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Assessment of Sensor Optimization Methods
Toward State Estimation in a High-Dimensional

System Using Kalman Filter
Takayuki Nagata , Yasuo Sasaki, Keigo Yamada , Masahito Watanabe ,

Daisuke Tsubakino, and Taku Nonomura

Abstract—The characteristics of the sensor selection
method based on various algorithms for state estimation in a
high-dimensional system using the Kalman filter were inves-
tigated. Sensors were selected based on the error covariance
matrix of the Kalman filter. The performance of the sensor
selection methods based on different algorithms, semidef-
inite programming (SDP), approximate convex relaxation,
and greedy algorithm, including newly formulated methods,
were compared by varying the number of potential sensor
locations and the number of sensors to be selected under
several noise ratio conditions. Two sensor selection methods
for state estimation in a high-dimensional system using a
Kalman filter were newly proposed based on the SDP with
gain formulation and approximate convex relaxation, and
the characteristics of the method including the previously
proposed method were compared in a high-dimensional sys-
tem. Although the condition was limited at n < O(103), the
approximate convex relaxation method and its randomized
method are effective in terms of computational time and objective value for a small-scale problem. The objective value
obtained by the greedy method shows the best performance compared to the other methods in almost all investigated
conditions. Particularly, the greedy method outperforms other methods when the number of selected sensors is small.
In addition, only the greedy method can handle the large-scale problem of n > O(104). Overall, the greedy-based method
is found to be favorable in large-scale problems in terms of computation time and the performance of the obtained sensor
set.

Index Terms— Kalman filter, optimal design of experiment, sensor selection.

I. INTRODUCTION

MEASUREMENTS of physical phenomena are an impor-
tant topic in various fields. This may involve surface
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or volume measurements, and in most cases, such measure-
ments are performed by discretely installed point sensors. This
kind of situation can be seen in various types of measure-
ments, such as global positioning system [1], [2], acoustic
measurements [3], [4], infrastructure health monitoring [5],
[6], [7], [8], environment monitoring [9], [10], brain source
localization [11], and seismic wave reconstruction [12], [13].
Although each sensor can only measure quantities at a partic-
ular location, full-state recovery can be achieved from sparse
observations by solving an inverse problem. It is necessary to
carefully determine the position of the sensor and maximize
the information obtained by sparse observations to perform the
required measurement with the minimum number of sensors.
This is referred to as the sensor placement/selection problem.
The objective of this problem is to determine the p sensor
locations from the n potential sensor locations.

Sensor placement/selection problems are formulated as
combinatorial optimization problems known as NP-hard
problems. The exact solution can be obtained by exhaustive
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search or global optimization techniques, such as branch and
bound [14], [15], but these techniques can only be used for
the problem of choosing a small number of sensor locations
from a small number of potential sensor locations because of
the expensive computational cost. Therefore, an approximate
method that can find a suboptimal solution with a reasonable
computational cost is an interesting topic.

There are several approximated ways to solve sensor selec-
tion problems. Joshi and Boyd [16] formulated an approximate
convex relaxation method. Nonomura et al. [17] accelerated
the method for large-scale problems by applying the random-
ized subspace Newton method. In addition, the sensor selection
methods based on semidefinite programming (SDP) are also
formulated [18], [19]. Another sensor selection method based
on proximal optimization [20], [21], [22], [23] has been for-
mulated and applied to the sensor selection in dynamical and
nondynamical systems. Although the local optimal solution
could be obtained, the greedy method is often applied to
large-scale sensor selection problems [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37] because
of less computational cost. The improved method of the
pure greedy algorithm in terms of the objective value [38],
[39] and computational time [40], [41] have also been
addressed.

In terms of the sensor selection method for the dynam-
ical system, methods for the Kalman filter have also been
developed. Oshman [42] applies V-lambda filtering to choose
between a priori selection matrices, determined to adequately
represent the sensor space. Liu et al. [43] and Ertin et al. [44]
conducted sensor selection as a greedy entropy minimiza-
tion problem using Bayesian filtering for object tracking.
Feng et al. [45] applied a branch-and-bound method to
determine the best single sensor selection at each time step.
Although these studies achieved some success, scalability is
one of the critical issues for solving large-scale problems
such as sensor selection/scheduling in large-scale networks and
large-scale state estimation problems.

Weimer et al. [46] attempted this problem with a relax-
ation approach. They considered a relaxation of a nonconvex
combinatorial optimization problem and demonstrate its appli-
cability to large-scale sensor networks. Fardad et al. [47]
formulated sensor and actuator selection based on SDP and
solved the problem using the sparsity-promoting framework.
Their framework selects actuators and sensors in dynamical
systems based on the obtained block-sparse feedback and
observer gains. Lin et al. [20] attempted a similar optimiza-
tion problem using the proximal optimization algorithm, and
Dhingra et al. [48] and Zare and Jovanović [21] extended those
methods. Masazade et al. [49] also formulated a method based
on the sparsity-promoting framework for selecting sparse
sensors so that the estimation error using the extended Kalman
filter is minimized.

The greedy algorithm is another choice as same as an
optimization in a nondynamical system. Although the convex
relaxation-based approach can achieve the global optimal
solution of the relaxed problem, there are no guarantees on
the performance of the approximated solution with respect
to the exact solution. On the other hand, a greedy algorithm

results in an approximate solution with performance within a
(1 − (1/e)) of the optimal when the objective function has
appropriate characteristics [50].

Shamaiah et al. [51] considered the sensor selection prob-
lem in the context of state estimation in linear dynamical
systems via Kalman filtering. In each step of the Kalman
filter algorithm, the problem was formalized as an optimization
of a submodular function over uniform matroids. Jawaid and
Smith [52] showed that the most commonly used estima-
tion error metrics in the Kalman filter are not, in general,
submodular functions and provide sufficient conditions on
the system for which the estimation error is a submodular
function. Tzoumas et al. [53] showed that the log determi-
nant of the error covariance matrix is a supermodular and
nonincreasing set function with respect to the choice of the
sensor set. Based on their results, an efficient approxima-
tion algorithm was provided for the solution to their sensor
selection problem, along with its worst case performance
guarantees. Zhang et al. [54] established performance bounds
for sensor selection algorithms based on system dynamics
and proved the optimality of greedy algorithms for a specific
class of systems. However, as a drawback, they discov-
ered that certain common objective functions are generally
not submodular or supermodular. This poses challenges in
evaluating the performance of greedy algorithms for sensor
selection, except in specific scenarios. Nonetheless, through
simulations, they demonstrated that these greedy algorithms
exhibit strong practical performance. Hashemi et al. [40]
proposed a randomized greedy method that selects sensors for
state estimation in large-scale linear time-varying dynamical
systems based on the study by Mirzasoleiman et al. [55]. They
provided a performance guarantee for the proposed algorithm
and demonstrated that the randomized method is superior
to the common greedy and semidefinite problem relaxation
methods in terms of computational time while providing the
same or better utility.

In addition to the performance guarantees, the greedy
method has desirable properties in large-scale problems. The
greedy method tends to outperform the convex relaxation-
based approach in terms of the optimization results when the
problem size is increased [38], [51], [56], and the greedy
method has an advantage in terms of the computational
cost. Based on these theoretical studies, the sensor selection
methods based on the greedy algorithm for the Kalman filter
are expected to be further investigated in terms of their
applicability to a more significant large-scale problem. Partic-
ularly, a problem can have more than O(104) potential sensor
locations in some applications, such as data-driven sensor
selection [24]. In this case, the issue of the computational
cost is severe. In addition, the relative performance between
various optimization algorithms may change depending on the
problem size.

In the present study, we assess the characteristics of
sensor optimization methods based on various algorithms
for state estimation in a high-dimensional system using the
Kalman filter. The sensor selection methods based on dif-
ferent algorithms, SDP, approximate convex relaxation, and
greedy algorithm, including newly formulated methods are
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implemented, and those performance and characteristics are
assessed by varying the number of potential sensor locations,
the number of sensors to be selected, and the ratio of the
observation noise and system noise. Sensors are selected based
on the error covariance matrix of the Kalman filter, and p
sensors are selected from the n potential sensor locations.
The sensor subset gives an observation vector of a linear
function of latent variables superimposed with independent
identically distributed zero-mean Gaussian random noise. The
main contributions of the present article are summarized as
follows.

1) Two new sensor selection methods for state estimation
in a high-dimensional system using a Kalman filter were
proposed based on the SDP with gain formulation and
approximate convex relaxation, and the characteristics
of the method including the previously proposed method
were compared in a high-dimensional system.

2) It was confirmed that although the condition was limited
when the ratio of the system noise and observation noise
was similar, the approximate convex relaxation method
and its randomized method are effective in terms of
computational time and objective value at p ⪆ r .

3) The computational time of the approximate convex
relaxation method is the shortest for the small-scale
problem, but only the greedy method can handle the
large-scale problem of n > O(104).

4) Overall, it is found that the greedy method is better in
large-scale problems in terms of computation time and
the performance of the obtained sensor set.

The MATLAB code used in the present study can
be found at https://github.com/Fluid-Dynamics-Lab-Nagoya-
University/Sensor-Selection-for-Kalman-Filtering [57].

II. SENSOR SELECTION PROBLEMS

A. Problem Formulation
We aim to find a set of sensors that is suitable for the

estimation of the state in a linear-time-invariant (LTI) discrete-
time system. In this study, we focus on the dynamical systems
with r(∈ N) state variables and p(∈ N) measurements as{ xk+1 = Axk + wk (1a)

yk = Cxk + vk (1b)

where xk ∈ Rr , yk ∈ Rp, A ∈ Rr×r , and C ∈ Rp×r are the state
vector, the observation vector at the instance k ∈ Z, the system
matrix, and the observation matrix, respectively. In addition,
wk ∈ Rr and vk ∈ Rp are process noise and observation
noise, respectively. The observation vector yk is composed
of measurement values of selected sensors, and therefore, the
observation matrix C varies in dependence on selected sensors.
If we denote the observation vector for all n(∈ N) sensors,
the corresponding observation noise, and the corresponding
observation matrix by yall,k ∈ Rn , vall,k ∈ Rn , and U ∈ Rn×r ,
respectively, we have the following full observation equation:

yall,k = Uxk + vall,k (2)

where vall,k is the white Gaussian noise that follows the
normal distribution N (0, σ 2

v In). Selecting S1th, S2th, . . . , Spth

entries from the all-measurement vector yall,k is formulated
by multiplication by the following sensor location matrix
H ∈ Rp×n:

Hi, j =

{
1, if j = Si ∀i ∈ {1, 2, . . . , p}
0, otherwise.

(3)

The observation equation (1b) by selected sensors is
obtained by multiplying H by (2) and setting as follows:

yk = H yall,k, vk = H vall,k, C = H U. (4)

The estimation error of the state depends on the observation
system (1b) and naturally on selected sensors in state estima-
tion based on the model (1).

B. State Estimation Based on Kalman Filter
The sequential state estimation based on the same linear

dynamical system as (1) is considered{ xk+1 = Axk + wk (5a)
yk = Cxk + vk . (5b)

Here, the pair (A, C) is assumed to be detectable. The state
is estimated sequentially in the Kalman filter by using the
following equations [58]:

Kk = PkCT(CPkCT
+ Rk

)−1
(6)

x̂k+1 = Ax̂k + AKk(yk − Cx̂k) (7)

Pk+1 = A(Pk −KkCTPk)AT
+Qk (8)

where Kk ∈ Rr×p is the Kalman gain matrix, x̂k ∈ Rr is the
estimated state vector, and Pk ∈ Rr×r is the error covariance
matrix with respect to the state vector at time step k. Here,
R = E[vkvT

k ] and Q = E[wkwT
k ] are observation and system

noise covariance matrix, whereas E[◦] represents the expected
value.

The state vector and error covariance matrix are given
as x̂t0 and Pt0 at the initial time step t0 ∈ Z. Then, the
Kalman gain Kk at time k = t0 is computed with (6). The
estimated state x̂k is updated based on the observation yk

in accordance with Kk and (7), and the covariance matrix
Pk is updated via (8). The sequential state estimation is
conducted by executing this update procedure at each timestep
k ∈ {t0, t0 + 1, . . .}. The variables x̂k and Pk are equivalent to
the mean and the covariance matrix with respect to xk given
{yk ′}

k−1
k ′=t0 , respectively.

The error covariance matrix converges to a unique matrix
due to (A, C) detectable [59], when the procedure is repeated
infinite times. Hence, in the limit of t0 → ∞, the error
covariance matrix Pk converges to a constant matrix P for
each k ∈ N. The limit matrix is a unique and positive-definite
solution of the following algebraic Riccati equation:

P = A
(
P−1
+ CTR−1C

)−1AT
+Q. (9)

In the present study, the process noise wk ∈ Rr and the
observation noise vk ∈ Rp are assumed to be random
white noise that follows the normal distributions N (0, σ 2

v Ir )

and N (0, σ 2
wIp), respectively, for simplicity. Then, the noise

covariance matrices are simplified as follows:

R = σ 2
v Ip, Q = σ 2

wIr . (10)



NAGATA et al.: ASSESSMENT OF SENSOR OPTIMIZATION METHODS TOWARD STATE ESTIMATION 18015

In summary, the error covariance matrix after convergence is
given as follows:

E
[(

xk − x̂k
)(

xk − x̂k
)T]
= P. (11)

III. SENSOR SELECTION METHODS

The sensor selection problem is the combinatorial optimiza-
tion problem that selects the observations for reducing the
error in the estimated state x̂k . This corresponds to deter-
mining the appropriate observation matrix C. As described in
Section II-B, the error covariance matrix of the true state and
estimated state can be calculated. Therefore, the estimation
error can be minimized by constructing C so as to mini-
mize the characteristic value of the error covariance matrix
P. Several representative criteria, such as the determinant,
trace norm, largest or smallest eigenvalue, are described in
the optimal design of experiment [60]. In the present study,
we employed the A-optimality criterion, which corresponds to
evaluation of the trace norm of the error covariance matrix P.
The objective function fobj is accordingly defined by

fobj = trace(P) (12)

and the sensing locations are determined so that fobj is
minimized. The minimization of this objective function corre-
sponds to the minimization of the average estimation error.

Sensor selection by optimizing the objective function (12)
can be achieved via several different ways. We compare
several methods based on different approaches, the SDP-based
approach, the convex relaxation approach, and the greedy-
based approach. We prepare two methods with different
formulations for the SDP-based approach. One is the SDP-
based approach in weight formulation [(SDP Wform)] [19],
and the other is the SDP-based approach in gain formulation
[(SDP Gform)] which is newly formulated in the present
study. The weight formulation intends to optimize the weight
vector that indicates the sensor location to be used. On the
other hand, the gain formulation intends to optimize the gain
matrix that recovers the state. The convex relaxation approach
(Approx. Convex.) is also newly implemented in the present
study. This method is based on the sensor selection method
for a nondynamical system [16], and it was extended to the
sensor selection for the state estimation using the Kalman
filter. The greedy-based approach (Greedy) is straightfor-
wardly implemented for sensor selection for estimation via
the Kalman filter. This method approximates the solution of
the optimization problem by solving small subproblems and
combining the optimal solutions obtained in each subproblem.
This method may reach the local optimal but the computational
cost can be reduced.

It should be noted that there is another approach that is
based on proximal optimization [21], but this method is not
treated in the present article because of the slight difference
in the problem formulation and difficulty of the determination
of the hyperparameter.

A. SDP (Weight Formulation)
This formulation was described by Yang et al. [19]. They

assumed that the pair (Ci , A) is detectable and (A,
√

Q) is

TABLE I
OPTIMIZATION PROBLEM AND OBJECTIVE FUNCTION

controllable. The original paper considered the vector sensors
in the node candidate but the internode noise correlation was
not considered. In the present study, one sensor per one node
is considered, and therefore, the formulation is simplified and
then employed. Hence, R should be assumed to be σ 2

v I, and
the Riccati equation below is considered

P = Q+ A
(
P−1
+ σ 2

v UTHTHU
)−1AT. (13)

Here, HTH is a diagonal matrix of which the entry is one at
the index corresponding to sensor positions and zero for other
positions. This HTH is relaxed, and the following equation is
obtained:

P = Q+ A
(
P−1
+ σ 2

v UTZU
)−1AT. (14)

Then, the problem seeks optimal selections minimizing the
trace of the steady-state estimation error covariance can be
considered under the constraint of limited available sensors as
follows:

min
z

trace(P(z))

s.t. P = A
(
P−1
+ σ−2

v CTZC
)−1AT

+Q
N∑

i=1

zi ≤ p

zi ∈ {0, 1} (15)

where z and zi are the weighting vector and its i th elements
that indicate whether the corresponding sensor should be
selected or not, and Z is a diagonal matrix of which the
diagonal entries are corresponding to the weight vector z.
Based on [19], the problem above can be transformed into
SDP which can be solved by CVX. See [19] for the details of
the derivation of the formulation

min
z,X,M,G,Z

trace(X)

s.t.
[

X I
I M

]
⪰ 0

M MA−GC̃A M−GC̃ G
A∗M− A∗C̃∗G∗ M 0 0

M− C̃∗G∗ 0 Q−1 0
G∗ 0 0 Z

⪰ 0

N∑
i=1

zi ≤ p, zi ∈ {0, 1}. (16)

The matrix X corresponds to the covariance matrix X = P.
Here, the signal-to-noise-ratio-based normalized full observa-
tion matrix C̃ = σ−1

v C is introduced. The matrix Q is replaced
by σ 2

wIr before solving this problem in the present study,
although this formulation allows a nondiagonal matrix of Q.
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This algorithm gives us the nonzero entries of z of the larger
number than what users specified by the variable p. Therefore,
the indices of the p largest entries of z are selected and used
as the sensor location.

B. SDP (Gain Formulation)
This formulation is proposed in the present study. This

was inspired by the sensor selection formulation for the
continuous-time system implemented by Zare et al. [61], and
extended to the discrete-time system in this article. Unfortu-
nately, proximal gradient with the weight formulation adopted
by Zare et al. [61] is not introduced because it cannot be
applied to the discrete-time system and also it does not work
even if we translate the problems from discrete-time system
to continuous-time system, compared with other algorithms
shown here.

The following observer can be constructed for the linear
system in (1):

x̂k+1 = Ax̂k + L(yk − ŷk)

= Ax̂k + LU(xk − x̂k)+ Lvall,k . (17)

Here, x̂ gives zero-mean estimate of x, and the estimation error
x̃ = x− x̂ is written as follows:

x̃k+1 = (A− LU)x̃k + wk + Lvall,k . (18)

The observer minimizes H2 norm of the system (18) is a
Kalman filter and its gain L becomes the Kalman gain K
introduced above. Therefore, it can be obtained by solving the
following problem (as noted in the Appendix):

min
L,X

trace(XQ+ XLRallL∗)

s.t. X− (A− LU)∗X(A− LU)− I ≻ 0
X ≻ 0 (19)

where Rall = E[vallvT
all] represents the full observation noise

covariance. This formulation can be transformed into this
problem by changing the variables

min
X,Y

trace(XQ+ X−1YRallY∗)

s.t. X− (XA− YU)∗X−1(XA− YU)− I ≻ 0
X ≻ 0 (20)

where L = X−1Y. Then, this problem can be transformed into
the following SDP using the Schur complement, which can be
solved by CVX:

min
X,Y,V,γ

γ

s.t. − trace(QX)− trace(V)+ γ > 0[
X− I (XA− YU)∗

(XA− YU) X

]
≻ 0[

V R1/2
all Y∗

YR1/2
all X

]
≻ 0. (21)

We confirmed that the SDP formulation above gives us the
Kalman filter gain L = X−1Y in the steady state and the
covariance matrix X = P. The sparsity-promoting term is

added to the problem to obtain the sparse sensor with optimal
gain value

min
X,Y,V,γ

γ + λ
∑

i

∥Yi∥
2
2

s.t. − trace(QX)− trace(V)+ γ > 0[
X− I (XA− YU)∗

(XA− YU) X

]
≻ 0[

V R1/2
all Y∗

YR1/2
all X

]
≻ 0 (22)

where λ is the weight for the regularization term. This param-
eter was set so that the group norm becomes close to but larger
than the number of sensors to be selected. Here, we consider
the column-norm-based group ℓ1 norm [62]. This procedure
does not give us the sensors of the exact number we expect,
even if we adjusted the regularization term by try-and-error
processes. In addition, our experience to the gain formulation
of linear inverse problem, in which the proximal gradient
method was adopted, showed that the formulation with the
group ℓ1 norm cannot obtain a small number of sensors, while
the formulation with the specified group ℓ0 norm gives us the
better sensors of a specified number than the greedy method in
almost all the cases [22], [23]. However, the gain formulation
above adopts SDP and the penalty term should be the group
ℓ1 norm owing to its convexity, which does not seem to give
us the sensors of a small number. Actually, the sensors of a
small number that we expect cannot be obtained and usually
more of sensors remain after the optimization in the numerical
experiments shown later. Therefore, the sensor nodes with
larger gain which is corresponding to the larger norm of the
column of L are selected after the optimization. The same
strategy was adopted in the study of Zare et al. [61]. The
proximal gradient method with the penalty term of the group
ℓ0 norm seems to work better when a small number of sensors
to be selected, such a formulation for a discrete-time system
has not been found and cannot be formulated in the present
study. Such an attempt is also left for future study.

Finally, it should be noted that this formulation in (22) can
handle the nondiagonal R and nondiagonal Q that can be
handled by other formulations. This is a clear advantage of this
gain formulation, whereas the importance of sensor selection
in correlated noises has been addressed in the previous studies
[18], [23], [32], [33]. Although this point should be studied
in detail, the focus of the present study is on the comparison
of the sensor selection for the Kalman filter with independent
noises, and therefore, this point is also left for future study.

C. Approximate Convex Relaxation (Weight Formulation)
Here, we try the (empirically) convex weight formulation

for the discrete-time KF, similar to the SDP formulation
by Yang et al. [19]. Substitute sensor candidate and sensor
location matrices in the Riccati equation of (9).

We straightforwardly extended the method based on the
Newton method proposed by Joshi and Boyd [16] and its
application to the observability Gramian in linear dynami-
cal systems of Yamada et al. [34], as a comparison with an
existing algorithm. In the present article, this function is
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optimized by the standard Newton method of Algorithm 1, and
its customized randomization approach [17] of Algorithm 2
to alleviate its expensive computation, as will be explained
hereafter. Similar to the algorithm of the weight formulation
of SDP, this algorithm returns the indices of the p largest
entries of z as the sensor locations.

The objective function of the original method is the maxi-
mization of the logarithm of the determinant of the FIM. The
relaxation here also requires the independent noise assumption,
and therefore, the same problem as in (15) is considered
as a basic problem. Then, the constraint of zi ∈ (0, 1) is
replaced by the penalty term of logarithms, and the form
that can be solved by the Newton method is derived. Even if
the algorithm is the same, the deviation for the Kalman filter
problem is conducted for the first time and the performance
of the algorithm which depends on the objective function, the
size of the problem, etc., should be carefully investigated. The
approximate relaxed sensor selection problem with minimiza-
tion of the trace of the inverse of the FIM can be written as
follows:

min φ(z) = trace(P(z))

−κ

n∑
i=1

[
log(zi )+ log(1− zi )

]
s.t. 1Tz = p. (23)

A positive parameter κ controls the quality of the approxima-
tion. A set of n potential measurements is characterized by
u1, . . . , un ∈ Rm . The vector 1 is the vector with all entries
one. Finally, the obtained objective function φ is convex and
smooth in the range we investigated, although the rigorous
proof cannot be given in the present study.

A Newton step δz is determined by minimizing the second-
order approximation of the objective function and by satisfying
the constraint δz = 0 as found in [16]

δz =
(
∇

2φ
)−1

(
−∇φ +

1⊤
(
∇

2φ
)−1
∇φ

1⊤
(
∇2φ

)−11
1

)
. (24)

Each entry of the gradient of φ is defined as

{∇φ}i = trace
(

∂P
∂zi

)
+ κ

(
1
zi
−

1
1− zi

)
(25)

and that of the Hessian of φ is defined as{
∇

2φ
}

i j = trace
(

∂2P
∂zi∂z j

)
− κδi j

(
1
z2

i
+

1
(1− zi )2

)
.

(26)

Unfortunately, it should be noted again that we could not give
the proof for the semidefinite positivity of the Hessian due
to cumbersome calculus, whereas it is numerically confirmed
to be positive semidefinite in the range we investigated. The
proof of these characteristics will be left for future study.

The Newton step is derived for our method by substituting
derivatives of P into (24)–(26). Differentiating both sides
of (14) with respect to zi gives the following Lyapunov
equation:

Pi = −AW−1(
−P−1Pi P−1

+ σ 2
v ui uT

i

)
W−1AT (27)

where

Pi =
∂P
∂zi

(28)

W =
(
P−1
+ σ 2

v UTZU
)
. (29)

Matrix calculus based on the vector identity or the use of
other numerical algorithms, which is implemented as “dlyap”
function in MATLAB, for example, can be used for this solu-
tion. The “vec” form could reduce the numerical operations by
reusing the common inverse matrix of large size. (The “dlyap”
function is used for the solutions of the discrete-time Lyapunov
equations, which adopts the subroutine libraries, Subroutine
Library in Systems and Control Theory (SLICOT) [63], [64],
[65], [66]. It should also be noted that there is another
approach for solving the equation like [67], for instance.)

Then, the second derivative using (27) gives another Lya-
punov equation for Pi j = (∂2P/∂zi∂z j )

Pi j − AW−1P−1Pi j P−1W−1AT
=

∑
i=1,2,4,5

Li (30)

where

L1 = AW−1W j W−1Wi W−1AT, (31)

L2 = AW−1Wi W−1W j W−1AT, (32)

L4 = −AW−1P−1P j P−1Pi P−1W−1AT, (33)

L5 = −AW−1P−1Pi P−1P j P−1W−1AT, (34)

Wi =
∂W
∂zi

(35)

=
(
−P−1Pi P−1

+ σ 2
v ui uT

i

)
. (36)

The Riccati equation (14) is solved for P(z) in (23) by
“idare” command in MATLAB and the objective function is
updated inside Newton iterations with the step size adjusted.
Although the Riccati equation is solved only O(1) times
per time increment, a plenty number of evaluations of the
Lyapunov equations is required to fill in the gradient vector
and the Hessian for the Newton system construction. The
number of the equations is up to the square of the size of
the solution vector z, which is overwhelming.

From the computational point of view, another Newton
algorithm leveraging randomization is proposed here as sum-
marized in Algorithm 2. The sketch matrix compresses the
solution space of the sensor selection problem as a projection
onto a small subspace

I ñ =
{
i ′1, . . . , i ′ρ, . . . , i ′ñ

}
. (37)

The permutation operation defines the sketch matrix Sñ in this
study as previously performed in [17] and [34], which should
be referred to for more description of the randomization.
Despite a heuristic procedure, sampling is not drawn uniformly
from the candidate subspace. A fraction of the sampled
subspace (half, in this study) is designated by the indices
of the largest components of z in the preceding iteration,
while a uniform sampling from the remaining candidates fills
the subspace selection to enhance exploration. The first and
second derivatives in (25) and (26) are obtained only over
these selected indices. The total amount of the evaluation is
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reduced by linear and quadratic to the compression rate. The
iteration is repeated until global convergence is ensured by
thresholding of the step sizes for several consecutive updates.

Algorithm 1 Newton Algorithm
Input: C ∈ Rn×r , A ∈ Rr×r , p ∈ N
Output: Indices of chosen p sensor positions Ip

Set an initial weight z← 1p/n
while convergence condition not satisfied do

Calculate ∇ f by (25) and ∇2 f by (26)
Calculate δs by (24)
Obtain step size t by backtracking line search
Set z← z+ tδz

end while
Return the indices of p -largest components of z as Ip

Algorithm 2 Customized Algorithm for CR Approximated
Convex Relaxation
Input: C ∈ Rn×r , A ∈ Rr×r , p > 0, ñ > 0
Output: Indices of chosen p sensor positions Ip

Set z← 1p/n
while convergence condition not satisfied do

Select I ñ [(37)] and set Sñ
Calculate subsampled derivatives ∇ f̃ and ∇2 f̃
Calculate δz̃
Obtain step size t by backtracking line search
Set z← z+ t

(
S⊤ñ δz̃

)
end while
Return the indices of p -largest components of z as Ip

D. Greedy Algorithm
The standard greedy algorithm was straightforwardly

applied for minimizing the objective function (12). Greedy
sensor selection for a Kalman filter was considered with
bounds on the worst case performance by Zhang et al. [54].
The empirical approximation ratio of greedy is typically
better than other sensor selection algorithms. However, some
algorithms can obtain better objective value depending on the
objective function or the problem size [22], [23], [28]. From
the viewpoint of the computational time, the greedy algorithm
generally has an advantage compared with other algorithms
such as SDP, approximated convex relaxation method, and
proximal optimization. However, computational time of the
greed method tends to be long for the sensor selection with
the objective function that the computational cost is high in
the high-dimensional system because the number of evaluation
of the objective function is large [34].

Algorithm 3 shows the standard greedy algorithm. The
objective function f (S ∪ {s}) is computed for all s ∈
{1, 2, . . . , n}\S at each greedy iteration of a number k ∈
{1, 2, . . . , p}. The optimal sk of the single-sensor subproblem,
which maximizes the temporary objective value, is found. The
optimal sk is added to the temporary solution S, and the
baseline observation matrix C̃ is updated as C̃← [C̃T, UT

sk
]
T,

where Usk is sk th row of U. The greedy solution S with
|S| = p is obtained after p iterations.

Algorithm 3 Greedy Algorithm for Sensor Selection
1: Set S ← ∅ and C̃ ∈ R0×r

2: for k = 1, . . . , p do
3: for s ∈ {1, 2, . . . n}\S do
4: C =

[
C̃T, UT

,s

]T
5: gs = fobj(S ∪ {s})
6: end for
7: sk ∈ argmaxs∈{1, 2, ...n}\S gs

8: S ← S ∪ {sk}, C̃←
[
C̃T, UT

sk

]T
9: end for

10: return S

Zhang et al. [54] gave sufficient conditions that the greedy
sensor selection with objective function for the Kalman filter
gives optimal solution. This is a special condition and does
not apply in most cases. Therefore, it is generally not possible
to determine whether the objective function has submodu-
larity. For large-scale problems, it is extremely difficult to
evaluate whether the submodularity inequality holds for a
given objective function for all combinations. Although sub-
modularity is not known in general conditions, the study by
Zhang et al. [54] showed that these greedy algorithms perform
well in practice via simulations.

The problem we treated in the present study has a large
number of potential sensing locations but the number of latent
variables is small. The number of sensors to be selected is
the same level as that of the latent variables. Hence, the
scale relation of each parameter in the problem intended
in the present study is p ≈ r ≪ n. In the case of the
convex relaxation method, the Newton method was used.
The calculation of Hessian Pi j is the most computationally
expensive, and it takes O(n2r3

+ n3). The problem we treated
in the present study is r ≪ n, and thus, the number of latent
variables does not have a large impact on the computational
cost but the dominant parameter might be changed depending
on the problem. When the CR approximated convex relaxation
method is used, the set of the sensor candidate is compressed
from the size of n to nc, and the complexity per iteration is
reduced to O(n2

cr3
+n3

c) instead of the increase in the number
of iterations to achieve convergence. Here, the compression
ratio nc/n is the hyperparameter, and it is typically set around
nc/n = 1/10.

The greedy algorithm needs the solution of the algebraic
Riccati equation (9) for all potential sensing locations. The
MATLAB “idare” function that solves (9) was used in the
present study, and it takes the complexity of O(r3) for solving
the Riccati equation [68]. Hence, the complexity of selecting
p sensors from n potential sensing locations is O(nr3 p) as
stated in [54].

The problem we treated in the present study has a large
number of potential sensing locations but the number of latent
variables is small. The number of sensors to be selected is the
same level as that of the latent variables. Hence, the scale
relation of each parameter in the problem intended in the
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present study is p ≈ r ≪ n. The SDP (Gform), SDP (Wform),
and convex relaxation methods require iterative calculation,
and the number of iterations which is needed for convergence
is depending on the conditions.

IV. NUMERICAL EXPERIMENTS

The performance of the proposed methods was evaluated by
applying those methods to the data generated by the random
system. Linear systems with random stable eigenvalues are
generated for this purpose using the MATLAB “drss” function.
This problem has an averaged absolute eigenvalue of 0.5 for
the system matrix A. The number of latent variables was set
to be r = 10. The conditions of p < r and p > r correspond
to the underdetermined and overdetermined conditions for the
linear inverse problem on the nondynamical system, respec-
tively. However, it is not simply applicable for the dynamical
system, influences of the number of sensor candidates, number
of selected sensors, and ratio of system noise and observation
noise were investigated. It should be noted that the number of
latent variables is also an important parameter in this problem,
but we omit investigation of the influence on the performance
of the sensor set because it seems characterized by the ratio
of the number of the latent variables and selected sensors,
as reported by Yamada et al. [34] in the study of sensor
selection based on observability Gramians.

1) Influence of Number of Potential Sensor Locations on
Computational Time: Influences of the number of potential
sensor locations on the computational time are investigated.
The range of the number of sensor candidates was set to be
between 30 ≤ n ≤ 105, and the number of sensors to be
selected and noise ratio were fixed at p = 20 and σw/σv =

10−1, respectively. The computations for each condition were
conducted 20 times with different data, and the average value
was calculated.

Fig. 1 shows the computational time with respect to the
number of potential sensing locations. The computational time
of the methods based on the trace of the error covariance
matrix is much longer than that of the random selection and
the A-optimality-based greedy method for a nondynamical
system [30]. Although the computational time of the greedy
method is much shorter than that of the convex relaxation and
SPD methods in the case of the objective function for a non-
dynamical system, the computational time of all methods for
the Kalman filter is antagonizing in the small-scale problems.
The approximate convex relaxation method and its randomized
method are the fastest when the number of potential sensing
locations is n ≤ 102. At n > 102, the computational time
of the convex relaxation method is the same level as the
SDP methods, and the increment of the computational time
with respect to the number of potential sensing locations is
similar. The increment of the computational time with respect
to the number of potential sensing locations is the same for
the randomized approximate convex relaxation method, but the
absolute computational time is reduced with the benefit of the
randomized algorithm. The randomized convex relaxation is
competitive in terms of the computational time with the greedy
method at n ≤ 103. An increase in the computational time
of the greedy method by increasing the number of potential

Fig. 1. Computational time with respect to the number of potential
sensing locations (p = 20).

Fig. 2. Comparison of the normalized objective value for a different
number of selected sensors at σw/σv = 100.

sensing locations is smaller than that of the approximate
convex relaxation and SDP methods, and thus, the advantage
in terms of the computational time is pronounced in the large-
scale problem. Only the greedy method is available due to
computational cost in a large-scale problem of n > O(104).

2) Influence of Number of Selected Sensors on Objective
Value: Influences of the number of selected sensors on the
objective value are investigated in several noise ratio con-
ditions. The range of the number of selected sensors was
1 ≤ p ≤ 30. The number of potential sensor locations was
fixed at n = 1000. The computations for each condition were
conducted 50 times with different data, and the average value
was calculated.

Fig. 2 shows the objective value with respect to the number
of selected sensors. The objective values obtained by each
method were normalized by those obtained by the greedy
method, and the variances of the system noise and observation
noise are equivalent. The smaller objective value indicates a
better optimization result.

The objective values differ from each other, particularly at
smaller p. When the number of selected sensors is small,
the objective value obtained by the greedy method is the
best, and the objective values obtained by other methods are
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Fig. 3. Normalized objective value with respect to the number of
selected sensors when the observation noise is stronger than the
system noise: (a) σw/σv = 10−1 and (b) σw/σv = 10−3.

much higher than the greedy method. On the other hand, the
objective value obtained by the approximate convex relaxation
method is the best at p ≥ 10, and the advantage of these
methods remains at p ≤ 30. The difference between each
method becomes small as the number of selected sensors
increases. The SPD with the weight formulation does not work
well in the present condition, even though the SDP with the
gain formulation can outperform the greedy method at p > 20.
Overall, the greedy method shows good performance in the
investigated range of the number of sensors to be selected.

The trend in the objective value changes because of the
noise ratio. Figs. 3 and 4 show the normalized objective value
with respect to the number of sensors selected for different
noise ratios. The general trend at σw/σv = 10−1 is the same
as the case at σw/σv = 100. The behavior of the approximate
convex relaxation method is almost the same as the case
of σw/σv = 100. However, the difference between the SDP
method with gain formulation and the greedy method becomes
large when the number of selected sensors is large, and the
performances of the SDP methods get worse. At σw/σv =

10−3, the performance of the greedy method is the best in all
investigated ranges of the number of selected sensors.

The result in the case that the strength of the system noise is
stronger than the observation noise is shown in Fig. 4. When
the system noise is stronger, the greedy method outperforms
other methods at p < 10 the same as σw/σv = 100. The
approximate convex relaxation methods can outperform other
methods in p < 10, but the influence of the optimization
method on the obtained objective value becomes small when

Fig. 4. Normalized objective value with respect to the number of
selected sensors for different noise ratios when the system noise
is stronger than the observation noise: (a) σw/σv = 101 and
(b) σw/σv = 103.

the number of selected sensors is large. This trend is further
pronounced at σw/σv = 103, and there is no difference in the
obtained objective value in the most range of p.

3) Influence of Noise Ratio on Objective Value: Influences of
the noise ratio on the obtained objective value are investigated
at p < r (p = 5) and p > r (p = 15) conditions. The range
of the noise ratio was set to be between 10−5

≤ σw/σv ≤ 105,
and the number of potential sensor locations was fixed at n =
1000. The computations for each condition were conducted
50 times, and the average value was calculated.

Fig. 5 shows the influence of the noise ratio on the obtained
objective values at p = 5 and p = 15. The greedy method
provides the best or better result for all noise ratios investigated
for both the conditions of p < r and p > r . Particularly, the
greedy method outperforms other methods for p = 5.

For p < r , the approximate convex relaxation method
and the SDP with gain formulation are competitive with the
greedy method only at σw/σv = 10−5, but the greedy method
should be used for all ranges of σw/σv . The behavior of the
randomized approximate convex relaxation method is almost
the same as that of the convex relaxation method in the
most range of the noise ratio, but the negative influence of
the randomization becomes apparent as the observation noise
becomes strong.

For p > r , the advantage of the greedy method is decreased.
Particularly, the obtained objective values are almost the same
as each other when the system noise is stronger. On the other
hand, there is a difference between each method when the
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Fig. 5. Influence of the noise ratio on the obtained objective values at
(a) p = 5 and (b) p = 15.

observation noise is stronger. The convex relaxation method
and SDP with gain formulation also provide a good opti-
mization result, as well as the greedy method. Furthermore,
although the range is limited around σw/σv = 100, the
approximate convex relaxation provides the best results. The
influence of the noise ratio on the performance difference
between the approximate convex relaxation method and the
randomized approximate convex relaxation method is similar
to the condition of p < r . The negative influence of the
randomization becomes apparent as the observation noise
becomes strong. Overall, the greedy method provides better
performance constantly for the wide range of the noise ratio
and the number of selected sensors.

V. CONCLUSION

Two new sensor selection methods for state estimation in a
high-dimensional system using a Kalman filter were proposed
based on the SDP with gain formulation and approximate
convex relaxation, and the characteristics of the method were
compared including the previously proposed. Even if the
algorithm is the same, the performance of the algorithm
depends on the objective function, the size of the problem, etc.
In this research, we provided a new formulation for the objec-
tive function with the error covariance matrix of the Kalman
filter, and the characteristics of the sensor selection method
based on various algorithms for state estimation in a high-
dimensional system using the Kalman filter were investigated.

The sensor selection methods based on different algorithms,
SDP, approximate convex relaxation, and greedy algorithm,
including newly formulated methods were implemented, and
those performance and characteristics were assessed by

varying the number of potential sensor locations, noise ratio,
and the number of sensors to be selected. Sensors are selected
based on the error covariance matrix of the Kalman filter, and
p sensors are selected from the n potential sensor locations.
The sensor subset gives an observation vector of a linear
function of latent variables superimposed with independent
identically distributed zero-mean Gaussian random noise.

Although the condition was limited when the ratio of system
noise and observation noise was similar, the approximate
convex relaxation method and its randomized method are
effective in terms of computational time and objective value
at p ⪆ r . The objective value obtained by the greedy method
shows the best results compared with those of the other
methods in almost all investigated conditions. Particularly, the
greedy method outperforms other methods when the number
of sensors is small. In addition, only the greedy method can
handle the large-scale problem of n > O(104). Overall, it is
found that the greedy method is better in large-scale problems
in terms of computation time and the performance of the
sensor set obtained.

APPENDIX

Minimization of the stochastic H2 norm of (19) corresponds
to the following equation with given impulse response after
transformation:

min J = E

(
∞∑

k=0

∥x̃k∥
2
2

)
. (38)

Here,

J = E

(
∞∑

k=0

∥x̃k∥
2
2

)

= trace

(
(R+ LQL∗)

∞∑
k=0

(
(A′∗)k(A′)k)) (39)

whereas

A′ = A− LC. (40)

Therefore, the problem above can be rewritten as follows:

min J = trace
(
(R+ LQL∗)X

)
(41)

X ≻
∞∑

k=0

(
(A′∗)k(A′)k). (42)

Here, (42) leads to the following Lyapunov-type inequality:

X− A′∗XA′ ≻ I (43)

which corresponds to

X− (A− LC)∗X(A− LC)− I ≻ 0. (44)
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