changes. (b) and (c) EIT images obtained by linear algorithm
and IDA. The reconstructed values in lung area were set as 0 to highlight
the spherical targets. (d) LEs of images obtained by linear algorithm
and IDA.

the reconstructed spherical target had increased LEs. Fig. 5(d)
shows the LEs of reconstruction results obtained by different
algorithms. Compared with the linear algorithm, IDA reduced
LEs by approximately 11.6%. Fig. 5(¢) shows the current
distributions of the lung with different resistivity changes.
As displayed in the red dotted boxes, the current distribution of
the lung with large resistivity changes had evident difference
from that at the initial state. For the linear EIT algorithm,
it usually uses the constant sensitivity matrix calculated based
on the initial current distribution, so its imaging results had
increased LEs. While for IDA, it updates the sensitivity matrix
based on the result in each iteration calculation. Therefore,
IDA could improve the location accuracy of large resistivity
changes. Our results are consistent with those reported by
Liston [14].

3) Comparison of MIS: The mean imaging speed of
the linear EIT algorithm and IDA were compared based
on the desktop computer with a 4.2 GHz CPU and 16 G
RAM. The MIS of the linear algorithm was approximately
0.005 s while that of IDA was approximately 324 s. The
results indicate that IDA improved the image quality of large
resistivity changes by sacrificing imaging speed.

B. Results of In Vivo Experiments

Fig. 6 shows the representative results of in vivo experi-
ments. As displayed in Fig. 6(a), volunteers were asked to
try to inhale deeply at a constant speed. Then, EIT and the
cardiopulmonary function tester were used to record resistivity
changes and volume changes of the lung simultaneously.
Fig. 6(b) shows the EIT images obtained by linear and IDA
algorithm. Similar to the simulation results, the in vivo
experiment results demonstrate that, compared with the

traditional linear algorithm, IDA could reflect large resistivity
changes of lung better. In Fig. 6(c), the lung volume changes
and ARV curves obtained by different algorithms are plotted.
Fig. 6(d) shows the results of correlation analysis between
ARV curves and lung volume changes. The results demonstrate
that ARV curves obtained by IDA had better correlation
with the lung volume changes, especially near the peak
of the inhalation. Therefore, compared with the linear EIT
algorithm, IDA can reconstruct large resistivity changes in
lung ventilation with better accuracy.

VI. DISCUSSION
In this study, the influences of the traditional linear EIT
algorithm on the imaging accuracy of large resistivity changes
were investigated, and a novel algorithm, IDA, was developed
to improve the image quality.

A. Influences of Linear EIT Algorithm in Imaging Large
Resistivity Changes

First, as shown in experiment one, LAEs of the linear
EIT algorithm become nonnegligible when imaging large
resistivity changes. This error reduces the linearity between
the reconstructed and true resistivity changes, and may
even cause an inaccurate estimation of the ventilation state.
Second, large resistivity changes cause evident changes in the
electromagnetic field. Using the constant sensitivity matrix
determined by the initial resistivity distribution in a linear EIT
algorithm would result in increased LEs.

B. Performances of IDA in Imaging Large Resistivity
Changes

The proposed IDA, which decomposes the large resistivity
changes into smaller ones and updates the sensitivity
coefficient matrix based on the results of each linear
reconstruction, reduced LAEs and LEs. The imaging results of
the IDA demonstrated a better correlation with large resistivity
changes in lung ventilation. However, its reconstruction speed
was insufficient for real-time imaging. Therefore, using the
IDA for offline image reconstruction and data analysis of large
resistivity changes is recommended.

In addition to monitoring lung ventilation, many other EIT
applications have large resistivity changes, such as monitoring
the dehydration treatment of patients with brain edema and
evaluating large volume changes of the bladder [11], [21].
In these applications, the IDA may also be used to improve
image reconstruction quality.

C. Performances of IDA in Imaging Small Resistivity
Changes

In imaging small changes that satisfy the linear recon-
struction conditions, the decomposition step of IDA will
become unnecessary. It will only slow down the imaging speed
without reducing the linear reconstruction errors. And because
the small resistivity changes will not significantly change
the electromagnetic distribution inside the lung, there is no
need to update the sensitivity matrix. Therefore, in imaging
small changes, IDA will get results similar to those obtained
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Results of in vivo experiments. (a) Photograph of imaging maximum lung ventilation with EIT and cardiopulmonary function tester.

(b) EIT images of maximum lung ventilation obtained by linear algorithm and IDA. (c) Lung volume changes and ARV curves obtained by different
algorithms. (d) Correlation indexes between ARV curves and lung volume changes.

by linear algorithm, but its imaging speed is much lower.
Therefore, IDA is not recommended for imaging small
resistivity changes.

D. Other Statements

Finally, several points should be noted. First, GREIT
is a more popular linear EIT algorithm in imaging lung
ventilation [7] but was not used for comparison in this study
because GREIT has a similar mathematical model to the L2
norm regularization algorithm [22]; therefore, the capacity and
errors of the two algorithms in reconstructing large resistivity
changes would be similar. GREIT incorporates image-
processing techniques, which may cause unfair algorithm
comparisons. Second, the imaging linearity of the linear EIT
algorithm was reduced when resistivity changes became very
large. Besides the LAEs, this error may be related to the use
of 2-D EIT images to reflect 3-D resistivity changes. And this
problem may be investigated and solved by training a better
reconstruction algorithm based on machine learning [23] in
the future.

VIlI. CONCLUSION

In reconstructing large resistivity changes in lung ventila-
tion, the traditional linear EIT algorithm with the constant
sensitivity matrix caused linear reconstruction errors. The
proposed IDA could reduce the above errors, and enable the
reconstruction results to have a better correlation with large
resistivity changes in lung ventilation. Therefore, IDA is an
efficient method for imaging large resistivity changes.
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