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Abstract—We investigate the accuracy of different cali-
bration methods for the CyberGlove III for objective hand
function assessments. The accuracy is evaluated by means
of root-mean-squared errors (RMSE) between ground truth
and angles estimated by the glove. Additionally, we propose
two improvements. The first increases standardization capa-
bilities for the measurement of pure thumb carpometacarpal
joint flexion. The second increases the accuracy by extend-
ing an existing calibration method to all thumb and distal interphalangeal (DIP) joints. The best calibration method is
identified and compared to an across-subject calibration by means of RMSEs, highlighting the tradeoff between the
number of necessary measurements and the accuracy. Our proposed improvements both reduce the measurement effort,
while only the second improvement reduces the RMSEs substantially. The best calibration method yields RMSEs below
10◦ for most joints, while the across-subject calibration has RMSEs that are approximately 5◦–10◦ higher. We conclude
that the CyberGlove III is a suitable tool for objective monitoring of hand movement and function, and the across-subject
calibration has the potential to track the range of motion or frequency of joint movements. With this work, we provide an
overview for researchers to choose calibration methods suitable for their application depending on necessary accuracy
and possible extent of calibration measurements. This work further highlights potential obstacles, when such a glove is
used with patients.
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I. INTRODUCTION

MEASURING hand kinematics is an important topic
in clinical research, for example, in the context of

rheumatoid arthritis [1], to monitor hand motions objectively
during different tasks, or in general biomechanical research [2]
to investigate hand movements. The gold standard for
movement analysis in experimental biomechanics is marker-
based optical motion capturing, which is extensively used
for gait analysis. However, it has several disadvantages if
applied to the hand, for instance, time-consuming preparation,
occlusion of markers, and influence on the motion of the
attached markers. While marker-less motion capturing is
increasingly available for gross body movements [3], it is not
well established for hand motion [4].

An alternative method is the use of sensorized gloves
that are available with different technologies [1]. They
allow for flexible application in different settings independent
of complex laboratory setups and cause less interference
during activities of daily living, such as grasping objects,
which makes them more suitable for the clinical routine.
Additionally, wearing a glove is a more familiar situation for
most people than having markers taped to the skin and several
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cameras directed at them. Among the more commonly used
sensor gloves is the CyberGlove series by CyberGlove Systems
LLC [5], [6], [7], [8], [9], [10], [11], [12]. They are strain-
gauge-based gloves, that measure joint angles via electrically
resistive wires. Their dependence on extensive calibration for
accurate angle estimation as well as limitations measuring DIP
joint angles has been reported previously [6], [7]. It was shown
that hands should be at least 184 mm long to record DIP joint
angles properly [7]. The DIP joint angles are often either not
analyzed or not even recorded by using the 18 sensor version
of the CyberGlove, due to the difficulties in obtaining high
quality and reliable measurements [8], [9], [10].

Such gloves are not yet used to assess hand function in
clinical routines or clinical trials with larger cohorts. However,
several studies are using these gloves for different use cases,
for example, to measure joint angles in sign language [6],
to detect osteoarthritis from functional tasks [8], [9], [10] or to
measure joint movement during general functional tasks [11],
[12], [13], [14].

We see a potential benefit in the implementation of sensor
gloves in the assessment of hand function in inflammatory
joint diseases, such as rheumatoid and psoriatic arthritis, that
are characterized by swelling and pain of the hand and finger
joints [15]. Current tools for the evaluation of the functional
status are mainly based on patient-reported outcome measures
that lack objectivity [16]. One of the many available tests
to assess hand function in clinical studies is the Sollerman
hand function test [17], where 20 activities of daily living are
evaluated by a physician regarding the duration and quality
of the movements. Using a sensorized glove during this test,
similar in [9] for osteoarthritis, would increase the objectivity
of the assessment. We also see a potential benefit for this field
to easily measure the range of motion in all joints [12], or to
simply track the usage of certain joints during everyday life
and relate this to structural damage in the finger joints.

To reach the long-term goal of using such gloves
for objective hand function analysis, we investigate the
capabilities and usability of the aforementioned sensor glove,
the CyberGlove III. Accuracy and the potentially increased
duration due to the glove-based assessment are important
factors influencing the acceptance of monitoring hand function
in studies, clinical routines, or monitoring hand function at
home. One important factor influencing the accuracy and
duration of such an assessment is the calibration, which has
to be done each time the CyberGlove III is put on. There are
numerous approaches to calibrate the CyberGlove III focusing
on different applications, such as animating hands in virtual
and augmented reality, or games requiring only plausible
hand postures [18]. Other applications include controlling
robots [19] and biomechanical analyses [6], [11]. We focus
this comparison on calibration methods for the latter as they
are the most suitable to be used in a clinical setting. Methods
that depend on black-box machine-learning approaches [20],
[21] are excluded from the comparison.

The following approaches are considered in our work: the
affine (linear plus offset) relationship between the sensor value
and the joint angle used in the CyberGlove software, and two
calibration procedures including parameter fitting (using more
measurements than parameters to identify) and second-order

polynomials that account for interdependencies between
certain sensors (called crosstalk) [6], [11]. Additionally, the
concept of an across-subject calibration [11] is considered,
as it reduces the number of measurements required for the
calibration with each person, making it suitable for large
clinical studies or even regular clinical routines. Another
approach worth mentioning is the concept of dimensionality
reduction, that is, kinematic synergies that establish a relation
between joint angles [22]. This approach has to be used with
care, as it deduces all joint angles by measuring only a reduced
number after kinematic synergies were found. This means that
the individual application and used kinematic synergies have
to be taken into account, and it has to be taken care of so
that the assumptions do not affect the assessment negatively.
Therefore, we exclude this approach here.

This work aims to investigate the accuracy of several
calibration methods, by comparing angle estimations, based
on these calibrations, with ground-truth angles, using data
from healthy controls and patients with rheumatoid or psoriatic
arthritis. Furthermore, changes to the calibration, improving
accuracy and repeatability and reducing the complexity of the
calibration process, are proposed. Additionally, difficulties and
limitations in the application with patients with rheumatoid or
psoriatic arthritis are reported. The results are then discussed
to determine suitability for different use cases in clinical hand
function assessment.

II. METHODS

All processing and data collection steps are implemented
using Python 3.8, as the standard CyberGlove software
has proven to be too limited and hard to use. The
communication is based on a list of glove-specific commands
via TCP/IP [23] and was realized in two previous works [24],
[25]. We published the code for the communication on
GitHub [26]. The data transmission rate with the implemented
code is approximately 50 Hz, which we estimate to be high
enough for various calibration procedures. We advise using
the data streaming function of the glove for continuous
measurements, especially when faster movements occur. With
this function, measurement frequencies up to 120 Hz (as
promised by CyberGlove Systems LLC, [5]) should be
achievable.

Note: In this work, the term separation is used for the
abduction of the metacarpophalangeal (MCP) joints of the
index, middle, ring, and little finger, as the sensors measure
the relative angle between two fingers. Also, we use the joint
name interchangeably with the sensor at that joint.

A. Participants
Healthy, nonarthritic subjects and patients recruited from

the Internal Medicine 3 outpatient clinic, Universitätsklinikum
Erlangen, Germany, were enrolled in this study after giving
written informed consent. The study protocol was approved
by the ethics committee (21–288 B). Subject characteristics
(age, sex, hand size, and disease) were recorded. Patients
underwent a standardized joint count (28 joints) for tender and
swollen joints, filled out the Health Assessment Questionaire
(HAQ) [27], and the Disease Activity Score (DAS)-28
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Fig. 1. Hand poses for both neutral pose measurements. (a) Neutral
pose 1 for the thumb carpometacarpal joint. (b) Neutral pose 2 for the
remaining joints.

[28] was calculated. Inclusion criteria for the patients were
either a diagnosis of rheumatoid arthritis, according to the
American College of Rheumatology/European League Against
Rheumatism 2010 criteria [29], or psoriatic arthritis, according
to the Classification Criteria for Psoriatic Arthritis [30].

B. Measurements
Data for the calibration and evaluation were collected using

a right-handed CyberGlove III with 22 sensors [5]. The sensors
at the wrist were excluded from this analysis, as the calibration
methods compared in this work do not consider the wrist
sensor [6], [11]. The measurements were chosen such that
existing calibration methods [6], [11] can be executed and a
comparison of the accuracy over the full range of motion of
the hand is possible. These measurements include multiple
continuous tasks over the full range of motion and static
postures as instantaneous snapshots.

1) Static Measurements: Neutral pose 1: hand with the
fingers straight and together on the table [Fig. 1(a)]. Neutral
pose 2: as neutral pose 1, but the thumb was fully extended
pointing away from the digits [Fig. 1(b)].

Static flexion for distal and proximal interphalangeal (DIP
and PIP) and MCP joints: 10◦ increments in the range
from −40◦ to 130◦ and additionally at 15◦, 35◦, and 75◦

collected using 3-D printed wedges [Fig. 2(a)] [6], [11]. Not
all participants reached the full range of joint angles in all
joints.

Static palm arch: At 35◦ using a 3-D printed wedge
[Fig. 2(c)] and eight measurements using a goniometer,
placed in the same way as the wedge [11]. Seven of these
measurements with the goniometer were taken in the range of
0◦–60◦ with 10◦ increments and one at the maximum possible
arch. The angle during the maximum arch measurement was
read from the goniometer.

Static separation (MCP joints) for each pair of fingers:
10◦ increments in the range of 0◦–40◦ using 3-D printed angles
[Fig. 2(b)]. Simultaneous static separation for all MCP joints
at once [Fig. 2(d)]: with 25◦ for the leftmost, 16◦ for the
middle and 17◦ for the rightmost separation sensor [11].

Static thumb CMC 1 (pure abduction between the thumb
and index finger): 10◦ increments in the range of 0◦–80◦ using
3-D printed wedges in the sagittal plane of the hand between
the index finger and thumb as in Fig. 3(a). Static thumb CMC
2 (pure thumb CMC flexion): 10◦ increments in the range of

Fig. 2. Static measurements with 3-D printed wedges. (a) Flexion mea-
surement. (b) Separation measurement. (c) Palm arch measurement
with the 3-D printed wedge. (d) Simultaneous separation measurement.

Fig. 3. Static measurements for the thumb CMC joint. (a) Abduction
measurement static thumb CMC 1. (b) Flexion measurement static
thumb CMC 1.

0◦–80◦ using 3-D printed wedges with the hand placed on the
table as in Fig. 3(b). Note that the hand is kept floating for
Static thumb CMC 1, while the hand is placed flat on the table
for static thumb CMC 2.

2) Continuous Measurements: A ramp tool [6] was used,
to prescribe static flexion and separation angles for one finger,
while the neighboring finger moved continuously. Our ramp
tool is equipped with two stepper motors to adjust the plates
[Fig. 4(a)] [24]. The subjects were instructed to place their
hand on the device and move the finger through the whole
range of motion at a self-selected steady speed.

Continuous flexion 1 (each MCP joint of the four digits):
Three flexion-extension cycles, while the neighboring fingers
remained in 0◦, 40◦ and 80◦ flexion, and 0◦ separation [11].

Continuous flexion 2 (six measurements per separation
sensor): One flexion-extension cycle while the finger on the
left of the corresponding separation sensor was fixed on the
ramp tool with a flexion angle of 20◦ and 80◦ and a separation
angle of 0◦, 20◦ and 30◦ [Fig. 4(b)] [6].
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Fig. 4. Ramp tool with stepper motors to prescribe flexion and
separation angles and its application for simultaneous prescription of
flexion and separation angle [6], [24]. (a) Motorized ramp tool for the
MCP joint sensor (flexion and separation) calibration. (b) Simultaneous
prescription of static flexion and separation angles.

Fig. 5. Start and end positions of the closed-loop movement for the
thumb CMC joint calibration. (a) Start position. (b) End position.

Fig. 6. Vertical thumb movement [11] and newly proposed alternative
for the thumb CMC flexion. (a) Vertical thumb motion. (b) New thumb
flexion.

Closed-loop motion (thumb CMC joint): Three repetitions
with constant contact between the fingertips as in Fig. 5 [11].
Horizontal thumb motion (pure abduction of thumb CMC
joint): Thumb moved horizontally on top of the closed fist as
far as possible [11]. Vertical thumb motion (pure flexion of
thumb CMC): Thumb extended as in Fig. 6(a) [11].

We propose to adjust the vertical thumb movement to
simplify the execution, as we observed issues in executing this
motion with 0◦ abduction. Adjusted vertical thumb motion:
hand placed flat on a table and the thumb extends from the
index finger followed by a flexion while the thumb and hand
stay in contact with the table [Fig. 6(b)].

C. Calibration Methods
We omit additional indices in equations to ensure better

readability whenever possible (e.g., we write g instead of gi
for the gain of the i th joint). Greek letters are used as follows:
α for generic angles, θ for flexion angles (including the palm
arch angle), φ for separation angles, ψ for angles from the
thumb CMC joint, and δ for the distance between fingertips.

1) Calibration Method 1: The CyberGlove software allows
the calibration of all sensors of the glove by adjusting two
parameters for each sensor. A gain g to scale the sensor value
s and an offset o for all angles α (1) are calculated from two
static postures with known angles [Fig. 2(a) and (d)]

α(s) = g s + o. (1)

We used the following measurements: neutral pose 1 for
the 0◦ measurement for the thumb CMC joint and neutral
pose 2 for the remaining joints. Furthermore, we used from
static flexion 75◦ for the PIP and MCP joints, 50◦ for the DIP
joints, from static palm 35◦, from static thumb CMC 1 60◦.
The thumb CMC flexion sensor is not considered here.

2) Calibration Method 2: This method uses two measure-
ments for each flexion sensor, seven measurements for each
separation sensor and three measurements for the two sensors
at the thumb CMC joint [11]. A general difference compared
to other calibration approaches is that relative sensor values
ŝ are used. These are obtained with sneutral from the neutral
pose 1 measurement in (2). The flexion sensors are calibrated
using two measurements with (3), which can be directly
related to (1). Additionally, this method accounts for crosstalk
between each separation sensor and its neighboring flexion
sensors, as well as both thumb CMC joint sensors, and utilizes
continuous motions for the calibration of these

ŝ(s) = s − sneutral (2)

θ(ŝ) = g ŝ. (3)

The flexion angles are calibrated with the nonzero flexion
measurement as in method 1 [Fig. 2(a)]. Also, the thumb
MCP joint is calibrated with the 35◦ measurement from static
flexion, and the palm is calibrated with the maximum arch
measurement (static palm arch).

The separation sensor angles are calculated using the second
order polynomial in (4) with the separation sensor value ŝ
and the flexion sensor value on the left and right ŝl or ŝr ,
respectively,

φ(ŝ, ŝl , ŝr ) = g ŝ + C1 ŝl + C2 ŝr + C3 ŝ2
l + C4 ŝ2

r + C5 ŝl ŝr .

(4)

The gains are calculated with the simultaneous static
separation and neutral pose 2 measurements. Thereafter, the
correction terms Ci for each sensor are obtained from a least-
squares problem with the six measurements associated with
each separation sensor from continuous flexion 1.

The least-squares problems in method 2 are
solved in Python, using the SciPy package and the
Levenberg–Marquardt algorithm. We use the default settings
and an initial guess of one as changes in the guess did not
affect the results. The objective functions for the minimization
problems are defined in (5) depending on a known quantity x i
at time step i of T total time steps and the calculated quantity
x depending on calibration parameters g and o (if absolute
sensor values are used), and possibly correction terms C.
Depending on the relationship of x and the beforehand
recorded sensor values si at this timestep, some parameters
are not needed or the sensor values can be replaced by their
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relative counterpart, depending on the used relation between
sensor value and angle

J (g, o,C) =

T∑
i=1

1
2
(xi (g, o,C, si )− x i )

2. (5)

The thumb CMC joint is calibrated with a continuous
motion to obtain the parameters in (6) and (7). First, the
correction terms for flexion Cflex (with vertical thumb
motion) and abduction Cabd (with horizontal thumb motion)
are calculated with least-squares fitting under the assumption
of ψ = 0◦ for both flexion and abduction

ψabd(ŝflex, ŝabd) = gabd (ŝabd + Cflex ŝflex) (6)

ψflex(ŝflex, ŝabd) = gflex (ŝflex + Cabd ŝabd). (7)

As the last step of the calibration procedure, the gains
for (6) and (7) are calculated using the previously obtained
calibration parameters for the thumb and index finger, the
closed-loop motion, and a hand model with the assumption
that the fingertips of index finger and thumb remain in contact.
The relation between DIP and PIP joint angles, θDIP(θPIP) =

0.87 θPIP−25.27◦, are taken from the corresponding calibration
method [11].

We use a hand model developed for the open-source
software OpenSim, which is available on SimTK [31].
To calculate the distance between the fingertips δ, we define
points on the tips of the index finger and thumb, respectively.
During the closed-loop motion, the distance between the
fingertips is assumed to be zero. The gains are obtained from
the least-squares problem, with an objective function as in (5),
with the optimization variables gabd and gflex. The correction
terms Cflex and Cabd are known. The objective function is
comprised of the distance of the fingertips at each timestep
δi (gabd, gflex) and the actual distance δi = 0.

3) Calibration Method 3: This calibration method [6] uses
least-squares fitting to calculate all calibration parameters and
accounts for crosstalk between MCP flexion and separation,
with a different polynomial compared to method 2. The flexion
sensors of the eight MCP and PIP joints are calibrated using
the static flexion measurements at 10◦, 30◦, 50◦ and 70◦

with a linear relation between sensor value s and angle θ via
parameters a and b

s(θ) = a θ + b. (8)

Each separation sensor is calibrated with nine measurements
and (9) to account for crosstalk due to flexion of the
neighboring fingers θl and θr using constants C1 and C2

s(φ, θl , θr ) = a φ + C1 (θl − θr )
2
+ C2 (θl − θr )+ b. (9)

Three measurements from static separation at
10◦, 30◦ and 50◦ (assuming θl − θr = 0◦) and the six
measurements from continuous flexion 2 are used.

Both, the flexion and separation sensor parameters are
calculated by solving the least-squares problem associated
with s = 2 p, with a rectangular matrix containing the angles
2 ∈ RN×M , parameter vector p ∈ RM and measured sensor
value vector s ∈ RN , with the number of measured frames
N and the number of parameters M (i.e., two for flexion and
four for separation).

4) Improved Calibration Procedure: We propose two
improvements to increase accuracy and reduce the complexity
of the required measurement and therefore the whole
calibration process.

a) Improvement 1—adjusted thumb flexion: We propose to
replace the vertical thumb motion measurement in method 2
(Section II-C2) with the new measurement shown in Fig. 6(b).
Due to the execution with the hand placed on the table, the
subject can perform the pure flexion motion more easily and
reliably. The calibration procedure and used polynomial for
the thumb CMC abduction remain as in method 2.

b) Improvement 2—least-square problems for more joints:
Additionally, we propose to transfer the affine approach from
method 3 (8) to the thumb joints, and all DIP joints. This
reduces the complexity of the measurements for the thumb
CMC joint. We use four measurements from static flexion at
10◦, 30◦, 50◦ and 70◦ (Fig. 2(a) for the DIP, thumb MCP,
and IP joints and Fig. 3 for the thumb CMC joints).

D. Across-Subject Calibration
In contrast to performing a whole calibration procedure

with each individual, it is possible to use an across-
subject calibration to obtain a somewhat average calibration
for many individuals [11]. This approach uses previously
obtained calibration parameter sets from different persons.
These sets have to be calculated with the same calibration
method, however, the approach works with every relationship
between angle and sensor values. The gains and correction
terms from these sets are averaged and only two neutral
pose measurements are needed from the individual [11].
Depending on the calibration method chosen, the neutral
pose measurements are used to either calculate relative sensor
values (as in method 2) or to obtain an offset (as in
methods 1 and 3 or improvement 2).

We use this approach with the combination of the most
accurate calibration methods for each sensor group determined
in Section III-B (Table I). The results obtained with the across-
subject calibration are also compared to the best individual
calibration method.

III. RESULTS

A. Recruited Participants
Eight healthy subjects (three males, five females; age

31.5 ± 14.6) and six patients (five males, one female; age
62.2 ± 5.1 years) were included. Disease characteristics for the
patients were disease activity according to the visual analog
scale of 32.5 ± 22.5 mm, disease duration of 6.6 ± 8.3 years,
tender joint count 3.0 ± 6.3, swollen joint count 2.0 ± 2.65,
HAQ 0.79 ± 0, 47, DAS28 2.7 ± 1.3, and C-reactive-protein
of 9.8 ± 7.7.

Both groups were asked to execute all motions. Patients
could not perform all motions and two subjects had to be
excluded as their hands did not fit the glove.

B. Comparison of Different Calibration Methods
The accuracy of the different calibration methods is rated

with a root-mean-squared error (RMSE) between ground-truth
angles and the estimated angles of each subject. We used the
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21 static flexion angles per joint, seven static palm arch
angles excluding the maximum possible arch measurement,
five static separation angles for each pair of fingers, and
the nine static thumb CMC 1 and nine static thumb
CMC 2 angles. To prevent artificial reduction of the RMSE
values, we excluded measurements that would lead to an angle
estimation error of 0 by definition. (This is the case for exact
affine relationships, calculated from two measurements.)

Due to limitations in wearing the glove and executing the
necessary motions, the comparison of calibration accuracy is
only done for the healthy group. Furthermore, the fingers
of one of the healthy subjects were too short (hand length
15.3 cm) to reach the DIP sensors, agreeing with the minimal
hand size necessary estimated previously [7]. This resulted
in RMSEs between 89◦ and 397◦. The measurements of this
subject’s DIP joint angles were, therefore, discarded.

We also exclude individual RMSEs, if they can clearly be
identified as outliers. The outlier criterion is that the RMSE
value is greater than 45◦. Such deviations can be easily
detected after the calibration and before usage by comparing
hand poses with a visualization of the measured joint angles.
It is, therefore, possible to notice such a calibration error and
repeat the calibration of a specific joint. With this criterion,
11 out of 438 measurements are identified as outliers.

The RMSEs at each sensor are listed as mean values over
the eight subjects in Table I. They are also arranged in sensor
groups, for which the mean RMSEs are given. The best result,
and, therefore, the best method for a specific group or joint is
highlighted by a bold font.

Most sensor groups achieved mean RMSEs of 10◦ or lower
for the most accurate calibration method. However, the RMSEs
for individual joints vary strongly both within a sensor group
and between different subjects. According to our study, the
most accurate calibration is achieved with method 3 for
the flexion sensors, improvement 2, and method 2 for the
separation sensors.

C. Across-Subject Calibration
The across-subject calibration is obtained using the best

calibration results according to the RMSEs in Table I,
excluding the palm arch, as we deem the RMSE of 17.32◦

too high in comparison to the range of motion to be used
for an objective assessment. The coefficient of variation (ratio
between one standard deviation and its mean) ranged between
5% and 53% (two exceeded 25%) for the gains and between
24% and 1510% for the correction terms.

The accuracy of the across-subject calibration is compared
to the best calibration approaches for each sensor group in
Table II. For most joints, an increase of the mean RMSE by
5◦–10◦ can be observed, compared to the best method.

D. Feasibility Study With Patients
We observed that not all patients were able to perform

a complete calibration procedure as intended. Therefore,
we report the observations made during the attempt to use
the CyberGlove III with patients.

All patients had swollen and tender hands, with two cases
of severe swelling, such that the glove did not fit. All patients

TABLE I
AVERAGE RMSES, EXCLUDING OUTLIERS AND ERRONEOUS

MEASUREMENTS, OF THE DIFFERENT CALIBRATION METHODS. THE

LOWEST RMSE FOR EACH GROUP IS HIGHLIGHTED WITH BOLD

FONT. ALL VALUES ARE GIVEN IN DEGREE

TABLE II
AVERAGE RMSES FOR THE SENSOR GROUPS OF THE BEST

CALIBRATION METHOD AND THE ACROSS-SUBJECT CALIBRATION IN

DEGREE

complained about discomfort leading to a limited duration
of the measurements. They had reduced ranges of motion
for flexion, most of them had ranges below 60◦. The static
separation measurement with multiple wedges at once was
not possible for some of them. However, taking one separation
measurement at a time was still possible. Even though issues
with limited ranges of motion, tender hands, and exhaustion
from the procedure were observed for all of them, the nature
of the limitations seems highly individual.

IV. DISCUSSION

In summary, we compared different calibration methods
by means of RMSEs, advanced existing calibration methods
to be more accurate and easier to execute, and identified
the best individual calibration to reach RMSEs below 10◦.
We simplified with improvement 1 the measurement to
calibrate the thumb CMC based on method 2 without
reduced accuracy. Additionally, we reduced with improvement



HEINRICH et al.: COMPARISON AND IMPROVEMENT OF CyberGlove III CALIBRATION METHODS 15289

2 the RMSEs for the thumb and DIP joints substantially,
by transferring a known procedure that uses four static
measurements and a least-squares fitting. The number of
necessary measurements for these calibrations ranges from two
static measurements for the across-subject calibration, 22 static
measurements for method 1, up to 66 static plus 18 continuous
measurements for the best calibration method. The RMSEs
show a clear advantage for methods using fitting, that is, more
measurements than parameters to identify. This highlights the
need for researchers to choose a calibration approach with an
appropriate balance between high accuracy and the extent of
the calibration process.

We cannot compare our determined accuracy to previously
reported results, since we did not find prior investigations
using ground-truth angles. According to the manufacturer, the
sensors have a resolution of <1◦ [5], which represents the
physical limit that can be reached with a perfect calibration
and perfectly fitting glove. Calibration method 2 was originally
validated by having three measurements of static postures from
distinct sessions and comparing them among each other [11],
which highlights the repeatability of the method but does
not directly allow conclusions on its accuracy. This leads to
smaller deviations than in our comparison, showing that the
repeatability is even better than the accuracy. Method 3 is rated
by means of the variance accounted for (VAF) of estimated
angles with respect to ground-truth angles, where 100% equals
a perfect fit of the calibration [6]. For flexion and extension,
the mean VAF was 97.9% and higher, while it was 92.6%
and higher for the separation angles. Yet, these values are
difficult to compare to absolute accuracy as can be done with
RMSEs. The across-subject calibration was compared by the
angle difference to an individual calibration yielding precision
errors between 1.34◦ and 10.39◦ [11]. These errors cannot
directly be compared to our RMSEs in Table II, but they show
a similar increase in error. This means that our investigation
supports the feasibility of an across-subject calibration for the
CyberGlove III.

The individual calibration methods compared in this
work show different advantages regarding the extent of the
calibration process and achieved accuracies shown in Table I.
The RMSEs of calibration method 1 (affine relationships (1)
for all sensors) are surprisingly low, compared to more
sophisticated methods, especially for the separation sensors,
where no correction for flexion in the neighboring MCP joints
is considered. This method has the advantage of using the
lowest number of measurements for individual calibrations.
Method 2 uses rearranged equations for the flexion sensor
values (2) and (3). Yet, the RMSEs are higher than for
method 1. With a consistent choice of the neutral and 0◦

measurements during the calibration, the same RMSEs as in
method 1 would render similar accuracy, but with a higher
number of measurements. The separation sensors [using (4)]
yield the lowest RMSEs for this sensor group, using a
second-order polynomial and a least-squares fitting. Method 3
uses multiple static poses with a least-squares fitting for the
flexion sensors, which reduces the RMSEs substantially for
the MCP and PIP flexion, compared to the other methods.
The separation sensors show higher RMSEs compared to
method 2, which might be caused by the polynomial with

lower number of parameters to correct for crosstalk [two
in (9)] compared to five in (4). All calibration methods that
use a fitting procedure (e.g., least squares) can be expected to
be more robust regarding single outliers in the measurements.
This robustness may even be further increased using the one-
norm instead of the two-norm for the parameter fitting.

Improvement 1 (Fig. 6) shows similar accuracy as method 2,
meaning that the expected increase due to a more standardized
motion was not achieved. However, the here proposed
calibration is easier to standardize, as it uses the table
as a support to perform a pure abduction without flexion.
Improvement 2 transfers the robust and accurate calibration
for the flexion sensors in method 3 to the remaining joints.
The RMSEs show that this indeed provides an improvement
regarding the accuracy of angle estimation in all joints it is
applied. The most noticeable decrease in RMSE is achieved
for the thumb MCP and IP joints. But also the DIP joint
angle estimates benefit from improvement 2. The reduction in
RMSE, compared to the lowest RMSEs of the three methods,
is between 2◦ and 9◦ (12%–50%). Additionally, the calibration
of the thumb CMC joint with this improvement is independent
of a hand model and uses easily executed static measurements.

The across-subject calibration based on our best calibration
method shows increased RMSEs compared to the individual
calibration based on this best calibration method. We deem
this increase to be expected and acceptable. This calibration
method is meant for reduced assessment time or monitoring
at home rather than for the highest accuracy since it only
needs two static neutral poses of the hand. However, the
high variability of the correction terms raises the question of
whether they should be obtained individually, which would
increase the number of measurements for the calibration.

We observed, for all calibration approaches, that the RMSEs
varied substantially between subjects and between different
fingers and joints within one subject. Meaning the individual
accuracy can be better or worse than the mean RMSEs. It was
not possible to identify reasons for the variability in accuracy,
suggesting that more investigations are needed.

It was observed that the palm arch sensor was the most
inaccurate. This is plausible as there is not one distinct point
to measure the palm arch angle but a whole area, the accurate
calibration difficult. Additionally, the range of motion is rather
small, making small deviations more influential. We also
observed issues with the calibration of the DIP sensors, which
resulted in partially good, but also unrealistic calibration
results (see Section III-B). A clear cause was not found,
but we suspect that the position of the joints with respect
to the sensors caused these problems, as the subject whose
DIP measurements had to be discarded, did not reach the DIP
sensors with its fingers and had the smallest hand length.

We advise visualizing the estimated hand postures after
calibration to check for severe calibration errors. This can be
done using the Python API in OpenSim [32] and any hand
model without extending the calibration process considerably.

We suggest using the gloves for objective analyses of
the range of motion and to quantify the usage of a joint
by counting how frequently it reaches certain angles. These
quantities can be obtained objectively and efficiently using
the across-subject calibration. While the best calibration
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methods can be used in sophisticated studies, it has to be
investigated for the specific use case whether the accuracy
is high enough to distinguish small differences in movement
patterns. Our feasibility study showed that using the glove
in a clinical setting or clinical study introduces additional
challenges. We observed, for example, that the degree of
limitation differed between joints and individuals, and it was
not possible to conclude from hand size or disease duration
that the glove might not fit. This emphasizes the need for
more research in realistic scenarios with patients and for a
flexible calibration procedure that can be done by patients
with different limitations. Furthermore, an adjustable glove
that can be put on without discomfort even with swollen joints
would be helpful, especially for clinical settings where the
acceptance of such a device is highly important. Monitoring
at home might also add additional difficulties, such as ensuring
a high-quality calibration without supervision. Therefore,
an easy-to-execute across-subject calibration becomes even
more important for this use case. It is an especially promising
technique, as successful calibrations of healthy subjects could
be used to calculate the across-subject calibration parameters.
This would mean that patients only have to execute the neutral
pose measurements for the calibration. Eventually, one has to
decide for each application individually whether the accuracy
of the glove is high enough.

More studies with more subjects, especially with a focus on
patients, would be helpful to draw stricter and more thorough
conclusions on the usage of such gloves in a clinical setting.
On the one hand, a number of different subjects are important
to ensure that the whole population can use these gloves with
a certain accuracy. On the other hand, calibration methods
need to be developed and validated, which are not sensitive to
reduced ranges of motion.

V. CONCLUSION

We conclude that the CyberGlove III and the investigated
calibration methods are accurate enough to monitor hand
movements, excluding wrist and palm arch movements. We did
not investigate the wrist sensors and the palm arch has shown
to be difficult to calibrate. Even though the findings in this
work need to be confirmed for arthritis patients as well,
it already shows that using the CyberGlove III for objective
hand monitoring of healthy subjects is feasible, supporting
previous findings ([2], [6], [8], [11], [12], [22]). Furthermore,
the CyberGlove III was already used to discriminate between
healthy individuals and patients suffering from osteoarthritis
with an accuracy of 80% [8]. This highlights the promising
capabilities of such gloves insofar as the glove fits the patient.

Nonetheless, with our achieved accuracy for healthy
subjects, many questions can be investigated. For instance,
determining the frequency of joint movement and the range of
motion and exploring strategies to reduce pain during certain
tasks (e.g., adapted movement patterns). Most importantly,
with the help of easily executed calibrations such as the across-
subject calibration, this monitoring can be implemented at
home during everyday life instead of in laboratory and clinical
settings. Yet, there are still investigations to be made. For
instance, the across-subject calibration, while being a useful
method, should be developed further. It might be beneficial to

investigate the potential of a more personalized across-subject
calibration, where the calibration parameter sets are clustered
in different groups depending on certain characteristics of
the hand, such that accuracy increases. To do this, many
calibration results are needed and as the calibration is glove-
specific, it is currently impossible to share the calibration of
one CyberGlove III with another. Therefore, another question
to be investigated is, whether a transfer of these parameters
between gloves can be realized.
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