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Abstract—The development of radar-based classifiers . A g
driven by empirical data can be highly demanding and expen- A~ S
sive due to the unavailability of radar data. In this article, :>>>: >>: _
we introduce an innovative simulation-based approach that . > @
addresses the data scarcity problem, particularly for our s
multiple-input multiple-output (MIMO) radar-based direction-
independent human activity recognition (HAR) system.
To simulate realistic MIMO radar signatures, we first syn-
thesize human motion and generate corresponding spatial
trajectories. From these trajectories, a received radio fre-
quency (RF) signal is synthesized using our MIMO channel model, which considers the non-stationary behavior of
human motion and the multipath components originating from the scatterers on human body segments. Subsequently,
the synthesized RF signals are processed to simulate MIMO radar signatures for various human activities. The proposed
simulation-based direction-independent HAR system achieves a classification accuracy of 97.83% when tested with real
MIMO radar data. A significant advantage of our simulation-based framework lies in its ability to facilitate multistage data
augmentation techniques at the motion-layer, physical-layer, and signal-layer syntheses. This capability significantly
reduces the training workload for radar-based classifiers. Importantly, our simulation-based proof-of-concept is applica-
ble to single-input single-output (SISO) and MIMO radars in monostatic, bistatic, and multistatic configurations, making
it a versatile solution for realizing other radar-based classifiers, such as gesture classifiers.
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Index Terms— Aspect angle, data augmentation, data synthesis, deep learning, distributed multiple-input multiple-
output (MIMO) radar simulation, human activity recognition (HAR), micro-Doppler analysis, motion capture (MoCap),
motion synthesis, multiclass classification, virtual reality.

[. INTRODUCTION of machine learning and artificial intelligence methodologies

A. Background
HE generation of area-specific synthetic data has been
an important topic of interest among researchers [1],
[2]. Device-specific or sensor-tailored simulation models help
generate realistic sensory data and have been used to realize
real-world solutions [3], [4]. Given the increasing prevalence
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and applications today, the importance of the concept of
device-specific synthetic data generation, as well as the
significance of sensor modeling, cannot be overstated. For
many sensing modalities such as magnetometer, infrared,
light detection and ranging (LiDAR), sonar, and radar, data
scarcity often hinders the realization of machine learning-
based solutions [5], [6]. Sensor-tailored simulation models
mitigate the data scarcity problem by providing clean and
labeled synthetic datasets for various real-world conditions.
Such synthetic datasets are important to develop machine
learning-based applications, e.g., medical imaging [7].
Human activity recognition (HAR) [8], [9], [10], [11], [12],
[13] remains an important and active research area facing
the challenge of data scarcity, especially when using radio
frequency (RF) sensors such as Wi-Fi [14] and radar [15],
[16], [17]. Furthermore, for multiple-input multiple-output
(MIMO) radar systems with user-defined (required) operating
parameters and antenna configurations, readily available HAR
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datasets are almost non-existent. Optimal radar operating
conditions and antenna configurations are often not known
in advance for different environmental conditions and appli-
cations. Synthetic data generation is therefore a pragmatic
and promising approach to realizing radar-based classifiers,
offering tremendous design control and system flexibility in
a cost-effective manner. Realizing HAR systems through a
simulation-based approach poses two main challenges: 1) how
to synthesize human activities and 2) how to simulate single-
input single-output (SISO) and MIMO radar signatures for the
synthesized human activities. Before going into further details
of synthetic data generation and our proposed simulation-
based approach, we first provide an overview of the relevant
research in Section I-B.

B. Related Work

The ongoing miniaturization and commercialization of radar
sensors, as well as many Internet of Things (IoT) sen-
sors, have encouraged the development of human-centric
applications, including HAR. Small-scale radar systems are
increasingly preferred by researchers for the development
of HAR systems [18], [19], gesture [20], [21], and sign
language [22] recognition systems. Realizing empirical-data-
driven (experimental-based) HAR systems is often very
challenging due to the low availability of recorded radar
datasets. Among other challenging and monotonous tasks, the
development of experimental-based HAR systems requires the
involvement of human subjects, an actual SISO or MIMO
radar system, and the manual labeling of the recorded data.
Yu et al. [23] used manually labeled point cloud data to train
the HAR system, which was built upon a long short-term
memory (LSTM) network. By utilizing the measured features
of a millimeter wave (mm-wave) radar, Zhao et al. [24] tackled
the issue of HAR in multiview settings.

Recent studies have shown that, to some extent, data aug-
mentation techniques can reduce the scarcity of empirical data
for HAR systems. For instance, a rotation-shift technique was
utilized in [25] to expand the 3-D point cloud dataset. A gen-
erative adversarial network (GAN)-based data augmentation
technique was adopted in [26] to create varied radar signatures
of human activities. The use of the few-shot learning method
was suggested by Liu et al. [27], which offers a unique way
of augmenting the capabilities of pre-trained and pre-existing
HAR systems. According to a recent study [28], a two-
stage domain adaptation approach can be used to alleviate the
data scarcity issue as well. With this approach, the simulated
micro-Doppler signatures can be translated into measurement-
like micro-Doppler signatures by using small real datasets.
Note that even with such data augmentation methods, time-
consuming and tedious data collection cannot be avoided.

Radar-based classifiers may face unique challenges in dif-
ferent situations and application areas, which may necessitate
the adaptation of radar antenna configurations and operating
conditions. This exacerbates the problem of data scarcity in
radar systems because the training dataset recorded from a
radar system in one scenario may not be applicable and useful
in another. Therefore, the synthetic data generation is the way
to realize radar-based HAR systems. To date, only a few

studies have been conducted in the context of RF sensing
that deal with synthetic data generation for HAR. In this
regard, the utilization of motion capture (MoCap) systems [29]
is an effective means of modeling and reanimating com-
plex human motion for further motion synthesis. For passive
Wi-Fi radar (PWR), Vishwakarma et al. [30] devised a sys-
tem, namely SimHumalator, to generate target returns. In [31],
a simulation tool was created to evaluate the radar cross section
of a walking individual in close proximity. However, this
technique is inadequate for reproducing detailed and complex
human movements.

C. Our Approach

In this article, we present a proof-of-concept that overcomes
the problems related to radar data scarcity, offers significant
design control and flexibility of the radar system, and allows
the simulation of unbounded, clean, and labeled radar datasets.
We emulate a 2 x 2 MIMO radar system with the help of our
proposed simulation-based framework to realize a simulation-
based direction-independent HAR system. First, we devise an
activity simulation module that synthesizes multiple types of
human activities in a virtual environment by using the 3-D
animation tools from the Unity [32] and MotionBuilder [33]
software. An appropriate avatar or a humanoid character,
equipped with multiple simulated point scatterers on its body
segments, is used to reanimate MoCap data in these programs
(see Section III). Subsequently, we generate spatial trajectories
corresponding to all simulated point scatterers or body seg-
ments of the avatar, which effectively characterize the overall
humanoid motion.

The spatial trajectories of the body segments are processed
by our channel model, which simulates the received RF
signal from a frequency-modulated continuous wave (FMCW)
radar system for software-defined antenna positions. While
simulating the raw in-phase and quadrature (IQ) components
of a received baseband signal, our channel model takes
into account the multipath components originating from the
non-stationary simulated (real) point scatterers with distinct
time-variant (TV) propagation delays (see Section IV). In the
proposed channel model, the long- and short-time stationarity
characteristics of the scatterers are considered in an indoor
wireless propagation environment. Additionally, to train the
2 x 2 MIMO radar-based direction-independent HAR system
(see Section VII), we simulated five types of multidirectional
human activities by rotating the transmitter and receiver anten-
nas of the emulated MIMO radar system (see Section V).

Unlike conventional or experimental-based designs of
HAR systems, the proposed simulation-based approach
is highly versatile and offers numerous advantages. Our
simulation-based approach is capable of simulating diverse
training datasets to meet various radar-based applica-
tions and a wide range of operational requirements. For
monostatic/bistatic/multistatic SISO/MIMO radar systems,
the scatterer-level modeling of moving objects in our
simulation-based framework opens up new research opportu-
nities to further fine-tune the simulated radar signatures, such
as TV micro-Doppler signatures (TV radial velocity distribu-
tions) and TV range distributions (see Sections IV and VI).
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For example, the TV path gains of the scatterers (simulated
point scatterers) can be adjusted or optimized to improve
and augment the simulated radar signatures. Moreover, the
simulation-based framework provides multistage data augmen-
tation techniques (see Section V), which allow us to generate
diverse and high-quality SISO/MIMO radar datasets in a flexi-
ble and cost-effective manner. For instance, at the motion-layer
synthesis data augmentation stage, various animation parame-
ters and avatar characteristics, e.g., speed and height, can be
arbitrarily varied to simulate a range of human motions. Most
importantly, the proposed simulation-based framework radi-
cally reduces the workload and resources for classifier training.
As our simulation-based approach is versatile, it can be easily
extended to implement many other SISO/MIMO radar-based
classifiers, such as air-writing gesture classification [34].

D. Contributions

The key findings and contributions of this study can be

delineated as follows.

1) This research proposes a simulation-based framework
to significantly minimize the data collection work-
load required for devising real-world radar-based HAR
systems. The simulation-based framework is capable
of synthesizing realistic, diverse, and clean datasets
for MIMO radar systems, regardless of their config-
uration: monostatic, bistatic, or multistatic. Although
this study focuses on a 2 x 2 MIMO radar-based
direction-independent HAR system, the utility of the
simulation-based framework extends beyond the HAR
application, making it also valuable for other radar-based
applications, e.g., sign language detection.

2) We have developed a MoCap-data-driven activity sim-
ulation module that enables the synthesis of multiple
types of human activities in a virtual environment. For
a total of 21 simulated point scatterers placed on body
segments of an avatar, the activity simulation module
generates 3-D trajectories that essentially characterize
the overall human motion. Our activity simulation mod-
ule can integrate motion data from diverse sources,
including biomechanical, wearable, and optical MoCap
systems (see Section III). Additionally, the activity sim-
ulation module can generate arbitrary software-defined
motion data.

3) We formulate a MIMO channel model that simulates
realistic RF data or raw IQ data by using the spatial
trajectory data from non-stationary simulated point scat-
terers. In this channel model, we study and simulate the
TV propagation delays corresponding to the multipath
components emanating from the non-stationary simu-
lated point scatterers on the avatar’s body segments.
The proposed MIMO channel model helps generate
unlimited radar datasets and provides extensive design
control and versatility.

4) We present multistage data augmentation techniques
for motion-layer synthesis, physical-layer synthesis, and
signal-layer synthesis. For example, in the proposed
simulation-based framework, we first diversified the
target motion data in the motion-layer synthesis using

the activity simulation module. And subsequently in
the physical-layer synthesis, we augmented the radar
data by varying physical-layer parameters such as radar
orientation. Lastly, we further augmented the radar data
by using multiple sets of simulated point scatterers’
weights (TV path gains) at the signal-layer synthesis
of the proposed simulation-based framework. The mul-
tistage, simulation-based data augmentation techniques
allowed us to vary target motion characteristics and
antenna configurations, simulate multiple radar sensors,
and transform unidirectional motion data to multidirec-
tional motion data.

5) For the simulated human activities, we generated high-
quality MIMO radar signatures, such as TV radial
velocity distribution and mean radial velocity, which
closely resemble the actual MIMO radar signatures of
actual human activities. This demonstrates the efficacy
of the proposed simulation-based framework, which
is highly versatile as it can be effortlessly extended
to simulate radar signatures for various other moving
objects such as cars, drones, and aircraft.

6) By employing our simulation-based framework, we gen-
erated a unique simulated dataset to train/realize clas-
sifiers based on (deep) machine learning. The training
dataset for HAR incorporates simulated radar patterns,
derived from software-defined avatar movements. This
approach proves highly advantageous and practical as
the training data is developed entirely from scratch,
eliminating the need for real individuals and an actual
MIMO radar system.

7) For the 2 x 2 MIMO radar framework, we real-
ized a simulation-based HAR system by employing a
deep convolutional neural network (DCNN). The system
employed multiperspective simulated radar signatures as
input features. To showcase the practical applicability
of our simulation-driven HAR system, we evaluated
its performance using actual mm-wave radar data col-
lected from actual individuals. Our simulation-based
multiperspective HAR system achieved an impressive
classification accuracy of 97.83%, providing compelling
evidence for its effectiveness.

E. Article Organization

The article is divided into eight sections. Section II deals
with the system design and the general structures of the
conventional and the proposed approaches. Human MoCap and
synthesis techniques are presented in Section III. Section IV
details channel modeling and simulation. Multistage data
augmentation approaches are elucidated in Section V.
Section VI discusses the generation of MIMO radar signatures.
Section VII presents the design, training, and testing phases
of our simulation-based direction-independent HAR system.
Finally, we conclude our research in Section VIII.

[l. SYSTEM DESIGN
In this section, we discuss a conventional experimental-
based design of a HAR system and the proposed
simulation-based realization of a HAR system. We also discuss
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problems of conventional HAR systems and how the proposed
end-to-end simulation framework resolves them. Note that
SISO radar-based HAR systems struggle to classify multi-
directional human activities [35], [36]. To classify different
types of multidirectional human activities, we need multiple
radar subsystems illuminating the environment from different
perspectives. Therefore, in this article, we consider multi-
directional human activities recorded by a multiperspective
distributed MIMO radar system.

A. Conventional Experimental-Based Designs
of HAR Systems

In radar sensing, state-of-the-art experimental-based HAR
systems [9], [13], [14], [15], [17], [18], [19], [23], [24], [36]
generally face challenges, such as data scarcity and their
adaptability to environmental conditions. As an example of
state-of-the-art experimental-based designs, we considered a
direction-independent HAR system implemented with a mm-
wave 2 x 2 MIMO radar system, as shown in Fig. 1(a). In
Fig. 1(a), Radar; represents the ith radar subsystem of the
distributed MIMO radar system, Al.T" is the ith transmitter
antenna, and AiR * is the ith receiver antenna for i = 1, 2.

Note that the two horn antennas, namely AiTX and Af*', are
arranged in a monostatic configuration for Radar;. In the
conventional experimental-based HAR system of Fig. 1(a), six
human subjects performed the following types of multidirec-
tional activities: falling on a mattress, walking, standing up
from a chair, sitting down on a chair, and picking up an object
from the floor.

The distributed MIMO radar system simultaneously illumi-
nates the human subject from two aspect angles and generates
the corresponding raw IQ data, as shown in Fig. 1(a).
Then, the radar signal processing block (see Section VI) gen-
erates the TV micro-Doppler signatures or, equivalently, the
TV radial velocity distributions for Radar; and Radar;. These
recorded radar signatures (TV radial velocity distributions)
are accumulated to create a real radar dataset. In conven-
tional experimental HAR systems, the real radar dataset is
usually divided into a training subset and a testing subset to
train and test these HAR systems, respectively. However, for
this research, we only use the experimentally obtained radar
dataset to test our proposed simulation-based HAR system (see
Fig. 2).

Similar to any multiclass classifier, radar-based HAR sys-
tems require extensive amounts of recorded data for their
training. However, unlike other sensing modalities such as
cameras, radar systems often suffer from data scarcity.
To experimentally design a HAR system, real human subjects
must perform various types of activities in front of the MIMO
radar system in multiple directions. These requirements make
data collection time-consuming and costly. Additionally, the
recorded radar training dataset usually cannot be reused for
different antenna configurations and operating conditions. For
instance, changing the position of a transmitter or a receiver
antenna of the MIMO radar system can invalidate the entire
recorded training dataset.

B. Simulation-Based Design of HAR Systems

In this article, we propose a feasible alternative to overcome
the aforementioned limitations of radar-based classifiers, par-
ticularly with regard to the scarcity of radar data. To develop
real-world HAR systems, we propose a comprehensive
simulation-based framework that utilizes MoCap systems to
synthesize realistic MIMO radar data, as depicted in Fig. 1(b).
The objective is to generate a simulated MIMO radar-based
training dataset by seamlessly simulating a large number of
realistic MIMO radar signatures without real human subjects
and a physical radar system.

The block diagram in Fig. 1(b) provides a general overview
of the proposed end-to-end simulation framework for HAR
systems. In Fig. 1(b), the activity simulation module synthe-
sizes the five types of human activities in the 3-D space
from motion data collected by the MoCap systems (see
Section III). The activity simulation module simulates 3-D
trajectories corresponding to different body segments of an
avatar, e.g., head, neck, torso, and upper and lower extremities.
To simulate the human activities in multiple directions as
shown in Fig. 1(b), we rotate the positions of the transmitter
antenna Al.Tx and receiver antenna AI.R * in our simulation-based
framework for i = 1,2 (see Section V-B). For a desired
antenna configuration of the MIMO radar system, our channel
simulation module first transforms the 3-D trajectories into
TV propagation delays. Then, the channel simulation module
generates realistic RF or raw IQ data for the simulated TV
propagation delays and a set of scatterer weights. Eventually,
the radar signal processor arranges the simulated raw IQ data
in the fast- and slow-time domain and processes it to simulate
realistic radar signatures, i.e., range distribution, radial veloc-
ity distribution (micro-Doppler signature), and mean velocity
(mean Doppler shift).

We synthesize numerous examples of the five types of
human activities, simulate the corresponding radial velocity
distributions (micro-Doppler signatures), and store them in our
simulated radar dataset, as shown in Fig. 1(b). The proposed
simulation-based framework has no limits on the generation
of simulation data. The simulated radar dataset is used to train
the simulation-based HAR system, which is based on a DCNN
architecture. To demonstrate the practical importance and the
generalizability of this simulation-based framework, we need
to evaluate its performance in a real scenario. Therefore, the
proposed simulation-based HAR system is evaluated on a
previously unseen real radar dataset acquired with a mm-wave
distributed MIMO radar system and real human subjects,
as shown in the testing phase of Fig. 2. Note that we used an
identical radar signal processing block in Fig. 1 because the
simulated and real RF signals are structurally indistinguish-
able. More details on each block of the simulation-based HAR
system are provided in the following sections.

[Il. HUMAN MOCAP AND SYNTHESIS
This section explores several ways of capturing and syn-
thesizing human motion. First, biomechanical modeling and
its limitations will be briefly discussed. Second, wearable
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Fig. 2. Testing phase of both experimental and simulation-based direction-independent HAR systems. In the testing phase, the performance of the
simulation-based HAR system is evaluated against unseen real radar signatures.

sensors as a means of MoCap systems are briefly mentioned.
Third, we discuss optical MoCap systems such as Mixamo
[37] and Qualisys [38]. It is important to highlight that the
proposed simulation-based framework allows incorporating
synthesized or recorded motion data from diverse sources
such as biomechanical, wearable, and optical MoCap systems.
Lastly, we explain the process of generating 3-D trajectories
of human body segments using software such as Unity [32]
and Autodesk’s MotionBuilder [33]. These software programs
(3-D animation tools) help us augment the motion data at the
motion-layer synthesis.

A. Biomechanical Modeling of Human Body Segments

The utility of biomechanical modeling [39] for human body
segments is undeniable, yet its complexity is inherently high,
primarily due to the intricate nature of the human body. Also,
it is difficult to develop generalizable biomechanical models
because individuals differ in physiology, anatomy, and motor
function. Moreover, the interaction between the human body
and the environment can further increase the complexity of a
biomechanical model.

Obtaining high-fidelity motion data of human body seg-
ments can be more feasible and accessible through MoCap
repositories and systems such as Mixamo and Qualisys.
In addition, the Unity and MotionBuilder software provide

a cost-effective and pragmatic alternative to biomechanical
modeling, enabling the seamless and dynamic simulation of
new motion data in a virtual environment. Therefore, we use
MoCap systems to capture the human motion and employ 3-D
animation tools from MotionBuilder and Unity to synthesize
and subsequently augment human motion.

B. Wearable MoCap Systems

Wearable MoCap systems offer a versatile and cost-effective
solution for capturing human movement data. The sensors, typ-
ically accelerometers and gyroscopes, are often integrated into
garments to capture data on the orientation and acceleration
of body segments. In this area, Rokoko Smartsuit Pro [40]
is a viable choice with multiple inertial sensors for real-time
tracking of an individual’s skeletal movements. It facilitates
seamless transfer of motion data to various applications such
as sports, biomechanical analysis, and virtual reality. Com-
pared to optical MoCap systems, wearable MoCap systems
have limitations in terms of accuracy. Additionally, wearable
MoCap systems can suffer from magnetic interference, which
can affect the precision of the MoCap data.

C. Optical MoCap Systems
We used Mixamo and Qualisys optical MoCap systems
to capture motion data for human activities. Mixamo is an
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online platform that offers an extensive selection of readily
available MoCap data captured from real performers [41].
Our Qualisys MoCap system was based on six Miqus M3
cameras connected in a daisy chain, capable of tracking
passive reflective markers placed on a subject at 340 frames/s.
The Qualisys MoCap system includes proprietary Qualisys
track manager (QTM) software that provides an interface for
tasks such as camera configuration and calibration, session
setup and organization, marker-set definition, and MoCap
measurements. Furthermore, QTM offers a suite of tools for
marker labeling, data processing, analysis, and the export of
MoCap data, thereby enabling seamless integration with third-
party software. The camera system was calibrated according to
the QTM guidelines to ensure accurate tracking of the markers
and capturing their position and orientation in 3-D space. Next,
41 passive reflective markers were attached to a full body
suit. The participant wore the suit, and we recorded a MoCap
trial to generate an automatic identification of markers (AIMs)
model. This model applies computer vision, localization, and
motion estimation techniques to detect and track markers,
facilitating an automated workflow for identifying and labeling
markers. Once the AIM model was created, the skeleton solver
function of QTM was used to calibrate the skeleton based
on the marker positions. Next, a person’s motion data was
recorded for four activities: normal walking, standing up from
a chair, sitting down onto a chair from a standing position, and
picking up a small object from the floor. The recorded skeleton
data was then exported in the Filmbox (FBX) file format and
further processed in the MotionBuilder software. Note that for
the falling activity, the MoCap data was relatively difficult
to collect due to markers attached to the body. Therefore,
we obtained MoCap data of the falling activity from Mix-
amo [37], a freely accessible online platform. In the next step,
we import the acquired MoCap data into specialized software
such as Unity or MotionBuilder, which are equipped with
powerful tools that allow for the creation of comprehensive,
meticulous, and lifelike 3-D animations.

D. 3-D Trajectories of Human Body Segments

By using the basic MoCap data and the 3-D animation tools,
we synthesized, augmented, and visualized five human activ-
ities: falling on the floor, walking in an indoor environment,
standing up from and sitting down on a chair, and picking
up an object from the floor. Initially, the human activities
were simulated and varied in a single direction or at an
aspect angle of 0° with the help of 3-D animation tools,
as shown in Fig. 1(b). However, we also needed to synthesize
multidirectional human activities to realize a simulated MIMO
radar-based direction-independent HAR system. Instead of
using 3-D animation tools, we simulated multidirectional
human activities more conveniently and efficiently by spatially
rotating the transmitter and receiver antennas of the radar
subsystem, Radar; (see Section V-B).

Following the synthesis of the human movement, we extract
the spatial trajectories corresponding to each body segment of
the avatar. To track the different body segments, 21 simu-
lated point scatterers were placed on the avatar (see Fig. 3),
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Fig. 3. Virtual 3-D propagation environment comprising a

non-stationary avatar with 21 simulated point scatterers on its body
segments and a simulated 2 x 2 multiperspective MIMO radar system.

these model the actual body scatterers that backscatter the
transmitted RF signal to the receiver antennas of the 2 x 2 dis-
tributed MIMO radar system. We recorded the TV positions
(trajectories) of the simulated point scatterers in the 3-D space
for the simulated human activities. For example, the 3-D
trajectories of the simulated point scatterers for a simulated
walking activity are shown in Fig. 3.

At the outset, only 34 MoCap files were recorded, each
representing one of the five distinct types of human activities.
We visualized these activities using the Unity and Motion-
Builder 3-D animation tools, and computed the corresponding
3-D trajectories. To expand the total number of synthesized
human activities to 84, we applied data augmentation at the
motion-layer synthesis using the Unity and MotionBuilder
software (see Section V-A). Subsequently, we processed the
3-D trajectories in MATLAB for further data augmenta-
tion at the physical- and signal-layer syntheses. Although
data augmentation at the motion-layer synthesis may require
some attention to motion details, the physical-layer synthe-
sis and signal-layer synthesis data augmentation stages in
the proposed simulation-based framework are fairly auto-
mated. With the help of such multistage data augmentation
techniques, we generated 2826 micro-Doppler signatures
(TV radial velocity distributions) for each radar subsystem
of the multiple-input multiple-output (MIMO) radar sys-
tem. Section V provides more details on the multistage
data augmentation techniques furnished by the proposed
simulation-based framework.

IV. CHANNEL MODELING AND SIMULATION

In this section, we first present a geometrical 3-D indoor
channel that models an indoor propagation scenario using
the proposed simulation-based framework (see Fig. 3). Sec-
ond, we investigate the multipath components caused by
non-stationary simulated (real) point scatterers on avatar
(human) body segments and simulate the corresponding TV
propagation delays for a human activity. Lastly, we explain
how the simulated propagation delays can be used to synthe-
size a received RF signal, specifically for an FMCW 2 x 2
MIMO radar system.
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A. Geometrical Channel Model

We model and simulate a 3-D channel for an indoor envi-
ronment, which consists of a 2 x 2 distributed MIMO radar
system, a moving person, and stationary miscellaneous items
such as furniture and electronics, as illustrated in Fig. 1(a).
Recall that Radar; represents the ith radar subsystem of the
distributed MIMO radar system, AiTX is the ith transmitter
antenna, and Al.R"' is the ith receiver antenna for i = 1, 2. Let
[-]T denote the vector transpose operation. Then, the position
of the ith transmit (receive) antenna AiTX (AI.R") of the 2 x 2
MIMO radar system is represented by Cf'" = [xl.T *, yiTX, ziT"]—r
€ =[x, yf, 28T, as illustrated in Fig. 3.

A virtual propagation environment that resembles a real
geometrical 3-D indoor channel is depicted in Fig. 3. In a
real propagation environment, a moving human subject
has countless non-stationary scatterers. For this research,
we model these non-stationary bodily scatterers with £ =
21 non-stationary simulated point scatterers on a moving
avatar, as shown in Fig. 3. Moreover, in Fig. 3, C;(t) =
(), yi(2), z1(t)]T denotes the TV spatial trajectory of the /th
marker SO, d{;‘ (1) (dl}ff (#)) represents TV Euclidean distance
between the /th marker S) and the ith transmit antenna Al.T .
(receive antenna AZR"), wherei =1,2and [ =1,2,..., L.

For the /th marker S® and the ith radar subsystem Radar;,
the TV radial distance d; ; (t) is equal to one-half of the overall
propagation distance, i.e., dj ; (t) = (dlﬁ? (t)+dllfi*’ (t))/2. Fig. 3
shows that the antenna configuration {Cl.T“,CiRX} of the ith
radar subsystem, Radar;, follows a monostatic configuration,
where CiT = CiR * for i = 1,2. This leads to the following
simplification: dj;(t) = d{'l‘f @ = dllir‘ (). The obtained
TV radial distances d ;(t) of the £ non-stationary simulated
point scatterers play an important role in simulating the TV
propagation delays ‘L’l-(l)(t), as explained in Section IV-B.

B. Modeling of Multipath Components Caused by
Human Body Segments

RF signals generally experience multipath propagation, par-
ticularly in indoor environments with numerous stationary and
non-stationary reflective objects. In Fig. 3, the transmitted RF
signal takes on multiple propagation paths, traveling from
the transmitter antenna to the receiver antenna via multiple
real (simulated) point scatterers on the human (avatar) body
segments. Recall that in our simulation-based framework, the
21 simulated point scatterers on the avatar’s body segments
basically model the actual bodily scatterers that scatter the
transmitted RF signal back to the receiver antennas of the
2 x 2 distributed MIMO radar system. For this study, by virtue
of the cross-channel interference mitigation technique [16],
we assume that the two radar subsystems, Radar; and Radary,
of Ancortek’s mm-wave radar system do not interfere with
each other.

In the proposed simulation-based framework, we only
consider multipath components originating from the £ =
21 non-stationary dominant and non-dominant scatterers
located on various body segments of the avatar, as shown in
Fig. 3. The multipath components originating from stationary
dominant scatterers, such as walls, furniture, and floor, are

excluded from the analysis because they are easily filtered out
through signal preprocessing. Moreover, the bistatic compo-
nents of the 2 x 2 distributed MIMO radar systems are not
considered for this study. However, if required, the bistatic
components of the 2 x 2 distributed MIMO radar system
can be easily simulated in the proposed simulation-based
framework.

The receiver antennas receive the multipath components,
or multiple copies of the transmitted RF signal, with dis-
tinct TV propagation delays ri(l)(t). For Radar;, the /th TV
propagation delay r[.(l)(t) is related to the I/th TV radial
distances dj ; (¢) according to the relation tl.(l) (t) = 2d;,(t)/co,
where cg is the speed of light. Within the framework of radar
sensing, the synthesized motion is completely characterized
by the simulated TV propagation delays ri(l)(t), as explained
in Section IV-C.

For the five distinct types of simulated human activities
and Radar;, Fig. 4 shows the simulated TV propagation
delays rl(l)(t) of the £ = 21 simulated point scatterers.
The /th TV propagation delay ri(l)(t) depends solely on the
spatial trajectory of the /th marker. Therefore, when a person
suddenly falls, the abrupt change in the spatial positions
of the upper-body segment is reflected in the corresponding
TV propagation delays rl(l)(t), as illustrated in Fig. 4. In
Fig. 4, the TV propagation delays rl(l)(t) demonstrate the
repetitive nature of the walking activity. By analyzing the TV
propagation delays ‘L'l([) (1), it is evident that the simulated walk-
ing activity comprised four steps toward Radar;. In contrast,
the TV propagation delays tl(l) (#) in Fig. 4 for the other three
types of simulated human activities in place, namely sitting,
standing up and picking up an object, show smaller variations
corresponding to the mobility of the simulated point scatterers.

C. Channel Modeling for RF Sensing

This section elucidates the simulation of a composite RF
signal or equivalently, raw IQ data in fast time ¢’ and slow
time #, corresponding to a specific motion. To simulate the
composite RF signal of Radar;, we need user-defined scatterer
weights, a user-defined antenna configuration {CI.T", CZ.RX}, and
the simulated TV propagation delays ri(l)(t) corresponding to
the spatial trajectories of the simulated point scatterers for a
specific motion or a human activity (see Figs. 1(b) and 4). For
this study, we consider the £ bodily scatterers to be long-time
non-stationary over the slow time ¢, and short-time stationary
over a limited chirp duration Ty, [42]. In the following, for the
FMCW 2 x 2 distributed MIMO radar system placed in the
indoor wireless channel, we synthesize the complex baseband
signal called the composite beat signal sp, ; (', 7) [43], where
i = 1, 2. Additionally, we discuss an interpolation procedure
that is integral to our channel-simulation module of Fig. 1(b),
as it mitigates the issues of aliasing in the Doppler domain.

FMCW radar systems operate by repetitively emitting a
chirp waveform c¢(¢') [44], which is scattered back to the
receiver antenna by multiple stationary and non-stationary
scatterers present on the human body segments and other
objects in the environment. A quadrature mixture element
integrated into the receiver chain of the FMCW 2 x 2 dis-
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Fig. 4. Simulated TV propagation delays T1(0(f) of the L simulated point
scatterers for the five distinct human activities and Radary.

tributed MIMO radar system is responsible for transforming
the incoming passband RF signal into complex baseband
(composite beat) signal sp, ; (#', t). The received complex base-
band signal sp,;(#',¢) is sampled in the fast-time domain by
the analog-to-digital converter (ADC) module of the receiver
with the discrete sampling interval 7 in the fast-time domain.
Subsequently, for the coherent processing interval (CPI) of
the ith radar subsystem, Radar;, the discrete samples of the
received complex baseband signal s, ; (¢, ) are organized in
fast- and slow-time domains. During the CPI, the phase of
Radar; is preserved. This organization or rearrangement of the
discrete fast- and slow-time samples results in the radar’s raw
IQ data matrix D; [42], which can be expressed as

5p,i(0,0) sp,i (T, 0)

Sb,i(07 Tsw) Sb,i(TSv Tsw)
D = ) )

Sb,i(oy (Ne — DTsy) Sb,i(Ts’ (Ne — DTsy)
Sb,i(Tsw -7, 0)
Sp,i (Tsw — Ty, Tsw)
) (1)

Sb,i(Tsw —Ts, (Ne — DT5y)

where N, represents the number of chirps present within the
CPI of the FMCW radar system.

We want to synthesize the actual received complex baseband
signal sp, ; (¢', t) of the FMCW 2 x 2 distributed MIMO radar
system, so that we can simulate the radar’s raw IQ data
matrices D; for i = 1,2. The received complex baseband
signal sp;(t',7) of Radar; can be synthesized by adding up
the £ distinct beat signals s,ﬁlj. (t',t) [42], [43], each corre-
sponding to the /th multipath component originating from the
[th simulated point scatterer, i.e.,

L
spit' 1) =D syt ). )
=1

For Radar;, the /th beat signal sl(jlj. (¢, t) or the Ith multipath
component can be simulated by using the expression [42]

s @0 =" aPwexp | (22 01 + 9" 0)]
n=0

x 81— (t) = T) (3)

where al.(l) (1), fb(ll) (1), and q&f” (#) denote the TV path gain, beat

frequency, and phase of the /th beat signal slgli-(t’ , 1), respec-

tively, and §(-) denotes the Dirac delta function. The symbol
T, in (3) represents the nth discrete slow-time instance, which
is determined by the chirp duration Ty, such that T, = nTyy,,

where n is a non-negative integer. Let y represent the slope
of the chirp signal. Then, the /th TV beat frequency fb(ll) (t) of

Radar; in (3) is given by £, (1) = 7"’ ()y. The ith and Ith TV
phase qbi(l) (t) component is determined by the TV propagation
delay rl.(l)(t) according to ¢i(l)(t) =2r fotl-(l) (t), where fj is
the carrier frequency.

The TV path gain al.(l)(t) in (3) models the strength of the
Ith marker in the received signal. For Radar; and £ simulated
point scatterers, we use time-invariant path gains al.(l) in (3) to
avoid unnecessary complexity. Therefore, we have al.(l)(t) =

ai(l). In this study, for the five types of synthesized human
activities, the values of the time-invariant path gains al.(l)
are adjusted by investigating the actual TV radial velocity
distributions p; (v, t) (see Section VI) and the body surface
area [45]. It is worth noting that by using different sets of
time-invariant path gains, we can augment the radar data at
the signal-layer synthesis for a synthesized human activity (see
Section V-C).

We consider the £ bodily scatterers to be long-time non-
stationary over the slow time ¢, and short-time stationary over
the fast time ¢ for a limited chirp duration Ty, [42]. Thus,
the TV propagation delays ti(l) (t), beat frequencies fb(.ll.) ®,
and phases qb,.(l)(t) of the £ simulated point scatterers are only
a function of the slow time ¢. For Radar; and the kth slow-
time instant #; [kth row of the raw IQ data matrix D; in (1)],
the short-time stationarity assumption simplifies the synthesis
of the discrete complex baseband signal sp;(¢, 1) for a
synthesized human activity. At the slow-time instant #, the IQ
components of the complex baseband signal sp ; (¢, #) can be
digitally simulated as a sum of tone signals, i.e., s ; (¢, tx) =
Zf:] sé{z-(t/,tk), where the Ith tone signal sl(,l_z.(t’, ) has
the constant (time-invariant) beat frequency fh(ll) (tr) and
phase ¢i(l) ().

Within the framework of radar sensing, the synthesized
motion can be completely characterized by the simulated TV
propagation delays tl.(l) () of the £ simulated (real) point scat-
terers. The £ TV propagation delays rl.(l)(t) are computed from
the TV spatial trajectories C;(¢) of the £ simulated point scat-
terers, which are animated with a fixed frame interval denoted
by Ty. Therefore, the frame interval Ty is the slow-time
sampling interval of the simulated TV spatial trajectories C;(¢)
and the propagation delays rl.(l) (t). In actual radar systems,
the slow-time sampling interval is equal to the radar’s pulse
repetition interval (PRI), which is smaller (better) than the
frame interval Ty. Concretely, for the actual (simulated) raw
IQ data matrix D; in (1), the slow-time sampling interval Ty,
is equal to the radar’s PRI (frame interval Tr). Thus, to ensure
that the simulated frame interval Ty is equal to the radar’s
PRI, we interpolate the spatial trajectories or the simulated TV
propagation delays tl.(l) (t) in our simulation framework. This is
necessary because the upper limit of the actual (synthesizable)
radial velocity, denoted by vmax (vfnax), is determined by the
radar’s PRI (animation’s frame interval 7). Let A denote the
wavelength, then we have vmax = A/(4 - PRI), and v),, =
A @ATy).
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V. MULTISTAGE DATA AUGMENTATION

In this section, we explore multistage data augmen-
tation techniques (see Fig. 5) provided by the proposed
simulation-based framework that allow us to simulate large
quantities of quality radar signatures. First, we discuss a
motion-layer data augmentation technique, where various ani-
mation parameters and avatar characteristics, e.g., size and
speed, can be randomly varied to synthesize a variety of human
motions. We then explain data augmentation of the physical
layer that allows us to vary numerous physical-layer configu-
rations and the radar’s operating parameters, e.g., number of
antennas and their setup and PRI. Lastly, we delve into a data
augmentation technique at the signal-layer synthesis.

A. Motion-Layer Synthesis

For the five types of distinct human activities, we acquired
a small and basic MoCap dataset from the Mixamo platform
and the Qualisys MoCap system. A person with a height
of about 1.74 m performed the activities several times in a
room equipped with the Qualisys MoCap system. The MoCap
dataset we acquired comprised only 34 MoCap files, each
representing one of the five types of activities. The 3-D
animation tools from both Unity and MotionBuilder software
were used to visualize the basic MoCap data for the human
activities. We complemented the basic MoCap data with the
3-D animation tools to render realistic and diverse motion data.

In this study, one of our objectives is to synthesize a
large amount of data representing real human motions at the
motion-layer synthesis of our simulation-based framework.
To this end, we first adjusted the height of the avatar in the
MotionBuilder software by reducing it to 1.52 m (5 ft) and
increasing it to 1.83 m (6 ft). We then aligned the MoCap data
to the avatars with different sizes to account for the effects
of avatar dimensions and extended the data on the motion-
layer synthesis. Therefore, in the Unity and MotionBuilder
software, the total number of synthesized human activities
were increased to 84 by applying data augmentation at the
motion-layer synthesis stage, as indicated by Fig. 5. Note
that we can synthesize complex, varied, and entirely new
sequences of human movements by using the blend tree
animation tool in the Unity software that facilitates seamless
transitions between multiple humanoid animations. For the
augmented human-motion data (synthesized human activities),
we computed TV spatial trajectories (see Section III-D) and
imported them into MATLAB for further data augmentation
at the physical- and signal-layer syntheses (see Fig. 5).

B. Physical-Layer Synthesis

The simulation-based framework allows the adjustment
of the radar operating parameters and physical-layer
configurations, e.g., PRI, carrier frequency f., bandwidth By,
and antenna configuration {CI.T", Cin}. Through these adjust-
ments, it is possible to both extend the simulated radar
data and simulate specific scenarios. At the physical-layer
synthesis data augmentation stage, appropriate antenna con-
figurations {CI.TX,Cl.R"} were chosen to simulate the two radar
subsystems, Radar; and Radar, as shown in Fig. 6. To main-
tain consistency with the actual 2 x 2 distributed MIMO

radar system depicted in Fig. 1(a), the emulated radar system’s
operating parameters, such as PRI, carrier frequency f,., and
bandwidth B,,, were kept the same.

We first simulated different positions of the radar subsys-
tems, Radar; and Radar, by using the rotation matrix Ry (0g;),
which can be expressed as [46]

COS '9Ri 0 sin QR,'
Ry(Ori) = 0 1 0 “4)
— sin 9Ri 0 COS@R,'

where Og; denotes the clockwise angular rotation along the
y-axis for Radar; and i = 1, 2. Initially, the simulated radar
subsystems, Radar; and Radar,, were placed at 6g; = 0°
€l ~cf ~13,1.1,017) and Ogy = —90° (C;F &~ CF* ~
[0, 1.1, 3]T), respectively, i.e., CzTX = Ry(—9O°)ClTX and Cf*’ =

Ry(—90°)ClR *. In other words, Radar, can be simulated by
simply rotating Radar; counterclockwise by 90° along the y-
axis, as illustrated in Fig. 6. Using this method, we emulated
a 2 x 2 distributed MIMO radar system, similar to the actual
radar system in Fig. 1(a), to simulate the MIMO radar signa-
tures. Note that, with the use of the rotation matrix Ry (0g;),
any number of radar subsystems, sensors, or nodes can be
simulated at the physical-layer synthesis data augmentation
stage.

Recall that the human activities were initially simulated with
3-D animation tools in a single direction or at an aspect angle
of 0°. However, to develop a simulated MIMO radar-based
direction-independent HAR system, we required multidi-
rectional human activities. Compared to the motion-layer
synthesis, the required multidirectional human activities can
be simulated more easily and efficiently at the physical-layer
synthesis data augmentation stage. The multidirectional human
activities are simulated by spatially rotating the transmitter and
receiver antennas of the radar subsystem Radar;, for i = 1, 2.
The angular difference between the two radar subsystems is
always kept at 90°, i.e., g1 — Oga = 90°, as depicted in
Fig. 6. The different rotations of Radar; and Radary (6g1, Og2)
correspond to the different directions of the human activities,
where (O, 0r2) € [—180°, 180°). We simulated 18 differ-
ent directions of the human activities at the physical-layer
synthesis data augmentation stage, namely Direction 1 to
Direction 18, as illustrated in Fig. 6. For instance, for a human
activity, Direction 11 in Fig. 6 corresponds to the scenario,
where (6r1, Or2) = (—160°, 110°).

To summarize, at the physical-layer synthesis, we first simu-
lated the two radar subsystems, Radar; and Radar,, to emulate
the 2 x 2 distributed MIMO radar system. Second, by using
the rotation method, we simulated the multidirectional human
activities by simultaneously rotating the two radar subsystems,
as illustrated in Fig. 6. Thus, our proposed simulation-based
framework includes a physical-layer synthesis data augmen-
tation stage, which efficiently and conveniently transforms
and augments unidirectional motion data into multidirectional
motion data and single radar data into multiple radar data.

C. Signal-Layer Synthesis

The signal-layer synthesis data augmentation stage of the
proposed simulation-based framework allows to simulate real-
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Fig. 6. Simulation of a multiperspective 2 x 2 MIMO radar system and
multidirectional human activities.

istic and diverse TV radial velocity distributions p;(v,t)
(micro-Doppler signatures) for a single human activity.
Using (3), we can simulate numerous multipath components
corresponding to the stationary and non-stationary scatterers
in the received complex baseband signal s, ; (¢, 1) [see (2)].
In this research, multipath components originating from
stationary scatterers, such as walls and furniture, are not
considered, as they can be effectively filtered out during
the signal preprocessing stage. However, if necessary, the
signal-layer synthesis can simulate numerous complex prop-
agation scenarios, e.g., those with or without radar clutter,
by adjusting the path gains ai(l)(t), beat frequencies fb(ll) ®,
and phases ¢i(l)(t) of the /th beat signal S‘;l)l (t', t) for Radar;.

For the five types of synthesized human activities, we first
adjusted the values of the time-invariant path gains al.([) by
looking into the actual radar signatures (TV radial velocity
distributions p; (v, t) [see Section VI)] and the body surface
area [45]. Subsequently, we augmented the simulated radar
signatures by varying the power levels (time-invariant path
gains ai(l)) of the individual multipath component. Therefore,
at the signal-layer synthesis of the proposed simulation-based
framework, we augmented the radar data by using different
sets of time-invariant path gains ai(l) for the five types of
synthesized human activities.

In this section, we discussed three data augmenta-
tion techniques implemented at multiple layers of the
proposed simulation-based framework: the motion-layer syn-
thesis, physical-layer synthesis, and signal-layer synthesis.
By applying these multistage data augmentation techniques,
we simulated 2826 TV radial velocity distributions p; (v, t)
(micro-Doppler signatures) for each radar subsystem of the
2 x 2 MIMO radar system. In other words, for the two radar

subsystems, Radar; and Radarp, a total of 5652 TV radial
velocity distributions p;(v,t) were simulated. To conclude,
the multistage data augmentation methods in the proposed
simulation-based framework are quite useful and they allowed
for increased variability, realism, and diversity in the simulated
radar dataset. With these methods, we were able to trans-
form and augment the basic motion data (34 MoCap files)
into 5652 radar signatures, which indicates the utility of the
proposed simulation-based approach for realizing radar-based
classifiers.

VI. MIMO RADAR SIGNATURES

In this section, we delineate the radar signal processing
module of Fig. 1 that generates the MIMO radar signatures:
range distribution, TV radial velocity distribution p; (v, t)
(micro-Doppler signature), and mean velocity (mean Doppler
shift). For i 1,2, the radar signal processing module
transforms the actual and the simulated complex baseband sig-
nals sp; (#', t) into the TV radial velocity distributions p; (v, t).
The first step is to compute the beat frequency func-
tion Sp ;i (fp, t) as [47]

Tow

Spilfont) = [ spi(d, e It ar’ (5)

0
where fj refers to the beat frequency.

Let f and f, max denote the Doppler frequency and max-
imum beat frequency, respectively. Then, the micro-Doppler
signatures S; (f, t) are obtained from the beat frequency func-
tion Sp ;i (fb, t) according to the relation [35]

fh‘max o0

m gl 2
sin=| [ [ Suthawe = ne P aray,
0 —oo

(6)

where t” denotes the running time, and W,(-) denotes a
rectangular window function that spans over 64 chirp intervals.
According to [43], the TV radial velocity distribution p; (v, t)
can be obtained as

pi(v,1) = (N

ffooo S; (%v t)dv
where v denotes the radial velocity. From the TV radial
velocity distribution p;(v, ) in (7), we can compute the TV
mean radial velocity v;(¢) as [43]

e¢]

v;i(t) = / vpi (v, t)dv.
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For Radar;, the TV beat-frequency signatures Slf( fp, t) can
be computed as

PRF oo 5
Sy =| [ [ Sih W0 = e aray

0 —o0

)

where PRF is the pulse repetition frequency of the radar
system, and i = 1, 2. Finally, for the 2 x 2 MIMO radar
system, the TV range distribution p/(r,?) can be obtained

as [42]
S{(%—Zr, t)

pi(r,t) = (10)

Recall that the real (simulated) point scatterers on the human
(avatar) body segments, each with unique TV radial velocity
components, scatter the transmitted RF signal back to the
receiver antennas of the 2 x 2 distributed MIMO radar system.
For Radar; and the £ distinct non-stationary real (simulated)
point scatterers, the TV radial velocity distribution p; (v, t)
in (7) indicates the strengths of the radial velocity components
over the slow time ¢ (see Fig. 7). The TV mean radial
velocity v; (¢) in (8), obtained from the TV radial velocity dis-
tribution p; (v, t), shows the weighted average of the velocity
components of all £ real (simulated) bodily scatterers over the
slow time ¢ (see Fig. 8). Moreover, the strengths of the TV
radial distances of all £ non-stationary real (simulated) point
scatterers over the slow time ¢ are provided by the TV range
distributions p/(r, ). Due to the current practical limitations
of radar systems, the TV range distributions p; (r,t) are not
usually used to realize HAR systems, so their simulation
results are omitted for brevity. However, for completeness and
possible future applications, we have included the expression
in (10) to simulate the TV range distribution plf (r, 1).

In Section V, we saw that multidirectional human activities
can be simulated by simultaneously rotating the two radar
subsystems, Radar; and Radar,, as shown in Fig. 6. For some
of the 18 directions and all five types of simulated (actual)
human activities, the simulated (actual) TV radial velocity
distributions, pi(v,t) and py(v,t), are shown in Fig. 7(a)
[Fig. 7(b)]. The images of the simulated (actual) TV radial
velocity distributions, pi(v,?#) and p>(v,t), were used to
train (test) the proposed 2 x 2 MIMO radar-based direction-
independent HAR system. In Section VII, the two colored
images of the TV radial velocity distributions, pi(v,?) and
p2(v, t), will serve as input feature maps to the HAR system.
Moreover, for the five types of human activities and the
two radar subsystems, Radar; and Radar;, the simulated and
actual TV mean radial velocities v;(¢) are depicted in Fig. 8.
The utility and effectiveness of the proposed simulation-based
framework is evident from the high-fidelity simulated radar
signatures, which are quite similar to the actual radar signa-
tures, as exemplified by Figs. 7 and 8.

To quantitatively assess the similarity between simulated
and real radar signatures, we employ the dynamic time warp-
ing (DTW) algorithm [48]. Table I presents the normalized
DTW distances between the real and simulated TV mean
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Fig. 7. (a) Simulated TV radial velocity distributions, p (v, f) and po(v, 1),
for the emulated multidirectional human activities. (b) Real TV radial
velocity distributions, pq(v, ) and po(v, 1), for the real multidirectional
human activities.
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radial velocities v;(¢) from Fig. 8 across five human activities.
Remarkably, the DTW distance metric is minimized for each
activity, indicating close resemblance between the simulated
and real radar signatures. For example, for the sitting activity,
a DTW distance of 0.01 between the simulated and real TV
mean radial velocities v; (t) demonstrates precise replication of
this pattern. This consistent trend across all activities confirms
the accuracy of our approach in simulating realistic radar data.

VIl. SIMULATION-BASED HAR SYSTEM

This section elucidates the training and testing phases of our
simulation-based direction-independent HAR system that was
realized by using a DCNN-based multiclass classifier. First,
we look into the design of the HAR classifier and its training
with the simulated radar dataset. Then, to demonstrate the
practical importance and the generalizability of our proposed
simulation framework in real-world scenarios, we used a real
2 x 2 MIMO radar dataset to evaluate the classification perfor-
mance of the trained simulation-based direction-independent
HAR system.

A. Design of the Simulation-Based HAR System

To develop a simulation-based HAR system, we first cre-
ated a large labeled dataset of simulated radar signatures.
For Radar; (i = 1,2) of the 2 x 2 MIMO radar system
and the five types of humanoid activities, we simulated
2826 TV radial velocity distributions p;(v,t) by using the
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TABLE |
DTW DISTANCE METRIC IS CALCULATED FOR THE SIMULATED AND
REAL (ACTUAL) TV MEAN RADIAL VELOCITIES Vj(f) OF FIG. 8
Activity ype | i wan sed s pick K
L fal 003 030 014 021 0.14 J=——>pFeature vector
g walk 0.28 0.01 0.36 0.03 0.22
E stand 0.06 0.24 0.03 0.11 0.05
B osit 0.17 0.05 0.17 0.01 0.08 < Convolutional, ReLU
pick 0.09 013 0.08 004 0.02 Max-pool, dropout(lO%)%
é Flatten
proposed multistage data augmentation techniques of our
simulation-based framework (see Section V). Thus, the sim- @ .
ulated radar dataset consisted of a total of 5652 simulated 7 Mul(t;r-layertpelzr;iptron
TV radial velocity distributions p; (v, t), which were used fﬁ » R (:)p Ou:(: 0:)
to train the proposed simulation-based direction-independent ig’ﬁ?’g d 1 Oa &
(multiperspective) HAR classifier. ~q 2 g % : : M) *;2,
The simulation-based direction-independent HAR system - 2 E é-»g
comprises two feature extraction networks (FENs) and a multi- L B é‘ % ;5 g
layer perceptron (MLP) network. Fig. 9(a) illustrates the FEN = & 2T -
that computes relevant features from the simulated (actual) s }t
. . .. . . .. N o
TV radial velocity distributions p;(v,t) during the training N =

(testing) phase for the ith radar subsystem, Radar;. It consists
of four convolutional layers, containing 64, 72, 80, and 96 2-D
trainable kernels with dimension kg either equal to 4 x 4 pixels
or 3 x 3 pixels. Each 2-D kernel uses the rectified linear unit
(ReLU) activation function to avoid the problem of vanishing
gradients [49]. The max-pool layers were employed to reduce
redundancies in the feature maps. To avoid overfitting the
training data, we used dropout layers with the dropout rates
of 10% and 15% for the FEN and MLP, respectively. The
flatten layer of our FEN rearranges the extracted features into
a vector of order 18816 x 1, as shown in Fig. 9(a).

The two FENs in the DCNN-based multiperspective HAR
system are identical, as shown in Fig. 9(b). As Radar; and
Radar; illuminate the indoor environment from multiple per-
spectives, the extracted features from the two TV radial
velocity distributions, p1(v, ¢) and p>(v, t), are merged by the
multiperspective feature fusion block, as shown in Fig. 9(b).
Subsequently, based on the received multiperspective features,
the MLP network is trained to detect the type of the human
activity. The multiperspective feature fusion block enables the
HAR classifier to recognize the human activities regardless
of their directions. Note that the design of this multiperspec-
tive deep neural network closely resembles the architecture
reported in [35]. To train the parameters of our DCNN-based
multiperspective HAR classifier, we used the adaptive moment
estimation (Adam) optimizer [50] and the simulated radar
signatures of multidirectional human activities. The training
dataset, comprising 2826 pairs of simulated TV radial velocity
distributions p; (v, t), was further divided into training and
validation subsets in an 80: 20 ratio. During the training phase,
our DCNN-based multiperspective HAR classifier showed no
signs of overfitting, as demonstrated by the training and
validation curves in Fig. 10.

B. Testing of the Simulation-Based HAR System

To evaluate the performance of the trained 2 x 2 MIMO
radar-based multiperspective HAR classifier in a real-world
setting, we used a real radar dataset recorded by Ancortek

(b

Fig. 9. (a) Feature extraction network, FEN, based on convolutional
filters. (b) Proposed DCNN-based multiperspective HAR classifier that
is trained (tested) using the simulated (real) HAR dataset.

1.0 -
g //
£0.8 - Training loss
=
3 Validation loss
£0.6 1 ini
g5V —— Training accuracy
é oad N T Validation accuracy
0.2 1

0 10 2'0 3'0 40 50
Epoch #

Fig. 10. Training history of our simulation-based direction-independent
HAR system.

SDR-KIT 2400T2R4, as shown in Fig. 2. The operating
parameters and antenna configurations of the real and the
simulated 2 x 2 MIMO radar systems were kept similar for
consistency. Specifically, we set the PRI, carrier frequency f,
and bandwidth B, of the real and simulated MIMO radar
systems to 0.5 ms, 24.125 GHz, and 250 MHz, respectively.
For Radar; and Radar,, the antennas were placed at C]T A
CH ~[3,1.1,0]T and C;* ~ C;* ~ [0, 1.1, 3]7, respectively.

A total of 875 multidirectional human activities were
recorded with the 2 x 2 MIMO radar system from six
human subjects, including a female participant. Thus, the
real radar dataset consisted of 1750 TV radial velocity dis-
tributions p; (v, t) (micro-Doppler signatures) for the two
radar subsystems, Radar; and Radar,. As a direct result
of this extensive measurement campaign, the simulation—real
(training—testing) data ratio approximately came out to
be 76:24. Our simulation-based framework enabled the
realization of the simulation-based direction-independent HAR
system, which exhibited remarkable performance and efficacy
in the real world, as demonstrated by the confusion matrix in
Fig. 11. For each of the five types of multidirectional human
activities, the number of correct classifications is represented
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Fig. 11.  Confusion matrix of our simulation-based multiperspective

HAR classifier with a classification accuracy of 97.83%.

TABLE Il

COMPARING THE CLASSIFICATION PERFORMANCE OF

STATE-OF-THE-ART RF-BASED HAR APPROACHES

Approach Training data type & brief description  Accuracy

Wi-Sense [14] Involves measurement data; Obtaining 97.8%
fingerprints from the Wi-Fi channel
state information (CSI)

Convolutional Involves measurement data; 92%

neural network Unsupervised learning and data

(CNN)-LSTM [54] fusion using LSTM

Few-shot Involves measurement data; 91.6%

adversarial domain Discovering shared feature spaces in

adaptation training datasets

(FS-ADA) [55]

CNN-recurrent Involves measurement data; 90.8%

neural network Extracting patterns over space and

(RNN) [56] time

Joint domain and Involves measurement data; Utilizing 87.6%

semantic transfer 10% labeled radar data for domain

learning adaptation

(JDS-TL) [12]

Wasserstein refined Synthesizing data with GANs 94.9%

generative utilizing limited measurements;

adversarial network ~ Employing a refinement model to

with gradient synthesize high-fidelity spectrograms

penalty

(WRGAN-GP) [57]

Multibranch GAN-centered data generation using 89.2%

generative limited real data; Physics-informed

adversarial network  method improving GANSs for accurate

(MBGAN) [58] micro-Doppler synthesis

Vid2Doppler [53] Simulation-based training; Converting 81.4%
video data into Doppler data

Our simulation- Simulation-based training; Converting 97.8%

based approach motion data into radar signatures

by the first five diagonal entries of the confusion matrix. The
green colored entries in the last row and column exhibit the
precision and recall [51] in Fig. 11. Finally, the white colored
entry of the confusion matrix shows the overall classification
accuracy of our simulation-based direction-independent HAR
system, which is 97.83%. As our test dataset was sufficiently
balanced, the macro-average Fl-score [52] came out to be
approximately 97.6%, which is close to the overall classifica-
tion accuracy.

For RF-based HAR systems, asserting the superiority of
one method proves challenging, given their tailored design
to address diverse research challenges. Nonetheless, Table II
presents the performance of various contemporary HAR sys-

tems, utilizing classification accuracy for comparison. Notably,
the measurement-based HAR methods and those partially
utilizing measurement data demonstrate strong classification
accuracies. The Vid2Doppler [53] method, which translates
video to radar data, achieves an accuracy of 81.4%, while our
simulation-based approach, converting MoCap data to radar
data, achieves a higher accuracy of 97.8%, both utilizing
entirely simulated training data.

This section demonstrated the utility and efficacy of
the simulation-based framework in the real world. The
classification accuracy of the simulation-based direction-
independent HAR system is comparable to the current
HAR systems [18], [59], with the additional considera-
tion of the multidirectional HAR problem. Moreover, our
simulation-based framework is unique in its ability to generate
realistic, diverse, and unlimited labeled MIMO radar datasets
with software-defined operating parameters and configura-
tions. Therefore, the proposed simulation-based framework
in Fig. 1(b) can be readily used to develop other SISO
and MIMO radar-based classifiers, e.g., for sign language
detection.

VIII. CONCLUSION

The progression of SISO and MIMO radar-based classifiers
is primarily impeded by the unavailability of large labeled
training datasets. Therefore, as a proof-of-concept, we have
presented in this work a simulation-based approach to address
the concern of data scarcity for monostatic, bistatic, and
multistatic SISO and MIMO radar systems. Although our
focus was on realizing a 2 x 2 MIMO radar-based direction-
independent HAR system, the utility of our simulation-based
framework extends beyond HAR applications.

The proposed simulation-based framework provides the
flexibility to synthesize software-defined human movements
using MoCap data-driven activity simulation. We proposed a
MIMO channel model to convert simulated 3-D trajectories
into received RF signals, while considering a user-defined
antenna configuration of a distributed MIMO radar system and
the multipath components emanating from the non-stationary
simulated point scatterers. The synthesized RF signals were
further processed to simulate the multiperspective MIMO radar
signatures used to implement our simulation-based direction-
independent HAR system.

To generate a diverse training dataset for radar-based HAR
systems, we introduced multistage data augmentation tech-
niques at the motion-layer synthesis, physical-layer synthesis,
and signal-layer synthesis within our simulation-based frame-
work. The multistage data augmentation techniques helped to
gain absolute control over various factors, such as avatar size,
location, velocity, acceleration, PRI, and radar antenna config-
uration. By using these techniques, we augmented the basic
MoCap data to 5652 micro-Doppler signatures, drastically
minimizing the overall training workload and demonstrating
the effectiveness of our simulation-based approach for real-
izing radar-based classifiers. Our MIMO radar-based HAR
system trained on the simulated micro-Doppler signatures
achieved classification accuracy of 97.83% when tested with
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actual radar data. As our study eliminates the need for direct
involvement of human participants and an actual radar system,
we believe that the proposed proof-of-concept will be of
great importance for training future SISO/MIMO radar-based
classifiers.

Our MIMO channel model opens up new research per-
spectives for modeling received RF signals at the scatterer
level. For example, future studies can explore the optimiza-
tion of scatterer-level parameters, such as the simulated TV
path gains. A limitation of this research is that the methods
discussed are not directly applicable to the moving clutter
scenario where the radar antennas are non-stationary. This
research gap is beyond the scope of this work and can be
addressed in future studies.
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