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Acoustic Indoor Localization Based
on Range and Relative Velocity in

Non-Line-of-Sight Environment
Lei Zhang , Hucheng Wang, Member, IEEE, Wei He , and Xinheng Wang , Senior Member, IEEE

Abstract—This article investigates the problem of acous-
tic indoor localization in dense non-line-of-sight (NLOS)
environments by using range and relative velocity mea-
surements obtained from received acoustic signals, without
the need for additional sensors. The relationship between
adjacent positions to be estimated is established by intro-
ducing velocity measurements and assuming a first-order
motion model. This reduces the number of required line-of-
sight (LOS) anchors. The principle of the range and relative
velocity-based localization method is systematically studied
and a basic solution based on a least square estimator
(LSE) and its closed-form has been proposed. In order to
achieve precise localization in dense NLOS environments,
a multiposition joint estimation (MPJE) method is proposed. This method involves jointly estimating multiple positions
in a short-time position sequence and is solved using a Levenberg–Marquardt (LM) algorithm. A LOS measurements
redundancy metric is proposed to balance the localization accuracy and algorithm time cost by adjusting the sequence
length. The results obtained from numerical simulations and experimental investigations demonstrate that the proposed
range and relative velocity-based localization method outperforms the conventional range-based methods. The number
of required LOS anchors for accurate localization is reduced from 3 to 2 for 2-D positioning. In addition, the proposed
MPJE method requires only two LOS anchors and permits the use of only one LOS anchor for a short period. This enables
its application in dense NLOS environments with a low anchor deployment density, thereby increasing its scene adaptive
capability and promotional value.

Index Terms— Acoustic, indoor localization, non-line-of-sight (NLOS), range, relative velocity.

I. INTRODUCTION

W IDE applications of smart devices, such as smart-
phones, smartwatches, floor-mopping robots, and other
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smart devices, have recently received much attention. Accurate
indoor localization has become a significant area of research.
Various approaches have been proposed based on the inertial
measurement unit (IMU) [1], ultra-wide-band (UWB) [2],
Bluetooth, pedestrian dead reckoning (PDR) [3], WiFi, global
system for mobile (GSM) communications, acoustic [4], [5],
[6], light, and magnetic fields [7]. Among these approaches,
acoustic localization technology has attracted researchers’
attention due to its advantages of being fully compatible
with commercial off-the-shelf (COTS) smart devices, having
relatively higher positioning accuracy, and lower cost infras-
tructure [8]. Numerous prototype systems have been developed
to advance the development and application of acoustic indoor
localization technology in real-world scenarios.

The methods of acoustic indoor localization systems mainly
include time of arrival (TOA), time difference of arrival
(TDOA), and direction of arrival (DOA). The range (TOA)-
based positioning method is very popular and typically
provides satisfactory performance with accuracy at the decime-
ter level in real-world scenarios [9]. Among those acoustic
indoor localization systems, most of them use TOA of an
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Fig. 1. Simplified diagram of the real indoor localization scenario.

Fig. 2. Basic NLOS localization procedure with identifying-discarding
approach.

acoustic chirp signal to realize ranging-based positioning [10],
[11], [12], [13].

It is evident that non-line-of-sight (NLOS) will introduce
considerable positioning errors. Fig. 1 depicts a pedestrian
carrying a smart device walking around in an indoor envi-
ronment. In fact, it is common that the line-of-sight (LOS)
path, or direct path, is obstructed by human bodies, furniture,
walls, or corners, due to the arbitrariness of human movement.
NLOS phenomenon poses a serious challenge to the practical
applications of acoustic indoor localization systems, which can
also be demonstrated by the results of the Microsoft Indoor
Localization Competition [14].

The NLOS localization problem has been extensively dis-
cussed in the area of wireless indoor localization, and many
methods have been proposed [15] to address this issue. Fil-
tering algorithms are commonly employed to mitigate NLOS
effects, which constitute a significant category of methods. The
robust Kalman filtering framework based on student’s t distri-
bution [16], Gaussian-student’s t mixture distribution [17], and
statistical similarity measure [18] is specifically designed to
handle nonstationary heavy-tailed measurement noise resulting
from NLOS and stand out as the most promising approaches
for addressing the NLOS mitigation challenge.

The simplest way of NLOS localization is achieved by
identifying and discarding the NLOS measurements, and
estimating the position of the target by using one of the
LOS localization techniques, such as the maximum likelihood
algorithm and least squares techniques [19]. The basic proce-
dure is illustrated in Fig. 2.

By identifying and discarding the NLOS measurements, the
range-based indoor localization system can greatly improve
its performance and stability by utilizing only LOS mea-

Fig. 3. Number of LOS anchors available at each positioning point.

surements. NLOS identification methods based on support
vector machine (SVM), label propagation algorithm based
SVM (LPA-SVM), and Gaussian mixture model (GMM) can
achieve satisfactory accuracy in real-world acoustic channel
conditions [8], [20]. Discarding NLOS measurements means
only a few LOS measurements are used for the positioning
algorithm, which poses a challenge for many positioning
methods because at least three measurements are required for
the calculation.

For the simplified scenario shown in Fig. 1, we assume
that when the pedestrian carrying a smart device walks along
the trail, other pedestrians stand still. The number of LOS
anchors that can be used for the positioning algorithm at each
positioning point is shown in Fig. 3. Even though there are
four anchors deployed in the scene, only one LOS anchor
can be used due to the uncertainties of pedestrians in most
cases. In this condition, the NLOS localization problem can
be considered as a localization problem under a low density of
LOS anchor nodes. How to realize accurate indoor localization
in such insufficient LOS anchors is the most critical challenge
that needs to be addressed in practical applications.

In order to achieve accurate positioning for low-cost com-
mercial devices under the condition of insufficient LOS
anchors, it is essential to introduce additional sources of data to
increase the information required for target localization with-
out adding additional sensors. Fortunately, the slower speed of
sound propagation allows the motion of the smart devices to be
easily represented by the Doppler shift in the received acoustic
signals. This enables simultaneous measurements of the range
and relative velocity between smart devices and anchors.
The relative velocity, referred to as the frequency of arrival
(FOA), is obtained by estimating the Doppler shift of acoustic
signals.

In the field of localization, there is still a lack of unified
terminologies for measurements. The range measurement can
also be referred to as time delay and TOA measurement. The
measurement of relative velocity can also be referred to as
either Doppler-shift measurement or FOA. For the sake of
consistency, this article collectively refers to these two types
of measurements as range and relative velocity measurements.

In earlier studies, research of target localization using
range and relative velocity measurements is mainly centered
on the Galileo search and rescue system [21], [22], [23].
Utilization and investigation of active target detection and
tracking, which employ range and relative velocity, have been
widely conducted in radar research [24], [25]. Range and
relative velocity are also introduced to estimate the position
and velocity of moving targets based on sensors in motion
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[26], [27]. A direct position determination approach to effi-
ciently realize the target position estimation based on range
and relative velocity measurements was presented in [28].
Based on a single moving station, a structural total least square
algorithm for locating multiple disjoint sources was presented
by using AOA, range, and relative velocity measurements [29].
Although the application scenarios of these methods differ
from indoor localization, they provide insights and guidance
for studying indoor localization techniques based on range and
relative velocity.

For passive target localization, an importance sampling
method based on range and relative velocity measurements
was presented in [30]. A Lagrange programming neural net-
work framework to address the problem of estimating the
position and velocity of a moving source using range and rela-
tive velocity measurements was presented [31]. By exploiting
both range and relative velocity measurements, a weighted
least square method was formulated to jointly estimate the
source position, velocity, clock bias, and clock drift, which was
efficiently solved using semi-definite relaxation [32]. While
these methods perform well in LOS scenarios, their effective-
ness is significantly compromised in NLOS environments or
low-density deployment of anchors.

For the NLOS localization scenario, a least square algorithm
to estimate the target location using measurements of range,
DOA, and relative velocity was presented in [33]. This method
could achieve rough localization of mobile phones by using
NLOS communication signals, without directly tackling the
NLOS localization problem. In [34], a particle filtering (PF)
method was proposed by using range and relative velocity
for acoustic indoor localization in the NLOS environment.
However, the method is significantly impaired by measurement
noise and fails to produce satisfactory results in large-scale
scenarios.

In contrast to those previous work, this article focuses on
how to achieve accurate and stable localization in dense NLOS
environments, while utilizing significantly fewer LOS anchors.
A novel indoor localization approach based on range and
relative velocity measurements without the need for additional
sensors was proposed. The main advantage of the proposed
method is that it achieves 2-D positioning using only two
LOS anchors, and allows only one LOS anchor for a short
period of time. This enables its application in dense NLOS
environments with a low anchor deployment density, thereby
increasing its scene adaptive capability and promotional value.
By using this method, the problem illustrated in Fig. 1 could
be well addressed.

The main contributions of this research are summarized as
follows.

1) A novel acoustic indoor localization approach based
on range and relative velocity measurements is pro-
posed and studied systematically, without the need for
additional sensors. The basic least square solution and
its closed-form solution are derived, respectively. Com-
pared to conventional range-based localization methods,
the proposed method reduces the number of required
LOS anchors for accurate localization from 3 to 2 for
2-D positioning.

2) To achieve precise localization in dense NLOS environ-
ments, a multiposition joint estimation (MPJE) method
is proposed by jointly estimating the multiple posi-
tions in a short-time position sequence, and solved by
using the Levenberg–Marquardt (LM) algorithm. The
proposed method could break the error propagation and
accumulation chain, require only two LOS anchors, and
permit the use of only one LOS anchor for a short
period.

3) An LOS measurement redundancy metric is proposed
to balance the localization accuracy and algorithm time
cost through the adjustment of the sequence length.

Results from numerical simulations and experiments show
that the proposed acoustic indoor localization methods are not
only suitable for dense NLOS localization scenarios but also
capable of achieving accurate localization under low anchor
deployment density conditions.

The remainder of the article is organized as follows.
In Section II, we first introduce how to simultaneously estimate
the range and relative velocity measurements from the received
acoustic signals. To realize localization based on range and
relative velocity measurements, we have provided a maximum
likelihood solution, a least square solution, and a closed-form
solution. Section III introduces the MPJE method and explains
the calculation process in detail. Sections IV and V present
the numerical simulations and experiments to evaluate the
performance of our proposed methods. Finally, we summarize
our conclusion in Section VI.

II. RANGE AND RELATIVE VELOCITY-BASED NLOS
LOCALIZATION

A. Acoustic NLOS Localization From Identifying and
Discarding Perspective

For an acoustic indoor localization system, assuming N
range measurements obtained from anchors predeployed in the
environment can be used to estimate the target’s position Xk

at kth time. In addition, the number of range measurements
obtained from NLOS anchors is M , where 0 ≤ M ≤ N .
By identifying and discarding the NLOS range measurements,
we can use the remaining N − M LOS range measurements
to estimate Xk . The NLOS localization problem with N
predeployed anchors can be considered as an LOS localization
problem with N−M anchors. Clearly, this presents an acoustic
localization problem with a low density of anchor deployment.

Typically, N = 4 or N = 3 should be guaranteed in a
practical 2-D localization application, which is obtained by
taking into consideration the tradeoff between system deploy-
ment cost, localization update frequency, and user experience.
However, in dense NLOS environments, obtaining sufficient
three LOS range measurements to ensure the performance of
positioning algorithms becomes challenging, because of the
complexity and dynamic nature of indoor environments.

Therefore, addressing the acoustic NLOS localization chal-
lenge in real applications requires the realization of acoustic
indoor localization with a low density of anchor deployment,
specifically less than three LOS anchors. We aim to solve this
problem without the need for additional sensors by using range
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and relative velocity measurements obtained from acoustic
signals.

B. Range and Relative Velocity
Measurements Estimation

While most acoustic indoor localization systems utilize
linear frequency modulation (LFM) signals for ranging, hyper-
bolic frequency modulation (HFM) signals are preferable
for range and velocity measurement. HFM signals offer the
Doppler-invariant property, enabling simultaneous ranging and
relative velocity measurement [35].

The complex form of an HFM signal can be written as

r(t) =

 exp
{
− j2π K ln

(
1−

t
G

)}
, −

T
2
≤ t ≤

T
2

0, otherwise
(1)

where

G =
T ( fh + fl)

2( fh − fl)
, K =

T fl fh

fh − fl
(2)

fl and fh are the lowest and the highest frequency of the HFM
signal, respectively. T is the time duration.

In order to realize simultaneous ranging and relative velocity
measurement, the transmitted signal s(t) should include two
different HFM components, which is given by

s(t) = cos
(
−2π K1 ln

(
1−

t − T/2
G1

))
+ cos

(
−2π K2 ln

(
1−

t − T/2
G2

))
(3)

where 0 ≤ t ≤ T , and the two HFM components are denoted
as HFM1 and HFM2, respectively.

Assuming the time delay of s(t) is τ k
i , the time delay

estimation of HFM1 and HFM2 are τ̂ k
i,1 and τ̂ k

i,2, respectively,
which are given by

τ̂ k
i,1 = τ k

i −
αk

i

1+ αk
i

(
G1 +

T
2

)
τ̂ k

i,2 = τ k
i −

αk
i

1+ αk
i

(
G2 +

T
2

)
.

(4)

Thus, the estimation of time delay τ̂ k
i and Doppler factor α̂k

i
are given by

α̂k
i =

τ̂ k
i,2 − τ̂ k

i,1

G1 − G2 − τ̂ k
i,2 + τ̂ k

i,1

τ̂ k
i =

1
2

[
τ̂ k

i,1 + τ̂ k
i,2 +

α̂k
i

1+ α̂k
i
(G1 + G2 + T )

]
.

(5)

And then, the range measurement can be obtained by d̂k
i =

cτ̂ k
i , and relative velocity measurement is v̂k

i = cα̂k
i , based on

the measuring signal from i th anchor.
It should be noted that the time delay estimation of

HFM1 and HFM2 is independent of each other. τ̂ k
i,1 and τ̂ k

i,2
can be assumed to follow a Gaussian distribution with a
variance σ 2, expressed as

τ̂ k
i,1 ∼ N

(
τ k

i −
αk

i

1+ αk
i
(G1 + T/2), σ 2

)
τ̂ k

i,2 ∼ N
(

τ k
i −

αk
i

1+ αk
i
(G2 + T/2), σ 2

)
.

(6)

Fig. 4. Description of range and relative velocity-based localization.

With (4), the distribution of range measurements d̂k
i and

relative velocity measurements v̂k
i can be given by

v̂k
i ≈ N

(
vk

i , 2
(

c
1+ αk

i

G1 − G2
σ

)2)
d̂k

i ∼ N
(

dk
i ,

1
2
(cσ)2

) (7)

where vk
i is the truth value of v̂k

i , and dk
i is the truth value of

d̂k
i . Symbol “≈” in the equation means that vk

i approximately
follows a Gaussian distribution. We can find that the variance
of range measurements is decreased compared with ranging
based on HFM1 or HFM2, which means higher ranging
stability and precision. Meanwhile, the performance of relative
velocity estimation could be improved by using a narrow
measuring signal with a higher central frequency.

C. Theory of Rang and Relative
Velocity-Based Localization

As depicted in Fig. 4, an anchor is deployed at position
a1, while a smart device moves from position X̂k−1 to Xk

at time k. In the context of indoor localization, the accuracy
of position has the highest priority. Therefore, we adopt
a first-order motion model assumption, where the speed is
approximated by using the assumption that the motion of the
smart device between X̂k−1 and Xk follows a uniform linear
motion with a constant velocity vk . Here, X̂k−1 represents the
estimated position with a bias of Xk−1 at time k − 1.

Correspondingly, the observation of the smart device’s
velocity from the acoustic signal, denoted as vk

1 , represents
the projection of vk on the vector (Xk

− a1). From another
perspective, vk

1 contains partial information about the velocity
vk , position Xk and X̂k−1. By combining range measurements
and relative velocity measurements, the position of the smart
device can be determined.

The positions of anchors are definite and denoted as ai =

(ax,i , ay,i )
T , i = 1, 2, . . . , N . At time k, The range mea-

surement between smart device and i th anchor, d̂k
i , can be

expressed as

d̂k
i = ∥X

k
− ai∥2 + biask

i,d + ϵk
i = cτ̂ k

i (8)

where τ̂ k
i represents the TOA estimation from i th anchor,

and ϵk
i denotes the error in range measurement. Specifically,

biask
i,d denotes a positive range bias of range measurement

caused by NLOS. In addition, it is important to note that
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biask
i,d > 0 during an NLOS condition, while biask

i,d = 0 under
LOS conditions.

The relative velocity v̂k
i can be obtained from the acoustic

signal by estimating the Doppler-shift. The shift is calculated
as

v̂k
i =

(
vk
)T (Xk

− ai
)

∥Xk
− ai∥2

+ biask
i,v + ηk

i

= c
(

f̂ k
i

f0
− 1

)
(9)

where f0 represents the original central frequency of acoustic
signal, f̂ k

i stands for the estimated value of f0, and ηk
i denotes

the error in relative velocity measurement. Moreover, biask
i,v

represents a bias of relative velocity of measurement intro-
duced by NLOS, and the magnitude of this bias depends on
the geometry relationship among the smart devices, anchors,
and blockers. biask

i,v = 0 while under LOS conditions.
Under the assumption of a first-order motion model for

the moving target, where the measured interval between time
k − 1 and k is 1t , the estimation of Xk , which is denoted as
X̂k , can be obtained by

X̂k
= X̂k−1

+1tvk . (10)

An LOS information matrix lk is constructed to save the
information of LOS measurements and eliminate the influence
of NLOS measurements on the localization method. Conse-
quently, the estimation of Xk using range and relative velocity
measurements can be expressed as

X̂k
= F

(
X̂k−1, d̂k

1, . . . , d̂k
N , v̂k

1, . . . , v̂
k
N , 1t, lk). (11)

In order to solve (11), we will introduce the maximum
likelihood solution, least square solution and its closed-
form solution. In addition, a new solution will be proposed
by jointly estimating the positions in a short-time position
sequence to break the error propagation and accumulation
chain. Details of these solutions will be presented in the
following sections, respectively.

D. Maximum Likelihood Solution
With the NLOS measurements discarded using the LOS

information matrix lk , we can proceed to obtain a max-
imum likelihood estimator (MLE) solution for range and
relative velocity-based localization. We assume that both range
and relative velocity measurements follow Gaussian distribu-
tion, while the variances are σd,i,k and σv,i,k , respectively.
Specifically,

ϵk
i ∼ N

(
0, σ 2

d,i,k

)
, ηk

i ∼ N
(
0, σ 2

v,i,k

)
, i = 1, 2, . . . , N .

(12)

The bias for LOS measurements is zero, represented as
biask

i,d = 0 and biask
i,v = 0. As the NLOS measurements have

been disregarded, their distribution can be treated as a uniform
distribution. The distributions only depend on the uncertainty
σd,i,k and σv,i,k regardless of the location of Xk .

The range and relative velocity measurements between the
receiver and the anchors are rewritten in a vector form,

D̂k
= {d̂k

1, d̂k
2, . . . , d̂k

N }, V̂ k
= {v̂k

1, v̂
k
2, . . . , v̂

k
N }. Correspond-

ingly, the truth values of D̂k and V̂ k are denoted as Dk
=

{dk
1 , dk

2 , . . . , dk
N } and V k

= {vk
1, v

k
2, . . . , v

k
N }. At position Xk ,

the joint probability density of D̂k and V̂ k are given by

p
(

D̂k
; Xk)

=

N∏
i=1

1√
2πσ 2

d,i,k

exp

{
−

[
lk
i

(
d̂k

i − dk
i

)]2

2σ 2
d,i,k

}

=
1√

(2π)N det
(

Qd,k

)
· exp

{
−

1
2

(
D̂k
− Dk)T (lk)T Q−1

d,k lk( D̂k
− Dk)}

(13)

p
(
V̂ k
; Xk)

=

N∏
i=1

1√
2πσ 2

v,i,k

exp

{
−

[
lk
i

(
v̂k

i − vk
i

)]2

2σ 2
v,i,k

}

=
1√

(2π)N det
(

Qv,k

)
· exp

{
−

1
2

(
V̂ k
− V k)T (lk)T Q−1

v,k lk(V̂ k
− V k)}

(14)

where lk
i represents the LOS information of the measurements

from the i th anchor, lk
i = 1 for LOS measurements while lk

i =

0 for NLOS measurements; lk
= diag{lk

1 , lk
2 , . . . , lk

N } is the
LOS information matrix at time k; det(·) is the determination
operator; Qd,k and Qv,k are the auto-covariance matrix of ϵk

and ηk , respectively, and given by

Qd,k = E
{
ϵk(ϵk)T

}
= diag

{
σ 2

d,1,k, . . . , σ
2
d,N ,k

}
(15)

Qv,k = E
{
ηk(ηk)T

}
= diag

{
σ 2

v,1,k, . . . , σ
2
v,N ,k

}
. (16)

ϵk
= [ϵk

1 , . . . , ϵ
k
N ]

T and ηk
= [ηk

1, . . . , η
k
N ]

T are the vector
form of range measurements and relative velocity measure-
ments.

By using (13) and (14), the estimation of Xk based on range
and relative velocity can be given by

X̂k
= arg max

Xk
p
(

D̂k, V̂ k
; Xk). (17)

Based on the independence assumption, we have

p
(

D̂k, V̂ k
; Xk)

= p
(

D̂k
; Xk)p

(
V̂ k
; Xk). (18)

Then, (17) is equivalent to

X̂k
= arg min

Xk

{(
V̂ k
− V k)T (lk)T Q−1

v,k lk(V̂ k
− V k)

+
(

D̂k
− Dk)T (lk)T Q−1

d,k lk( D̂k
− Dk)}. (19)

Given that dk
i and vk

i are nonlinear functions by Xk ,
as indicated in (8) and (9), (19) can be addressed by using
a grid search method in the solution space with sufficiently
dense grid points. However, Qd,k and Qv,k are very difficult
to estimate in real applications because the limited update
frequency of acoustic indoor localization technology makes
it challenging to gather sufficient measurements for statistical
analysis within a short time. Therefore, a weighted least square
method is used instead of maximum likelihood estimation to
estimate the positions.
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E. Least Square Solution and its Closed-Form Solution
Referring to (19), the solution based on the least square

estimator (LSE) can be given as

X̂k
= arg min

Xk
J
(
Xk) (20)

where the cost function J (Xk) is

J
(
Xk)
=

N∑
i=1

{
βk

d,i

(
d̂k

i − dk
i

)2
+ βk

v,i

(
v̂k

i − vk
i

)2
}
. (21)

The weight coefficients βk
d,i and βk

v,i denote the reliability of
range and relative velocity measurements from each anchor.
By setting βk

d,i = lk
i /σ

2
d,i,k and βk

v,i = lk
i /σ

2
v,i,k , (21) is

equivalent to (19).
In practical applications, obtaining prior knowledge of mea-

surement errors is often difficult. Therefore, a direct approach
is to set βk

d,i = βk
v,i = lk

i . Equation (21) could be calculated
by using a grid search method in the solution space. In order
to enhance computational efficiency, it is necessary to derive
a closed-form solution of LSE. Initially, we will consider
a closed-form solution of range and relative velocity-based
localization problems under an LOS scenario and then derive
the closed-form solution of LSE in an NLOS scenario.

For the LOS localization scenario, from Fig. 4, we can
obtain the following relations:

di =
∥∥Xk
− ai

∥∥
2

vi =

(
vk
)T (Xk

− ai
)∥∥Xk

− ai
∥∥

2

, i = 1, 2, . . . , N . (22)

To rewrite the relative velocity equations in a vector form,
we will obtain(

vk)T (Xk I1×N − A
)
= Bk

A = [a1, a2, . . . , aN ]

Bk =
[
dk

1 vk
1, dk

2 vk
2, . . . , dk

N vk
N

]T
(23)

where I1×N denotes a 1 × N identity matrix. Based on (23),
we can obtain (

vk)T
= Bk

(
Xk I1×N − A

)†
(24)

where “†” is the pseudo-inverse operator. Then, Xk can be
given by

Xk
= X̂k−1

+1t
(

Bk
(
Xk I1×N − A

)†
)T

. (25)

Equation (25) can be reformed and expanded as

I N×1
(
Xk)T Xk

− AT Xk
= I N×1

(
Xk)T X̂k−1

−AT X̂k−1
+1t BT

k . (26)

Range calculation equation in (22) can be rewritten and
expanded as(

Xk)T Xk
− 2aT

i Xk
= d2

i − aT
i ai , i = 1, 2, . . . , N . (27)

Then, to transform this equation into a vector form, we can
obtain

I N×1
(
Xk)T Xk

− 2AT Xk
= dk − Am

dk =

[(
dk

1

)2
,
(
dk

2

)2
, . . . ,

(
dk

N

)2
]T

Am =
[
aT

1 a1, aT
2 a2, . . . , aT

N aN
]T

. (28)

Therefore, based on (26) and (28), the closed-form solution
of the basic LSE method in LOS scenario can be expressed
as

X̂k
=

[(
A− X̂k−1 I1×N

)(
A− X̂k−1 I1×N

)T
]−1

×
(

A− X̂k−1 I1×N
)(

1t BT
k + Am − dk − AT X̂k−1).

(29)

In particular, it needs to be noted that when there is only one
anchor available for position estimation, that is N = 1, (29)
is expressed as

X̂k
=

[(
a1 − X̂k−1)(a1 − X̂k−1)T

]−1

×
(
a1 − X̂k−1)(1tdk

1 vk
1 + aT

1 a1 −
(
dk

1

)2
− aT

1 X̂k−1
)
.

(30)

Clearly, the matrix (a1 − X̂k−1)(a1 − X̂k−1)T is singular,
indicating a lack of uniqueness in the solution for X̂k when
N = 1. The condition for ensuring the LSE has a unique
solution is N ≥ 2 for 2-D positioning and N ≥ 3 for 3-D
positioning.

Then, based on (29), the closed-form solution of LSE in the
NLOS scenario can be written and simplified as

X̂k
=

[(
A− X̂k−1 I1×N

)
lk(A− X̂k−1 I1×N

)T
]−1

×
(

A− X̂k−1 I1×N
)
lk(1t BT

k + Am − dk − AT X̂k−1).
(31)

F. Supplementing Strategy for Insufficient LOS
Measurements

In (31), the rank of the term needed to be inverted should
be greater than the dimension of position to make the LSE
has a unique solution, that is,

∥lk
∥2 ≥ Dp (32)

where Dp represents the dimension of position space, while
Dp = 2 indicates a 2-D position space and Dp = 3 represents
a 3-D position space. Equation (32) is also the condition for
making (19) to have a unique solution.

For the purpose of mitigating the limitations in LOS mea-
surements under dense NLOS environments, an insufficient
LOS measurement supplementing strategy can be employed.
This involves selecting a number of NLOS anchors with the
shorter range measurements and treating them as LOS anchors,
ensuring that condition (32) is upheld.

Based on the principles of indoor geometric acoustics theory
[36], it can be inferred that shorter NLOS propagation paths
result in signals that undergo fewer reflections, experience less
energy absorption, and are consequently more likely to exhibit
lower ranging errors. By designating these shorter NLOS prop-
agation paths as the LOS paths, the supplementing strategy for
insufficient LOS measurements could minimize the impact of
NLOS measurements on the accuracy of positioning results.
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Fig. 5. Localization process of range and relative velocity-based
localization.

G. Error Accumulation Analysis
Through (11) and (31), we can find that the estimation error

of Xk , denoted as ξ k , depends on ξ k−1, ϵk , and ηk . That is,

ξ k
= h

(
ξ k−1, ϵk, ηk). (33)

The range measurement error ϵk and relative velocity mea-
surement error ηk can enter the whole calculation cycle by
influencing the positioning error ξ k , as ξ k can directly influ-
ence ξ k+1 at time k+1. The positioning error will accumulate
rapidly over time, deteriorating the performance of the system.
This process could be illustrated by Fig. 5.

Unlike the conventional range-based localization, the intro-
duction of velocity measurements makes the positioning
process no longer uncorrelated to each other. Conversely, the
positions estimation of adjacent times is related to each other,
forming a “chain” as shown in Fig. 5. Estimating Xk depends
on the estimation of Xk−1. As a result, errors propagate and
accumulate rapidly along this “chain.” To improve the local-
ization performance of the range and relative velocity-based
localization method, it is crucial to find ways to break the
chain of error propagation. In this article, an MPJE method is
going to be proposed to solve this problem.

III. MULTIPOSITION JOINT ESTIMATION

Breaking the error propagation chain will split the localiza-
tion process into many small pieces, as shown in Fig. 5. These
small pieces are named as the “short-time position sequence”
in this article. If the positions in sequence {Xk−2, Xk−1, Xk

}

could be independently estimated, the influence of position
bias of Xk−3 on Xk−2 can be eliminated. Thus, an MPJE
method is proposed to mitigate the influence of ϵk and ηk

in (33) by jointly estimating the positions in each short-time
position sequence.

A. Algorithm Architecture
The proposed MPJE method for range and relative velocity-

based localization, which is named as MPJE, is a nonlinear
weighted least square problem with a length of short-time
position sequence Tk . The principle behind the proposed
method is shown in Fig. 6. The core idea of our method is
to cover insufficient LOS measurements for a single position
estimation by utilizing the LOS measurements redundancy
in the sequence since adjacent positions are connected by

Fig. 6. Principle of the proposed MPJE method.

velocity measurements. At the same time, considering the
position estimation of the sequence as an independent process
can break the error propagation chain prior to the sequence.

As depicted in Fig. 6, Xk represents the position to be
estimated at time k. The short-time position sequence, denoted
as {Xk−Tk+1, Xk−Tk+2, . . . , Xk−1, Xk

} is jointly estimated by
our proposed MPJE method. This sequence has a length of
Tk and it is worth mentioning that all positions from between
k − 1 to time k − Tk + 1 are recalculated and updated. Thus,
the sequence {Xk−Tk+1, Xk−Tk+2, . . . , Xk−1

} is referred to as
“updated positions sequence.” Notably, Xk−Tk+1 is the “start-
ing position” of the sequence, which is considered as unknown
and estimated along with the other locations. By releasing the
initial position of the velocity integral process, the propagation
chain of the relative velocity error can be broken. The influence
of ϵk and ηk can be greatly mitigated.

The short-time position sequence moves along with the
direction of increasing k. The dynamic sequence length Tk

is adjusted based on the LOS measurements redundancy
of the sequence. When the LOS measurements redundancy
of sequence is a surplus, Tk decreases, and when there is
insufficient redundancy, Tk increases. In this way, the indoor
localization problem in dense NLOS environments can be
tackled in the real world. It is found that only two LOS anchors
are required for accurate localization, although allowing for
one LOS anchor for a short period of time is acceptable.

To summarize, in our proposed MPJE method, the error
propagation chain is cut off by the short-time position
sequence estimation, and the insufficient LOS measurements
for accurate localization introduced by the dense NLOS envi-
ronments are supplemented by extending the length of the
short-time position sequence to increase the LOS measure-
ments redundancy.

B. Mathematical Model
The modeling of the joint estimation process for the

short-time sequence {Xk−Tk+1, Xk−Tk+2, . . . , Xk
} is an “exten-

sion” of LS method in (20), and the new nonlinear weighted
least square problem can be expressed as

X̂k−Tk+1, X̂k−Tk+2, . . . , X̂k

= arg min
Xk−Tk+1,...,Xk

1
2
(LW E)T (LW E) (34)

where

E =
[
ek−Tk+1

d , ek−Tk+2
d , ek−Tk+2

v , . . . , ek
d , ek

v

]T
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W = diag
{
w

k−Tk+1
d , w

k−Tk+2
d , wk−Tk+2

v , . . . ,wk
d , w

k
v

}
L = diag

{
lk−Tk+1

d , lk−Tk+2, lk−Tk+2, . . . , lk, lk
}

wk
d = diag

{
wk

d,1, w
k
d,2, . . . , w

k
d,N

}
wk

v = diag
{
wk

v,1, w
k
v,2, . . . , w

k
v,N

}
lk
= diag

{
lk
1 , lk

2 , . . . , lk
N

}
ek

d =
[
d̂k

1 − dk
1 , d̂k

2 − dk
2 , . . . , d̂k

N − dk
N

]
ek
v =

[
v̂k

1 − vk
1, v̂

k
2 − vk

2, . . . , v̂
k
N − vk

N

]
. (35)

In the equations, E represents the errors vector, W corresponds
to the weight matrix, and L denotes the LOS information
matrix. On the other hand, wk

d and wk
v refer to the range weight

matrix and relative velocity weight matrix, respectively. The
values of both matrices can be adjusted to modify the impact
of range and relative velocity measurements on localization
results.

For sequence {Xk−Tk+1, Xk−Tk+2, . . . , Xk
}, a total of Tk

positions need to be estimated. This implies the number of
unknown variables is DpTk , where Dp represents the spatial
dimension of positions. Similar to condition (32), the condition
of (34) having a unique solution is to make sure that the rank
of E ET is greater than DpTk . The difference is that the LOS
measurements redundancy Rk is introduced to quantify it as a
metric. Rk is given by

Rk = 2
Tk∑

t=1

∣∣lk−t+1∣∣− ∣∣lk−Tk+1∣∣− DpTk . (36)

For the LOS localization scenario with two anchors, that is
N = 2, the redundancy Rk = 2 while Tk = 2. The redundancy
of LOS measurements could greatly improve the localization
precision. Rk increases with Tk . In comparison to conventional
localization methods, the required number of LOS anchors has
been reduced from 3 to 2, resulting in a substantial reduction in
system deployment costs. In addition, (36) indicates that the
quantity of LOS anchors necessary for accurate localization
has been relaxed.

For example, in a dense NLOS environment, the number
of LOS anchors from time k − 3 to k is given by the
sequence {2, 1, 1, 2}. In this condition, the redundancy Rk = 2,
and we can still achieve accurate localization based on (34).
Therefore, in dense NLOS localization scenarios, it is pos-
sible to achieve accurate localization even when only one
LOS anchor is available at certain times using the proposed
method.

The problem in (34) is actually a high dimensional weighted
nonlinear least square problem. The commonly used lineariza-
tion method based on Taylor expansion generally exhibits poor
calculation accuracy. To enhance the calculation accuracy of
the solution, iterative optimization algorithms, such as the
fastest descent method, the Gauss–Newton method, and the
LM algorithm, are employed for rapid solution computation.
The LM algorithm, compared to the other two methods,
exhibits the characteristics of local convergence similar to
the Gauss–Newton method and global convergence similar to
the fastest descent method. It is an effective tool for solving
nonlinear least square [37]. Therefore, we utilize the LM

Fig. 7. Architecture of the proposed MPJE method.

algorithm as proposed in [38], to solve the high dimensional
weighted nonlinear least square problem presented in (34).

C. Algorithm
The architecture of the proposed MPJE method is designed

based on the principle shown in Fig. 6 and illustrated in Fig. 7.
The NLOS identification is performed based on the received
signals using the method proposed in [20]. Subsequently, the
LOS information matrix lk is constructed. The range and
relative velocity measurements D̂k and V̂ k are obtained by
using (22). The NLOS measurements in D̂k and V̂ k are
discarded by lk .

The starting position of the short-time position sequence,
Xk−Tk+1, is used for the MPJE by only considering the range
measurements D̂k−Tk+1 excluding the relative velocity mea-
surements V̂ k−Tk+1, in order to cut off the error propagation
chain from time k − Tk to time k − Tk + 1.

The MPJE is performed using a weighted nonlinear least
square method, which is efficiently calculated by the LM
algorithm, to estimate the positions in the short-time position
sequence simultaneously. The core of the LM algorithm is to
construct a Jacobian matrix and a Hessian matrix. However,
with the increase of the sequence length Tk , the dimensions
of the two kinds of matrices will increase rapidly, leading
to a sharp increase in memory consumption and calculation
complexity. As a result, this increase in dimensions sig-
nificantly raises power consumption and system application
costs. Therefore, selecting an appropriate sequence length is
recommended. In addition, the selection of the initial position
in the iterative searching process of the LM algorithm is crucial
for accelerating convergence and enhancing the accuracy of
the estimation results.
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The sequence length Tk is determined through a redundancy
check process. If there is an excess in the LOS measurements
redundancy Rk , the sequence should be reduced by Tk − 1.
Conversely, the sequence should be extended by Tk + 1.
To regulate this process, a threshold Rthd is introduced, and
the process is given as{

if Rk > Rthd, Tk −−

if Rk < Rthd, Tk ++.
(37)

This method allows for reducing excess LOS measurements by
shrinking the sequence length Tk , consequently decreasing the
computational cost. On the other hand, extending Tk supple-
ments insufficient LOS measurements, enhancing the accuracy
of position estimation. Typically, a value of Rthd = 4 or 6 is
empirically set to balance calculation cost and localization
precision.

To improve the mean localization precision, it is important
to limit the number of LOS anchors at time k to Dp+1, that is,
|lk
| ≤ Dp+1. According to the condition in (32), the minimum

number of LOS anchors required for a unique solution has
been reduced to Dp. From the results of experiments, we found
it out that the increase of |lk

| does not lead to significant
performance improvement, but it does increase the calculation
cost of LM when |lk

| ≤ Dp + 1. In addition, limiting the
value of |lk

| also serves to protect the estimation performance
of the sequence, thereby giving more attention to measurement
points with fewer NLOS measurements.

The LM algorithm is an iterative searching process where
the initial searching positions X init play a critical role in accel-
erating convergence and improving the accuracy of estimation
results. The initial search position is determined based on the
historical estimation results {X̂k−t+1

; t = 1, 2, . . . , Tk}, and is
uploaded as X init = {X̂k−Tk+1, . . . , X̂k−1, X̆k

}. The prediction
of Xk , denoted as X̆k , is obtained through a linear prediction
process

X̆k
= 2X̂k−1

− X̂k−2. (38)

The outputs of the LM algorithm are the estimation results
of the short-time position sequence at time k, denoted as
{X̂k−t+1

k ; t = 1, 2, . . . , Tk}. The final estimation results of our
proposed MPJE method are obtained by an updating process
to further improve the estimation precision, which is shown
as follows:

X̂k
← X̂k

k,

X̂k−t+1
←

X̂k−t+1
+ X̂k−t+1

k

2
, t = 2, . . . , Tk . (39)

At last, the detailed calculation process of our proposed
MPJE method is shown in Algorithm 1.

IV. NUMERICAL SIMULATIONS

The simulations have been realized using MATLAB and
run on a computer with a 3.2 GHz 4-core processor and
16 G RAM. It is noteworthy that the memory required
for simulations is less than 3 MB, making it compatible
with any commercial personal computer. A basic NLOS
localization scenario is constructed for numerical simula-
tions to evaluate the performance of our proposed LSE

Algorithm 1 MPJE Algorithm
Input: Rthd , Tmin , Tmax , 1t , D̂k−Tmax+1, . . . , D̂k ,

V̂ k−Tmax+1, . . . , V̂ k , lk−Tmax+1, . . . , lk ;
Output: X̂k, X̂k−1, . . . , X̂k−Tk+1;

1: Set Tk ← Tm in;
2: Upload L, W and E;
3: Rk ← 2

∑Tk
t=1

∣∣lk−t+1∣∣− ∣∣lk−Tk+1∣∣− DpTk ;
4: repeat
5: Find the index i of the largest d̂k

i in D̂k
⊙
(
1− lk),

where ⊙ is the operator of Hadamard product;
6: lk

i ← 0;
7: until

∣∣lk
∣∣ ≤ Dp + 1

8: if Rk > Rthd then
9: Tk ← max{Tmin, Tk − 1};

10: end if
11: repeat
12: Tk ← min{Tmax , Tk + 1};
13: Rk ← 2

∑Tk
t=1

∣∣lk−t+1∣∣− ∣∣lk−Tk+1∣∣− DpTk ;
14: until Rk ≥ Rthd or Tk = Tmax

15: if k ≤ Tk then
16: X ini t ← random values;
17: else
18: X ini t ←

{
X̂k−Tk+1, . . . , X̂k−1, X̆k

}
;

19: end if
20: Solve (34) based on LM algorithm and obtain{

X̂k−t+1
k ; t = 1, 2, . . . , Tk

}
;

21: Updating the estimation of each positions based on (39);
22: return X̂k, X̂k−1, . . . , X̂k−Tk+1

and MPJE methods, as shown in Fig. 8. The size of the
room is 40 × 30 m. A target follows a predetermined
trajectory moving around a blocker from (28, 17)T (m) to
(28, 10)T (m), (22, 5)T (m), (14, 5)T (m), (14, 20)T (m), and
(28, 21)T (m) with a speed 1 m/s, and the position update
frequency is 1 Hz. Four anchors and three blockers are
deployed in the scenario to imitate a dense NLOS localization
environment. The coordinates of the anchors, in order, are
{(2, 2)T , (38, 2)T , (38, 28)T , (2, 28)T

} (m).
The number of LOS anchors varies with the target position.

In Fig. 8, the positions that can receive signals from three LOS
anchors are represented by the symbol ⋄, positions with two
LOS anchors are marked with the symbol ◦, and positions
with one LOS anchor are marked with the symbol ∗.

In addition, the target’s motion trajectory encompasses
rectilinear, curvilinear, and quarter-turning motions, thereby
simulating realistic target maneuvers. Subsequently, the per-
formance of LSE and MPJE is evaluated based on range and
relative velocity in the LOS and NLOS scenarios, respec-
tively. Selection of Tk and Rthd is investigated with respect
to algorithm time cost and localization precision analysis.
Finally, the influence of measurement noise on the localization
performance is investigated and analyzed.

As a comparison, the PF method and Rauch–Tung–Striebel
(RTS) smoothing method [39] are introduced to demonstrate
the performance of our proposed MPJE method. The RTS
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Fig. 8. Basic NLOS localization scenario.

smoother is used to improve the LSE results, named as
LSE-RTS.

A. Performance Evaluation in LOS Environments
Based on the scenario illustrated in Fig. 8, we have inves-

tigated and analyzed the performance of several methods:
range measurements based MLE (denoted as MLE-R for
short), range and relative velocity measurements based LSE,
closed-form LSE, LSE-RTS, PF, and MPJE. This analysis is
conducted in the LOS scenario by removing the blockers.

To emphasize the performance differences between the
methods, we simulated a low anchor density using only two
anchors. The standard deviations of range and relative velocity
measurements are σd,i,k = 0.5 and σv,i,k = 0.3, respectively,
where i = 1, 2. These values indicate that there is an 85%
probability of the measurement errors being within ±0.72 m
and ±0.43 m/s. Such noise pollution is significant for a
velocity v = 1 m/s.

In addition, it is worth noting that there is no such unique
solution for the MLE-R method when only two anchors are
deployed. Artificial selection is required to ensure the selection
of a feasible solution. In practical applications, this problem
can be solved by restricting the search area for feasible
solutions. Thus, for MLE based on range measurements, the
search range of xk is confined to the interval [0, 40] (m), while
yk is limited to [0, 30] (m). The sequence length and LOS
measurements redundancy threshold in the MPJE method is
set as Tk = 4 and Rthd = 6, respectively, with the weight
matrix being set as wk

d = wk
v . The localization results are

presented in Fig. 9.
Compared to other methods, the LSE closed-form method

based on range and relative velocity measurements performs
the worst. The accumulation of measurement errors can
be clearly observed in Fig. 9(a). This phenomenon is not
observed in the LSE method, as shown in Fig. 9(b), because
the numerical search method in the solution space could
greatly improve the positioning precision when there are

Fig. 9. LOS localization results based on different methods. (a) Closed-
form LSE. (b) LSE. (c) LSE-RTS. (d) MPJE.

Fig. 10. CDF of the localization errors in the LOS scenario with σd,i,k =
0.5, σv,i,k = 0.3, and two anchors.

sufficient LOS measurements. And the performance of LSE
can be further improved by using the RTS smoother. The
performance of LSE-RTS is higher than that of MPJE in this
condition.

By repeating the simulation 1000 times, the cumulative dis-
tribution function (cdf) of the localization errors is investigated
and plotted in Fig. 10. Since the localization precision of the
LSE closed-form method is low, the following simulations
focus on the performance of the MLE-R, LSE, LSE-RTS, PF,
and MPJE methods. In the LOS localization scenario with
σd,i,k = 0.5, σv,i,k = 0.3, and two anchors, MPJE, LSE, and
LSE-RTS are much better than MLE-R and PF methods, where
the performance of LSE-RTS is higher.

B. Performance Evaluation in NLOS Environments
Unlike the LOS scenarios, there are many positions in the

NLOS scenario where there is only one LOS anchor, as shown
in Fig. 8. In this case, for the LSE method, the condition (32)
cannot be satisfied. Therefore, the supplementing strategy for
insufficient LOS measurements, that is selecting some NLOS
anchors with the shorter range measurements and treating them
as LOS anchors, is utilized to guarantee the condition (32).
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Fig. 11. NLOS localization results based on different methods.
(a) MLE-R. (b) LSE. (c) LSE-RTS. (d) PF. (e) MPJE.

The standard deviation of range and relative velocity mea-
surements are set as σd,i,k = 0.3 and σv,i,k = 0.2, respectively,
where i = 1, . . . , 4. For the MLE-R and LSE method, the
limited searching area is defined as xk

∈ [0, 40] (m) and
yk
∈ [0, 30] (m). The sequence length and LOS measurements

redundancy threshold of the MPJE method is set as Tk = 4 and
Rthd = 6, while the weight matrix is set as wk

d = wk
v = 1. The

localization results are shown in Fig. 11.
For the MLE-R method, the introduction of the NLOS

measurements severely impairs the localization precision at
the positions with only one LOS anchor. Many positions fail
to be localized, as shown in Fig. 11(a). This also demonstrates
that the NLOS phenomenon poses a significant challenge to
conventional range-based localization methods.

The impact of NLOS range measurements could be sig-
nificantly mitigated by incorporating the relative velocity
measurements. In Fig. 11(b)–(e), the localization performance
at positions with insufficient LOS measurements is signif-
icantly improved by using LSE, LSE-RTS, PF, and MPJE
method. Particularly, the MPJE method demonstrates outstand-
ing performance in such NLOS localization scenarios.

By repeatedly performing the simulation 1000 times, the
performance of these five methods is investigated, and the
cdf of localization errors is drawn in Fig. 12. The confidence
probabilities of localization error being less than 0.6 m for
the MLE-R, LSE, LSE-RTS, PF, and MPJE methods are 60%,
80%, 76%, 66%, and 90%, respectively, where MPJE performs
the best.

Fig. 12. CDF of the localization errors in the NLOS scenario with σd,i,k =
0.3, σv,i,k = 0.2, and four anchors.

Fig. 13. Influence of Tk on the algorithm time cost and localization error.

Fig. 14. Influence of Rthd on the algorithm time cost and localization
error.

C. Choice of Tk and Rthd

The choice of the sequence length Tk and the LOS
measurements redundancy threshold Rk directly impacts the
localization performance and the computation time cost. In the
given scenario, keeping the noise level of measurements and
algorithm parameters constant, the values of Tk and Rthd are
set within the interval [2, 20]. The experiment is repeated
1000 times to investigate how the mean localization error and
algorithmic time cost vary with Tk and Rthd. The results are
shown in Figs. 13 and 14, respectively.

The investigated results demonstrate that the localization
precision improves with the increase of Tk and Rthd, while the
algorithm time cost also increases. However, an excessively
large Tk or Rthd will make it disadvantageous to utilize the
proposed MPJE algorithm on consumer smart devices with
limited computing power. Since the sequence length Tk is
dynamically determined by the Rthd, we can set Rthd ∈ [4, 12]
based on the results shown in Fig. 14. The mean time cost of
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Fig. 15. CDF of the localization errors in the LOS scenario with two
anchors.

Fig. 16. CDF of the localization errors in the LOS scenario with three
anchors.

MPJE at Rthd = 4 is 0.67 ms, while at Rthd = 12 is 1.16 ms.
In comparison, the mean time costs of MLE-R and LSE are
3.12 and 6.15 ms, respectively, due to the high computation
complexity of the numerical searching process.

D. Influence of Noise and Weight Matrix
In this section, the performance of MLE-R, LSE, LSE-

RTS, PF, and MPJE is evaluated by adding different noise
intensities to the measurements. The sequence length and LOS
measurements redundancy threshold of the MPJE method is
set as Tk = 4 and Rthd = 6, while the weight matrix is set as
wk

d = wk
v = 1.

In the LOS scenario, the simulations are performed
under two anchors and three anchors. Because both
simulations satisfy the conditions with sufficient LOS
measurements, we directly present the mean localization
errors of the five localization methods with σd,i,k =

{0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and σv,i,k = {0.05, 0.1, 0.15,

0.2, 0.25, 0.3}. The simulations are repeated 1000 times and
the results are shown in Figs. 15 and 16.

As the increase of the density of LOS anchors, the perfor-
mance of the five localization methods is all improved. The
performance of the MPJE method is slightly superior to that
of the LSE method. After applying RTS smoothing to the
results of LSE, the LSE-RTS method demonstrates the best
positioning performance in the LOS localization scenarios.

In the NLOS scenario, the overall performance of the
five methods is evaluated by iterating the noise stan-
dard deviation of distance and velocity measurements in
σd,i,k = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and σv,i,k = {0.05, 0.1,

0.15, 0.2, 0.25, 0.3}. By repeating the experiment 1000 times,

Fig. 17. CDF of the localization errors in the NLOS simulation scenario.

Fig. 18. CDF of the localization errors in the NLOS scenario with σd,i,k =
0.05 and σv,i,k = 0.3.

Fig. 19. CDF of the localization errors in the NLOS scenario with σd,i,k =
0.2 and σv,i,k = 0.3.

the evaluation results are shown in Fig. 17. It is found that the
proposed MPJE method based on range and relative velocity
measurements outperforms other methods comprehensively.

The weight matrix is another crucial factor that influ-
ences the performance of the range and relative velocity
measurements-based MPJE method. As shown in Figs. 18 and
19, the performance of MPJE has been greatly improved by
modifying the weight matrix based on the prior knowledge of
the noise standard deviation.

The noteworthy point is that the overall performance of the
MLE-R method in Fig. 18 is poor. The confidence probability
of localization error being less than 0.2 m is 72%. After
surpassing this critical value, the positioning error of the
MLE-R method rises steeply, indicating a general lack of
system stability. The introduced NLOS measurements, which
are used for insufficient LOS measurement information sup-
plement, severely limit the performance of the range-based
MLE-R method.
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Fig. 20. Experimental scenarios. (a) Experimental scenario A.
(b) Experimental scenario B. (c) Target and anchor.

As the noise pollution level of range measurements
increases, the performance of range and relative velocity-based
LSE and MPJE methods gradually outperforms the conven-
tional MLE-R method. An extremely accurate range is very
difficult to realize in the real world, especially in dense
NLOS environments. Consequently, the range and relative
velocity-based LSE and MPJE methods are more suitable
for practical applications. Furthermore, the MPJE method
consistently outperforms the LSE, LSE-RTS, and PF methods
regardless of the level of noise pollution in measurements.

V. EXPERIMENTS AND RESULTS

Experiments were conducted separately in Xiuyuan teach-
ing building (scenario A) and the main teaching building
(scenario B) at Chang’an University to test the performance
of the proposed methods in a real-world setting. The size
of scenario A is 24 × 16 (m), and the experimental space
is partitioned into a lobby and corridor environment with
bearing columns, walls, and stairs. The size of scenario B
is 19.5 × 11 (m). By utilizing the four bearing columns,
an NLOS localization environment can be constructed in the
real world. The scenarios and devices used in this experiment
are shown in Fig. 20.

The target and anchors are specially designed low-cost
modules with acoustic broadcasting and sampling functions,
respectively. To simplify the experiment, we use the broad-
caster device as a target, and the receiver as an anchor.
The audio components of the devices consist of STM32F107
and WM8978 chips, which are both inexpensive and easily
accessible. The total cost of these components is less than
$5. In order to achieve one-way ranging, the local time of
the target and anchor is synchronized using a LoRa module,
which provides high time synchronization precision for the
low propagation speed of acoustic signals.

For the measuring signal, the parameters of HFM1 are
{ fl , fh, T } = {19.5 kHz, 21.5 kHz, 0.05 s}. Correspondingly,
the parameters of HFM2 are {18.5 kHz, 16.5 kHz, 0.05 s}.
The spectrogram of the received acoustic signal is shown in
Fig. 21. The background noise in scenario A is 59 dB, while

Fig. 21. Spectrogram of the measuring signal.

the background noise in scenario B is 55 dB. The target is
carried by an actor who walks at a normal speed along the
predefined reference paths shown in Fig. 20.

The sampling frequency of the devices is 48 kHz. The
update frequency of the acoustic localization system is 1 Hz.
Since the ground-truth coordinates cannot be recorded directly,
we calculate the minimum distance between the estimated
positions and the predefined reference path as the localization
errors [4].

A. Experiments and Results in Scenario A
Experimental scenario A represents a common hybrid envi-

ronment, incorporating elements from both a hall and a
corridor. Upon analysis of the scenario in Fig. 22, it is evident
that only one LOS anchor is located at a considerable distance
below and to the left of the predefined reference path, posing
a substantial challenge for all positioning algorithms. The
target is affixed to a cart, operated by an actor. During the
experiments, the actor pushing the cart will carefully monitor
the geometric relations between his body and the anchor’s
position to minimize the impact of body occlusion on the
experiment.

Three anchors (receivers) are securely fastened to
tripods with a height of 1.6 m. The anchors’ coor-
dinates are (21.29, 12.87)T (m), (21.16, 0.16)T (m), and
(4.98, 12.8)T (m), respectively. Throughout the experiments,
the target is fixed on a cart, which an actor propels along
a predefined reference path to ensure the smoothness of
the target’s motion. The predefined reference path follows a
closed-loop rectangular trajectory, originating at coordinates
(19.85, 10.15)T (m) and traversing points (6.21, 10.15)T (m),
(6.21, 1.1)T (m), and (19.85, 1.1)T (m).

For the MLE-R and LSE method, the limited searching area
is defined as xk

∈ [−3, 24] (m) and yk
∈ [0, 16] (m). The

sequence length and LOS measurements redundancy threshold
of the MPJE method are set as Tk = 4 and Rthd = 6, while
the weight matrix is set as wk

d = wk
v = 1. Subsequently,

the localization results are depicted in Fig. 22, while Fig. 23
illustrates the cdf of the localization errors.

From the localization results presented in the figures, it is
evident that methods based on range and relative veloc-
ity measurements outperform the conventional range-based
localization method. Specifically, for the LSE and PF meth-
ods, when the number of LOS anchors is 1, the NLOS
measurements introduced by the supplemental strategy cause
considerable localization errors and lead to unstable perfor-
mance. By incorporating RTS smoothing, the performance
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Fig. 22. Localization results in scenario A. (a) MLE-R. (b) LSE. (c) LSE-
RTS. (d) PF. (e) MPJE.

Fig. 23. CDF of the localization errors in scenario A.

of LSE shows some improvement. The MPJE method
demonstrates remarkable performance in this experimental set-
ting, showcasing superior accuracy and stability in positioning.

B. Experiments and Results in Scenario B
Following the same setup as in experimental scenario A, the

height of the three anchors (receivers) is 1.6 m. They are posi-
tioned on the opposite side of the bearing columns to create the
NLOS localization environment. The anchors’ coordinates are
(19.3, 0.2)T (m), (14.77, 9.35)T (m), and (3.94, 9.35)T (m),

Fig. 24. Localization results in scenario B. (a) MLE-R. (b) LSE.
(c) LSE-RTS. (d) PF. (e) MPJE.

Fig. 25. CDF of the localization errors in scenario B.

respectively. The actor elevates the target to reduce movement
relative to the body and proceeds at a steady pace along the
predefined reference path, which traces a closed-loop rectangu-
lar trajectory. The trajectory starts at coordinates (2, 1.1)T (m)

and passes through points (18.1, 1.1)T (m), (18.1, 4.3)T (m),
and (2, 4.3)T (m).

For the MLE-R and LSE methods, the limited searching
area is defined as xk

∈ [0, 20] (m) and yk
∈ [0, 15] (m). The

sequence length and LOS measurements redundancy threshold
of the MPJE method are set as Tk = 4 and Rthd = 6, while the
weight matrix is set as wk

d = wk
v = 1. Then, the localization
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results are shown in Fig. 24. And the cdf of the localization
errors illustrated in Fig. 25.

Clearly, the two experiments can produce similar con-
clusions, highlighting the superior positioning accuracy and
stability demonstrated by the MPJE method. Comparing
Figs. 23 and 25 reveals the differing positioning accuracy
of systems utilizing the MPJE algorithm in various scenar-
ios, showing influence from the localization environment and
anchor deployment geometries.

VI. CONCLUSION

In this article, we have focused on addressing the
acoustic indoor localization problem in dense NLOS envi-
ronments and have proposed a range and relative velocity
measurements-based localization method, without the need for
additional sensors. To achieve precise localization in dense
NLOS environments, an MPJE method is proposed by jointly
estimating the multiple positions in a short-time position
sequence, and solved by the LM algorithm.

Through the investigations by performing the numerical
simulations and experiments in the real world, we can con-
clude that 1) using range and relative velocity measurements
to realize acoustic indoor localization is an efficient way to
address the localization problem in dense NLOS enviornments;
2) the proposed range and relative velocity-based LSE method
could realize accurate NLOS localization and reduce the
number of required LOS anchors from 3 to 2 for 2-D posi-
tioning; 3) the proposed MPJE method is an efficient NLOS
localization method, and requires only two LOS anchors and
permits the use of only one LOS anchor for a short period; and
4) the proposed acoustic indoor localization methods are not
only suitable for dense NLOS localization scenarios but also
capable of achieving accurate localization under low anchor
deployment density conditions.

The main advantages of the proposed MPJE method are:
1) utilizing only LOS measurements for position estimation;
in case of insufficient LOS measurements, extending the
sequence length to obtain enough LOS measurement infor-
mation from historical data effectively prevents the impact of
NLOS measurements on the localization results; 2) requiring
only two LOS anchors for precise positioning and permit-
ting just one LOS anchor temporarily; and 3) when LOS
measurements are abundant, both the precision of position
estimation and the computational complexity outperform the
numerical search-based LSE method. The primary limitation
of this method arises when the sequence length becomes
excessive, leading to a high-dimensional Jacobian matrix and
Hessian matrix during the calculation in the LM algorithm,
thus requiring significant memory consumption and calcula-
tion complexity. Therefore, in future work, the focus will be on
optimizing the computational complexity to enable real-time
application on COTS devices with limited computational
capabilities.

REFERENCES

[1] K. Han, B. Liu, and Z. Deng, “A tightly coupled positioning method of
ranging signal and IMU based on NLOS recognition,” in Proc. IEEE
12th Int. Conf. Indoor Positioning Indoor Navigat. (IPIN), Sep. 2022,
pp. 1–8.

[2] B. Yang, E. Yang, L. Yu, and A. Loeliger, “High-precision UWB-based
localisation for UAV in extremely confined environments,” IEEE Sensors
J., vol. 22, no. 1, pp. 1020–1029, Jan. 2022.

[3] X. Kong, C. Wu, Y. You, and Y. Yuan, “Hybrid indoor positioning
method of BLE and PDR based on adaptive feedback EKF with low BLE
deployment density,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–12,
2023.

[4] R. Chen et al., “Precise indoor positioning based on acoustic ranging in
smartphone,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2021.

[5] H. Wang, C. Xue, Z. Wang, L. Zhang, X. Luo, and X. Wang,
“Smartphone-based pedestrian NLOS positioning based on acoustics
and IMU parameter estimation,” IEEE Sensors J., vol. 22, no. 23,
pp. 23095–23108, Dec. 2022.

[6] S. Cao, X. Chen, X. Zhang, and X. Chen, “Improving the tracking
accuracy of TDMA-based acoustic indoor positioning systems using
a novel error correction method,” IEEE Sensors J., vol. 22, no. 6,
pp. 5427–5436, Mar. 2022.

[7] X. Wang, C. Zhang, F. Liu, Y. Dong, and X. Xu, “Exponentially
weighted particle filter for simultaneous localization and mapping based
on magnetic field measurements,” IEEE Trans. Instrum. Meas., vol. 66,
no. 7, pp. 1658–1667, Jul. 2017.

[8] L. Zhang, D. Huang, X. Wang, C. Schindelhauer, and Z. Wang,
“Acoustic NLOS identification using acoustic channel characteristics
for smartphone indoor localization,” Sensors, vol. 17, no. 4, p. 727,
Mar. 2017.

[9] P. S. Farahsari, A. Farahzadi, J. Rezazadeh, and A. Bagheri, “A survey
on indoor positioning systems for IoT-based applications,” IEEE Internet
Things J., vol. 9, no. 10, pp. 7680–7699, May 2022.

[10] A. Ens et al., “Acoustic self-calibrating system for indoor smartphone
tracking,” Int. J. Navigat. Observ., vol. 2015, pp. 1–15, Feb. 2015.

[11] L. Zhang, M. Chen, X. Wang, and Z. Wang, “TOA estimation of chirp
signal in dense multipath environment for low-cost acoustic ranging,”
IEEE Trans. Instrum. Meas., vol. 68, no. 2, pp. 355–367, Feb. 2019.

[12] K. Liu, X. Liu, and X. Li, “Guoguo: Enabling fine-grained smartphone
localization via acoustic anchors,” IEEE Trans. Mobile Comput., vol. 15,
no. 5, pp. 1144–1156, May 2016.

[13] S. I. Lopes, J. M. Vieira, J. Reis, D. Albuquerque, and N. B. Carvalho,
“Accurate smartphone indoor positioning using a WSN infrastructure
and non-invasive audio for TDoA estimation,” Pervasive Mobile Com-
put., vol. 20, pp. 29–46, Jul. 2015.

[14] Microsoft. Microsoft Indoor Localization and Competition IPSN
2018. Accessed: Jan. 2, 2024. [Online]. Available: https://www.
microsoft.com/en-us/research/event/microsoft-indoor-localization-
competition-ipsn-2018

[15] F. Wang, H. Tang, and J. Chen, “Survey on NLOS identification and
error mitigation for UWB indoor positioning,” Electronics, vol. 12, no. 7,
p. 1678, Apr. 2023.

[16] Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, “A novel robust
student’s t-based Kalman filter,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 53, no. 1, pp. 1545–1554, Feb. 2017.

[17] Y. Huang, Y. Zhang, Y. Zhao, and J. A. Chambers, “A novel robust
Gaussian-student’s T mixture distribution based Kalman filter,” IEEE
Trans. Signal Process., vol. 67, no. 13, pp. 3606–3620, Jul. 2019.

[18] Y. Huang, Y. Zhang, Y. Zhao, P. Shi, and J. A. Chambers, “A novel
outlier-robust Kalman filtering framework based on statistical similarity
measure,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2677–2692,
Jun. 2021.

[19] I. Guvenc and C.-C. Chong, “A survey on TOA based wireless localiza-
tion and NLOS mitigation techniques,” IEEE Commun. Surveys Tuts.,
vol. 11, no. 3, pp. 107–124, 3rd Quart., 2009.

[20] B. Qu, L. Zhang, T. Zhang, X. Feng, X. Wang, and W. He, “OODT:
LOS signal identification for acoustic indoor localization from stream
perspective,” IEEE Sensors J., vol. 23, no. 20, pp. 24729–24743, Oct.
2023.

[21] K. Wang, Z.-H. Dong, and S.-L. Wu, “Research on FOA and TOA
estimation algorithm of Galileo SAR signal,” in Proc. 2nd Int. Conf.
Inf. Eng. Comput. Sci., Wuhan, China, Dec. 2010, pp. 1–5.

[22] V. B. Nicolau, M. Coulon, Y. Grégoire, T. Calmettes, and J. -
Y. Tourneret, “Performance of TOA and FOA-based localization for
Cospas-Sarsat search and rescue signals,” in Proc. 5th IEEE Int. Work-
shop Comput. Adv. Multi-Sensor Adapt. Process. (CAMSAP), St. Martin,
France, 2013, pp. 312–315.

[23] L. A. Romero and J. Mason, “Geolocation using TOA, FOA, and altitude
information at singular geometries,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 51, no. 2, pp. 1069–1078, Apr. 2015.



ZHANG et al.: ACOUSTIC INDOOR LOCALIZATION BASED ON RANGE AND RELATIVE VELOCITY 19481

[24] Y. Wang and Y. Wu, “An improved direct position determination
algorithm with combined time delay and Doppler,” J. Xi’an Jiaotong
Univ., vol. 49, no. 4, pp. 123–129, 2015.

[25] Z. Xu, C. J. Baker, and S. Pooni, “Range and Doppler cell migration in
wideband automotive radar,” IEEE Trans. Veh. Technol., vol. 68, no. 6,
pp. 5527–5536, Jun. 2019.

[26] T. Jia, K. C. Ho, H. Wang, and X. Shen, “Effect of sensor motion on
time delay and Doppler shift localization: Analysis and solution,” IEEE
Trans. Signal Process., vol. 67, no. 22, pp. 5881–5895, Nov. 2019.

[27] T. Jia, K. C. Ho, H. Wang, and X. Shen, “Localization of a moving
object with sensors in motion by time delays and Doppler shifts,” IEEE
Trans. Signal Process., vol. 68, pp. 5824–5841, 2020.

[28] A. J. Weiss, “Direct geolocation of wideband emitters based on delay and
Doppler,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2513–2521,
Jun. 2011.

[29] X. Chen, D. Wang, R.-R. Liu, J.-X. Yin, and Y. Wu, “Structural total
least squares algorithm for locating multiple disjoint sources based on
AOA/TOA/FOA in the presence of system error,” Frontiers Inf. Technol.
Electron. Eng., vol. 19, no. 7, pp. 917–936, Sep. 2018.

[30] R.-R. Liu, Y.-L. Wang, J.-X. Yin, D. Wang, and Y. Wu, “Passive
source localization using importance sampling based on TOA and FOA
measurements,” Frontiers Inf. Technol. Electron. Eng., vol. 18, no. 8,
pp. 1167–1179, Aug. 2017.

[31] C. Jia, J. Yin, Z. Yang, and L. Zhang, “Position and velocity estimation
using TOA and FOA based on Lagrange programming neural network,”
J. Phys., Conf. Ser., vol. 1284, no. 1, Aug. 2019, Art. no. 012064.

[32] J. Shi, G. Wang, and L. Jin, “Moving source localization using TOA and
FOA measurements with imperfect synchronization,” Signal Process.,
vol. 186, Sep. 2021, Art. no. 108113.

[33] R. Ramlall, J. Chen, and A. L. Swindlehurst, “Non-line-of-sight mobile
station positioning algorithm using TOA, AOA, and Doppler-shift,” in
Proc. Ubiquitous Positioning Indoor Navigat. Location Based Service
(UPINLBS), 2014, pp. 180–184.

[34] L. Zhang, W. Liu, J. Zhou, and X. Bai, “TOA and FOA based
acoustic indoor localization in NLOS environment,” in Proc. IEEE Int.
Conf. Signal Process., Commun. Comput. (ICSPCC), Zhengzhou, China,
Nov. 2023.

[35] Z. Gu and S. Fang, “Joint range-Doppler estimation based on multipulse
processing of composite hyperbolic frequency modulated waveforms,”
IEEE Signal Process. Lett., vol. 29, pp. 558–562, 2022.

[36] H. Kuttruff, Room Acoustic, 4th ed. London, U.K.: Spon Press, 2006,
pp. 89–114.

[37] H. P. Gavin, “The Levenberg–Marquardt algorithm for nonlinear least
squares curve-fitting problems,” Dept. Civil Environ. Eng., Duke Univ.,
Durham, NC, USA, Tech. Rep., 2019, vol. 19. [Online]. Available:
https://people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf

[38] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for Non-linear
Least Squares Problems. Accessed: Jan. 2, 2024. [Online]. Available:
http://www2.imm.dtu.dk/pubdb/edoc/imm3215.pdf

[39] M. Sun, Y. Gao, Z. Jiao, Y. Xu, Y. Zhuang, and P. Qian, “R-T-S assisted
Kalman filtering for robot localization using UWB measurement,” in
Proc. Mobile Netw. Appl., Apr. 2022, pp. 1–10.

Lei Zhang received the B.Eng. and M.Sc.
degrees in mechanical engineering from
Chang’an University, Xi’an, China, in 2007 and
2013, respectively, and the Ph.D. degree in
control science and engineering from Zhejiang
University, Hangzhou, China, in 2019.

Presently, he serves as a Lecturer with the
School of Construction Machinery, Chang’an
University. His research interests encompass
machine learning, acoustic signal processing,
time–frequency analysis, indoor positioning,
and tracking.

Hucheng Wang (Member, IEEE) received the
B.Eng. degree in information and communica-
tion technology in 2015, and the joint Ph.D.
degree in cyberspace security from the Guilin
University of Electronic Technology, Guilin,
China, and Zhejiang University, Hangzhou,
China, in 2023.

He is currently a Postdoctoral Researcher
with the School of Computer Science and
Technology, Yangtze Delta Region Academy,
Beijing Institute of Technology, Jiaxing, China.

His research interests include indoor localization, acoustic signal pro-
cessing, data fusion, NLoS recognition, and federal learning.

Dr. Wang is a Young Professional.

Wei He received the B.E. degree in biomedi-
cal engineering from Tianjin University, Tianjin,
China, in 2002, the M.E. degree in biomedical
engineering from the University of Science and
Technology of China, Hefei, China, in 2005, and
the Ph.D. degree in communication and infor-
mation system from the University of Chinese
Academy of Sciences, Beijing, China, in 2013.

He is now a Research Fellow with the
Shanghai Institute of Microsystem and Informa-
tion Technology, Chinese Academy of Sciences,

Beijing. His research interests include wireless sensor networks, deep
learning, target detection, and localization.

Xinheng Wang (Senior Member, IEEE) rec-
eived the B.E. and M.Sc. degrees in electri-
cal engineering from Xi’an Jiaotong University,
Xi’an, China, in 1991 and 1994, respectively, and
the Ph.D. degree in electrical engineering from
Brunel University, Uxbridge, U.K., in 2001.

He is currently a Professor with the School
of Advanced Technology and was the Found-
ing Head of the Department of Mechatronics
and Robotics, Xi’an Jiaotong-Liverpool Univer-
sity (XJTLU), Suzhou, China. Prior to joining

XJTLU, he was a professor with different universities in the U.K.
He has been an Investigator or Co-Investigator of nearly 30 research
projects sponsored by EU, U.K. EPSRC, Innovate U.K., China NSFC,
and industry. He has authored or coauthored more than 220 refereed
articles. He holds 15 granted patents, including one U.S., Japanese,
four South Korean, and nine Chinese patents. He was one of the key
developers of the world’s first smart trolley to provide intelligent services
to passengers at airports. His current research interests include intel-
ligent and connected systems, including robotics and healthcare, and
indoor localization and navigation for robots and human beings. He is
also interested in the digitalization of traditional Chinese medicine and
posture detection by acoustic analysis on smartphones.


