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Abstract—In this article, we present a real-time system
identification method based on relay feedback testing (RFT)
with applications to multirotor unmanned aerial vehicles
(UAVs). The proposed identification method provides an
alternative to the expensive lab testing of certain UAV
dynamic parameters. Moreover, it has the advantage of
identifying the parameters that get changed throughout the
operation of the UAV which requires onboard identification
methods. The modified RFT (MRFT) is used to generate stable
limit cycles at frequency points that reveal the underlying
UAV dynamics. The locus of the perturbed relay system
(LPRS) is used to predict the exact amplitude and frequency
of these limit cycles. Real-time identification is achieved
using the homogeneity properties of the MRFT and the LPRS which are proven in this article. The proposed identification
method was tested experimentally to estimate the aerodynamic parameters as well as the onboard sensor’s time delay
parameters. The MRFT testing takes a few seconds to perform, and the identification computations take an average
of 0.2 seconds to complete in modern embedded computers. The proposed identification method is compared against
the state-of-the-art alternatives. Advantages in identification accuracy and quantification of uncertainty in estimated
parameters are shown.

Index Terms— Robotics and automation applications, sensor decision and fusion, sensor signal processing.

I. INTRODUCTION

A. Literature Review

SYSTEM identification is the process of obtaining the
mathematical model of a dynamical system by observing

the system response to a certain input excitation [1]. Obtaining
a model is equivalent to building a hypothesis about the
system, which can be used to conveniently analyze system
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properties. System identification requires a model structure,
data observations to fit the model, and a set of rules to
fit the data to the model structure, which is done with the
help of a metric to quantify the quality of the developed
model. Since the possible specifications on models, data, and
metrics are quite vast, the literature offers a plethora of system
identification methods, each with its own pros and cons.

System identification techniques may be categorized into
gray-box or black-box methods based on the model structure
considered. A model is referred to as a gray-box model when
it is based on physical principles. Some examples of gray-
box models are the steel frame structure like the one used
in [2], and the Wiener model used in the identification of creep
in [3]. On the other hand, black-box models can be arbitrarily
complex and are thus more versatile but are hardly usable
for subsequent design, e.g., controller or estimator design.
Some examples of black-box models for system identification
would use different classes of neural networks to learn the
dynamics of the system based on its input-output data. In [4],
a feed-forward neural network is used to learn the dynamics
of an unmanned aerial vehicle (UAV) from flight data. The
parameters obtained from this class of identification are the
weights of the neural network, but these weights cannot be
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interpreted in a physical sense for subsequent analysis of the
UAV system. Another widely used model is the autoregressive
moving average with exogenous input (ARMAX) [5] which
suffers from the same limitations of neural networks.

From a data perspective, in some methods, called asymptotic
methods, the model parameters are proved to converge in
an asymptotic sense [6] hence theoretically requiring infinite
amounts of data. Asymptotic methods are usually formulated
in a statistical framework like the maximum likelihood
estimators (MLE), the prediction error method (PEM), and
various versions of Kalman filters that are used for model
parameters’ estimation [7]. The infinite amounts of data
required by asymptotic methods motivated the interest in
system identification techniques with finite sample complexity,
like the non-asymptotic methods that require finite amounts
of data with guarantees on error bounds. Examples of non-
asymptotic methods include the identification of systems based
on ordinary least-squares (OLSs) for partially observed linear
time-invariant (LTI). In [8], the Markov parameters of the
unknown LTI system are estimated using the OLS framework
based on a single trajectory of the system. Sarkar et al. [9]
offered an alternative approach to [8] in which the Hankel
matrix of the system is estimated. Both Oymak and Ozay [8]
and Sarkar et al. [9] required the LTI systems to be strictly
stable. The work of Zheng and Li [10] extended the methods
in [8] and [9] to unstable systems at the expense of requiring
multiple system trajectories. There is a common drawback in
all of these asymptotic and non-asymptotic methods in that
they do not offer a specific guideline on how data generation
(i.e., rolling out trajectories) should be achieved. This results
in some practical challenges, like the way data should be
generated from unstable or critically stable systems while
attaining safety.

Another approach to identification is based on relay
testing [11], which offers advantages in safety and the use
of a standard data generation approach. Due to its simplicity
and safety, relay-based testing was adopted in many robotics
and automation applications [12]. In [13], a first-order system
with time delay is identified using a relay feedback test
(RFT) while assuming that the static gain of the system is
known as a priori. Alfaro and Vilanova [14] developed a
method for the identification of high-order models but it is
quite restrictive since it is limited to the model with repeated
poles and time delay. The main drawback of RFT is that
it produces oscillations at a phase lag of −180◦ of the
plant phase characteristic. In the case of quadrotor attitude
dynamics, because the effect of drag is small, the dynamics
is similar to that of a double integrator in (2). The amplitude
of the oscillations produced with RFT would be too high to
satisfy the small angle approximation for the linearized attitude
dynamics. To overcome this, the modified RFT (MRFT)
was proposed in [12]. MRFT can produce oscillations at
an arbitrary phase lag of the system. This can be used to
produce stable oscillations of the quadrotor attitude dynamics.
Another drawback of relay-based identification is the use
of the approximate describing function (DF) method which
requires the unknown process to exhibit low-pass filtering
properties. The use of DF was mitigated, and an exact method

based on the locus of the perturbed relay system (LPRS) was
suggested for the identification of first-order plus time delay
models in [15], and was extended to higher order models
in [16]. The method in [16], which is also based on LPRS,
requires the solution of a set of equations which would not
be feasible in real time. In [17] and [18], MRFT was used
to produce steady state oscillations of the UAV. A deep
neural network (DNN) was trained to learn the mapping
between the oscillations to the system parameters and the
optimal controller parameters. Although this method obtains
near-optimal controller parameters in real time, there is no
guarantee on the accuracy of the system parameters.

B. Motivation
System identification of UAV dynamics is a preferred

alternative to expensive lab testing. For example, the total drag
and the total time delay, which have a significant effect on
system dynamics and the required controller, are technically
difficult and expensive to obtain through first principles.
Moreover, some of the UAV dynamics might change during
operation such that re-identification of dynamics would be
required using limited onboard sensors, e.g., change of the
aerodynamic characteristics or a change of the sensor used
for positioning which changes the system delay. Safety and
short identification time is a must for uninterrupted missions.
Moreover, partial knowledge of some system parameters is
easily accessible. For example, propulsion dynamics and
the inertia of the system are easy to obtain through bench
testing. Knowledge of some parameters a priori would make
identification faster and more reliable.

The UAV applications motivate the need for a safe and
real-time identification method that accurately estimates the
unknown parameters of high-order models given a known
model structure and partial knowledge about some parameters
of the system.

C. Contribution
In this work, we propose a method for the identification

of high-order LTI time delay systems with known model
structure and partial knowledge of some system parameters
based on the MRFT. The proposed method inherits the
safety and operational convenience of relay-based testing
methods while being applicable in real time. The real-time
capability is achieved by taking advantage of the homogeneous
properties of the LPRS which will be used to compute
a normalized identification space called the unit frequency
manifold (UFM). The UFMs of multiple MRFT tests that
will be used onboard for the UAV are preloaded in memory
for real-time identification. Thus, our contributions can be
summarized by the following.

1) Proof of homogeneous properties of the LPRS against
time and gain scales as well as MRFT parameters
scaling.

2) Construction of an efficient real-time identification
algorithm based on the LPRS properties and UFMs.

3) Experimental validation on multiple multirotor UAVs.
We have applied the proposed identification method to

two different UAV platforms. The experimental results
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show that the identification of each of the dynamic loops
(i.e., altitude, roll, or pitch) takes around ten seconds to
complete. To validate the identification method accuracy,
we intentionally add a known delay in the flight controller
software. The identification method correctly estimates the
time delay increment. Moreover, time delay and aerodynamic
identification results were consistent for loops with the same
hardware setup indicating the high precision of the proposed
method. We compare our results to the system parameters
obtained using the method proposed in [17] and [18] since it is
the closest in terms of the test and time taken for identification.
We are able to show higher accuracy in identified parameters
without relying on learning-based elements that may not be
interpretable. A video abstract of the article is provided in [19].

II. PROBLEM STATEMENT

Let Wl(s, p) be an unknown LTI dynamical system, and
let p ∈ RN be the vector of parameters that characterize Wl ,
which includes time constants, gains, and delay. Further, let p̂
be an estimate about the unknown parameters p, and let E and
I represent a set of equality and inequality constraints applied
to p̂, respectively. The set E represents the pre-known system
parameters, e.g., from bench tests or reference manuals. The
set I represents possible pre-known ranges for identification,
e.g., range of the unknown mass of a UAV is between 100 g
and 10 kg. The constraints E and I characterize a subspace
U ⊂ RN , such that p̂ ∈ U .

Since a relay-based test would be used, we further define
the relay test as a map (p, ζ ) 7→ (�t , at ) = M(p, ζ ), where
ζ is a vector that characterizes the test parameters, and �t , at

are the frequency and amplitude of the generated limit cycle,
respectively. The goal of the identification is to find an inverse
map (�t , at , E, I ) 7→ (p̂) = M−1(�t , at , E, I ) such that
||p − p̂||n is minimized.

In the case of UAV attitude dynamics, a second-
order integral plus time delay (SOIPTD) system is to be
identified [18]. The nominal model structure is of the form

 θ̇

ω̇

Ṁ

 =


0 1 0

0 −
Bx

Jx

1
Jx

0 0
1
Tp


 θ

ω

M

+


0
0
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(
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(1)

where Bx is the rotor drag coefficient, Jx is the moment
of inertia of the UAV, and kM,bx is the moment gain of the
actuator. In the transfer function form, it is written as

G(s) =
K Tde−τ s

s
(
Tps + 1

)
(Tds + 1)

(2)

where the time constants Tp and Td = (Jx/Bx ) represent the
propulsion and aerodynamics time constants, respectively, τ is
the time delay, and K is the static gain of the system.

III. IDENTIFICATION ON THE NORMALIZED SUBSPACE

The design of the map M is essential for the accuracy
of estimating p̂. The definition of M requires the selection
of the relay nonlinearity used in the test algorithm and its

tunable parameters ζ . For some cases, it is possible to find
an analytical solution for M−1 through the use of the LPRS.
But for the cases where analytical solutions do not exist,
a numerical estimate of M−1 is required. It is possible for
the range U to be an open set, and hence even a numerical
estimate of M−1 would not be feasible.

It is yet possible under certain conditions for U to be
mapped to a compact set represented by two special manifolds
P and R which we called the UFM and the unit gain manifold
(UGM), respectively. Normalizing to unit frequency and unit
gain is chosen as a convention. The conditions for the existence
of UFM and UGM depend on the properties of the relay used
in the test. In this section, we introduce MRFT, the test that
would be used for data generation, and the conditions for
the existence of the UFM and UGM. Finally, we discuss the
generation of UFM and UGM for the model considered in (2).

A. Modified Relay Feedback Test
The MRFT [12] is an algorithm that produces a switching

output at a specified phase. The MRFT is given by

uM(t) =

{
h: e(t) ≥ b1 ∨ (e(t) > −b2 ∧ uM(t−) = h)

−h: e(t) ≤ −b2 ∨ (e(t) < b1 ∧ uM(t−) = −h)

(3)

where b1 = −βemin and b2 = βemax, and uM(−t), emax, and
emin are the previous command, maximum error, and minimum
error, respectively. MRFT has tunable parameters ζ = [β h]

T

which needs to be designed. The DF of MRFT is presented
in [12] as

NM(a) =
4h
πa

(√
1 − β2 − jβ

)
. (4)

Using the DF, it could be shown that the MRFT achieves
oscillations at a specified phase angle by satisfying the HB
equation [12]

Wl( j�t ) =
−1

NM(at )
(5)

with the RHS given by

−1
NM(at )

=
−πat

4h

(√
1 − β2 + jβ

)
(6)

and the corresponding magnitude and phase of the RHS of (5)
given by ∣∣∣∣ −1

NM(at )

∣∣∣∣ =
πat

4h

arg
−1

NM(at )
= −π + arcsin β. (7)

Note that the existence of a stable limit cycle for the
UAV model when using MRFT was proven in [18], and is
assumed hereafter. The predicted limit cycle frequency �t and
amplitude at are exact since the LPRS is adopted in this article.
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Fig. 1. Effect of time and gain scaling of process parameters on MRFT excited oscillations frequency and amplitude. We prove the homogeneity
of arbitrary closed-loop linear dynamics with MRFT using the LPRS.

TABLE I
SIMULATION EXAMPLE THAT COMPARES THE ACCURACY OF

IDENTIFICATION WITH RESPECT TO THE NUMBER OF TESTS USED

WHEN WHITE GAUSSIAN NOISE IS ADDED TO THE FREQUENCY AND

AMPLITUDE MEASUREMENTS. THE GROUND-TRUTH VALUES OF Td
AND τ ARE 0.7 s AND 0.06 s, RESPECTIVELY. WHEN USING ONE

MRFT OF β = −0.7, THE SUBSEQUENT IDENTIFIED PARAMETERS

ARE LESS ACCURATE COMPARED TO THE TWO

MRFTS OF β = −0.7 AND −0.4

TABLE II
PARAMETERS IDENTIFIED FOR DIFFERENT PROPULSION SYSTEMS

B. Proof of Homogeneity Properties Using the LPRS
The conditions for the generation of UFM and UGM

is governed by the four lemmas summarized in Fig. 1.
Lemmas 1 and 2 would allow the system parameters to be split
p = [K pt]

T where pt are the time-dependent parameters of
the system. Lemmas 3 and 4 relate the generated test frequency
with the unknown system time parameters. To prove these
lemmas, we use the LPRS.

The LPRS is a method that was introduced in [20] which
can provide an exact solution of the periodic motion in a
relay feedback system. A variation of LPRS, denoted as the
8(ω) function [21], can be used to provide the exact solution
for oscillations when the system is excited by MRFT. The
complex function 8(ω) was designed to be compatible with
the HB formulation so that the MRFT DF can be used to
predict limit cycles. The LPRS-based approach for analysis of
periodic motion is achieved by replacing the system frequency

response Wl( j�t ) in the HB (5) by 8 to obtain

8(�t ) =
−1

NM(at )
(8)

though the DF of MRFT is used, the predicted limit cycle
frequency �t and amplitude at are exact since 8(ω) accounted
for all harmonics in the relay switching. The Lemmas 1–4 will
be proven using 8(ω). The complex function 8(ω) is given
by

8(ω) = −

√[
ay(ω)

]2
− y2

(π

ω
, ω
)

+ j y
(π

ω
, ω
)

(9)

where y((π/ω), ω) is the value of the system periodic output
at the instant of switch of MRFT from −h to h. The amplitude
of the process output ay(ω) is given by

ay(ω) = max
t∈[0,T ]

|y(t, ω)|. (10)

Note that y((π/ω), ω) = βay(ω). The periodic output
signal y(t, ω) may be found using the Fourier series

y(t, ω) =
4h
π

∞∑
k=1

(−1)k+1

2k − 1
sin[(2k − 1)ωt + ϕl((2k − 1)ω)]

× Al((2k − 1)ω) (11)

where ϕl(ω) = arg Wl( jω), Al(ω) = |Wl( jω)|. Assuming a
nominal system Wl0 given by

Wl0( jω0) = K0

∏
i

(
jTNi ω0 + 1

)
e− jτω0

( jω0)
ni
∏

j

(
jTD j ω0 + 1

) (12)

with corresponding function 80(ω0), amplitude of oscillation
ay,0(ω0), and output y0(t, ω0). The magnitude |Wl0( jω0)| is
then given by

|Wl0( jω0)| = K0

∏
i

√(
TNi ω0

)2
+ 1

(ω0)
ni
∏

j

√(
TD j ω0

)2
+ 1
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and the phase arg Wl0( jkω0) is given by

arg Wl0( jω0) =

∑
i

arctan TNi ω0 −

∑
i

arctan TDi ω0

− ni
π

2
− τω0.

Lemma 1: The frequency �t of the test oscillations under
the MRFT is invariant to the change of the static gain of the
system.

Proof of Lemma 1: Let �t0 be the frequency of the
test oscillations corresponding to the process Wl0. Further let
Wlα( jωα) be a system that is related to the nominal system
Wl0 by a scaled static gain Kα = αK K0. Since arg Wlα( jωα)

is independent of Kα , we get arg Wlα( jωα) = arg Wl0( jω0).
This leads to the phase balance of (8), which leads to the
invariance of test frequency �tα = �t0.

Moreover, changing the MRFT amplitude h in (7) does not
change the limit cycle phase, and hence the phase balance
in (8) remains the same, leading to invariance of the test
frequency �t0. Hence, Lemma 1 is proved.

Lemma 2: The amplitude at of the test oscillations under
the MRFT is a homogeneous function of the system static gain
and MRFT amplitude.

Proof of Lemma 2: Given the magnitude relationship
|Wlα( jω0)| = α|Wl0( jω0)|, we obtain yα(t, ω0) = αy0(t, ω0)

for (11), and ay,α = αay,0 for (10). Then, using (9), the LPRS
8α(ω0) is related to 80(ω0) by

8α(ω0)=−

√
α2
[
ay,0(ω0)

]2
− α2 y2

0

(π

ω
, ω0

)
+α j y0

(
π

ω0
, ω0

)
=α

(
−

√[
ay,0(ω0)

]2
−y2

0

(
π

ω0
, ω0

)
+ j y0

(
π

ω0
, ω0

))
= α80(ω0) (13)

which is homogeneous with degree one.
Note that scaling the relay amplitude in the RHS of (8)

as hαh = αhh0 would simply result in at,αh = αhat,0 which
is also homogeneous with degree one. Since both scaling the
system gain and the MRFT amplitude resulted in the same
homogeneity degree, there is an equivariance between these
scales, which proves Lemma 2.

Lemma 3: The frequency �t of the test oscillations under
the MRFT is a homogeneous function of the system time
parameters.

Proof of Lemma 3: Consider the system Wlγ ( jωγ ) related
to the nominal system Wl0( jω0) by the scale of the system
time parameters pγ = γ p0. Given the phase equation of
Wlγ ( jωγ )

arg Wlγ
(

jωγ

)
=

∑
i

arctan γ TNi ωγ −

∑
i

arctan γ TDi ωγ

− ni
π

2
− γ τωγ

and assuming the new frequency ωγ is related to the nominal
system frequency by

ωγ =
ω0

γ
. (14)

TABLE III
MEAN AND STANDARD DEVIATION OF THE PARAMETERS

IDENTIFIED FOR TWO DIFFERENT UAVS. WE GET MULTIPLE

STEADY-STATE OSCILLATIONS AND HENCE WE GET MULTIPLE

PARAMETER MEASUREMENTS. THE 20 ms DELAY IS
ADDED IN THE ALTITUDE LOOP

we obtain arg Wlα( j (ω0/γ )) = arg Wl0( jω0), which leads to
the homogeneous relation of the test frequency �γ = (�0/γ ),
and therefore, proves Lemma 3.

Lemma 4: The amplitude at of the test oscillations under
the MRFT is a homogeneous function of the system time
parameters.

Proof of Lemma 4: The magnitude of the system
Wlγ ( jωγ ) is related to the nominal system by∣∣Wlγ

(
jωγ

)∣∣ = γ ni K0

∏
i

√
(γ TNi ωγ )

2
+1

(ωγ )
ni ∏

j

√(
γ TD j ωγ

)2
+1

(15)

and using the result from Lemma 3 proof∣∣∣∣Wlγ

(
j
ω0

γ

)∣∣∣∣ = γ ni K0

∏
i

√(
TNi ω0

)2
+ 1

(ω0)
ni
∏

j

√(
TD j ω0

)2
+ 1

(16)

= γ ni |Wl0( jω0)| (17)

which leads to yγ (γ t, (ω0/γ )) = γ ni y0(t, ω0) and the LPRS
of the nominal and time-scaled systems are related by [we use
the results from (13)]

8γ

(
ω0

γ

)
= γ ni 80(ω0). (18)

Hence, the amplitude of the test is homogeneous with
respect to time scaling with degree ni , which proves Lemma 4.

C. Unit Frequency Manifold
Achieving parameter identification in the unbounded

parameter space in real time is not feasible. To overcome
this, a bounded normalized parameter space is obtained by
leveraging the homogeneity properties of MRFT. If the time
parameters of a nominal process are scaled by a factor γ ,
the frequency of oscillation also scales by a factor of (1/γ ).
From this result, we may argue that for every process in the
parameter space that produces oscillations of frequency �0,
we can find a corresponding process that produces oscillations
at an arbitrary frequency �̂ by choosing γ = (�0/�̂). Using
this, we find a set of process parameters that produce the same
frequency; the identification will be done on this set. The set
of processes that produce any other frequency of oscillations
can be obtained by simple scaling. By convention, we choose
all the processes on the set to have oscillations of 1 Hz
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TABLE IV
COMPARISON BETWEEN THE PROPOSED IDENTIFICATION METHOD

AND DNN-MRFT. THE IDENTIFICATION WAS PERFORMED

ON THE ALTITUDE LOOP OF UAV DESIGN I

frequency, and therefore, we call this set the UFM. Similarly,
by Lemma 1, due to the invariance of the frequency to the
static gain of the system, the processes in the UFM may have
different static gains. By convention, we define the static gain
of all the processes in the UFM to be unity. Therefore, the set
of amplitudes of the processes in the UFM is called UGM.

Introducing the idea of UFM and UGM offers us many
practical advantages. First, for a class of LTI systems, the
UFM and UGM can be computed beforehand, which allows
the identification to be performed in real time. This was
not feasible before in the LPRS-based identification. Second,
the parameter space is compacted to a surface which would
decrease the computing power and memory required for
identification.

Consider the SOIPTD model of the UAV dynamics as
described in (2). The UFM and the corresponding UGM of
this model for a particular beta were computed and illustrated
in Fig. 2(a) and (b). It was found through simulation tests
that using UGM for identification gives inaccurate results in
the presence of noise. Therefore, the identification is done
solely based on the frequency of oscillations. We require two
oscillations from MRFT to identify the parameters of a UAV.
The simulation results that show the inaccuracies from using
the UGM are further discussed in Section V-A.

IV. UAV MODEL

A. Reference Frames and Conventions
We define an inertial frame FI having basis [ix, i y, iz] with

iz antiparallel to the gravity vector, and a body-fixed reference
frame FB centered at the center of gravity of the UAV with
rotation matrix I

B R = [bx, by, bz] ∈ SO(3), which gives the
transformation from FB to FI , where bz is parallel to the
thrust vector. We also define the horizon frame FH with its
origin coincident with the origin of FI , its basis hz being
coincident with iz , and it is yaw aligned with FB . A vector
can be expressed in a particular reference frame, e.g., I p
is the position vector expressed in the inertial frame. The
components of a vector are referred to with the subscripts
as in I p = [

I px
I py

I pz]
T . For compatibility of notation with

vector quantities we use Kx to represent the element K11 in a
diagonal matrix, and so on.

B. Nonlinear Time Delay UAV Model
We define the motor commands as follows:[

uη

uT

]
= Ḡui (19)

Fig. 2. Slice of the UFM which corresponds to the known Tp is shown
in red in (a). The amplitude of oscillations for this set of processes is
shown in (b). (a) UFM for β = −0.5. (b) Unit gain manifold for β = −0.5.

where uη = [ubx uby ubz ]
T represents torque commands around

FB bases, uT is the thrust command, and ui ∈ [0, 1] is the
dimensionless individual motor command with i ∈ {1, . . . , µn}

where µn represents the number of propellers used. Ḡ ∈ R4×µn

provides a static map independent of UAV dynamics, with
rank(Ḡ) = 4 and its Moore–Penrose inverse Ḡ+ is defined and
unique. The individual propulsion system thrust and moment
dynamics are given by

Fi (t) = kF ui
(
t − τp

)
− Tp Ḟ i (t)

Mi (t) = kM ui
(
t − τp

)
− Tp Ṁ i (t) (20)

where kF , kM , τp, and Tp are the thrust gain, moment gain,
propulsion system time delay, and propulsion system time
constant, respectively. Note that we assume that all propulsion
units are matched, i.e., the parameters kF , kM , τp, and Tp are
the same for all rotors. Also, it is assumed that the thrust and
moments applied to the rigid body are defined by the relation[

M
F

]
= G F Fp + G M M p (21)

where Fp = [F1 F2 · · · Fµn ]
T and M p = [M1 M2 · · · Mµn ]

T .
G F and G M are static maps which may contain UAV dynamic



PERINGAL et al.: RELAY-BASED IDENTIFICATION OF AERODYNAMIC AND DELAY SENSOR DYNAMICS 13091

parameters. The UAV body dynamics are then given by

I ṗ =
I v

I v̇ = −giz +
F
m

bz −
I
B RDB

I R I v

Ṙ =
I
B RBω

ω̇ = J−1(M − ω × Jω − Mg − AB
I R I v − Bω

)
(22)

where the diagonal matrices D, J , A and B represents profile
drag and inflow motion drag due to translational motion,
moment of inertia, drag due to blade flapping, and rotational
drag due to body profile and inflow motion, respectively.
The vector Mg represents gyroscopic moments due to the
interaction between rotating propellers and rotating UAV body.

C. Dynamics Decoupling
Analysis of decoupled dynamics can be achieved by

projecting the 3-D space into a 2-D space. Specifically for
decoupling, we assume that FI := FH and, without loss
of generality, project on the plane defined by i y × iz . The
rotation around bx is indicated by the angle θ . We use near-
hover linearization assumptions, i.e., we linearize about zero
pitch and roll angles, and we use linear drag models. The
rotational dynamics become

θ̇ = ωx

ω̇x =
1
Jx

(
Mx − Ax

I vy − Bxωx
)

Ṁ x =
−Mx + kM,bx ubx

(
t − τp

)
Tp

. (23)

We assume that the contribution of the term Ax
I vy is small

since the lateral velocity during identification is near-zero,
and hence we neglect it. Then the angular dynamics take the
structure of (2) with the model parameters given by

Td =
Jx

Bx
τ = τp + τimu (24)

where τimu is the time delay that arises from the IMU
measurement and the real-time processing.

The dynamics of altitude loop on the plane i y × iz is given
by

I ṗz =
I vz

I v̇z = cos θaF −
(
dy sin θ cos θ + dz sin θ cos θ

)I vy

−
(
dy sin2 θ + dz cos2 θ

)I vz

ȧF =
µn

kF
m uT

(
t − τp

)
Tp

−
aF

Tp
(25)

where aF = F/m. Given the fact that we perform
identification on altitude with θ ≈ 0 the altitude dynamics
become

I ṗz =
I vz

I v̇z = aF − dz
I vz

ȧF =
µn

kF
m uT

(
t − τp

)
Tp

−
aF

Tp
(26)

and thus, similar to the angular dynamics, the altitude
dynamics take the form of (2) with the model parameters given
by

Td =
1

Dz
τ = τp + τpos (27)

where τpos includes the time delay that comes from the position
sensor as well as the onboard flight computer used.

V. RESULTS

A. Simulation Results
The proposed identification method is first validated in

simulation since we have access to the ground-truth process
parameters. Consider the UAV attitude dynamics given by θ̇

ω̇

Ṁ

 =

0 1 0
0 −1.42 1.42
0 0 10

 θ

ω

M

+

 0
0

1.4

u(t − 0.06).

(28)

To assess the sensitivity of the identification method,
white Gaussian noise was added to the frequency and
amplitude obtained from simulation to study the effect of
noisy measurements on the identified UAV parameters. First,
the system in (28) was excited by MRFT with β = −0.7,
which resulted in oscillations with frequency and amplitude
of 1.022 Hz and 0.05 rad, respectively. With the addition
of white noise with a standard deviation of 3% of the
resultant amplitude and frequency, we found that the resulting
identification was highly inaccurate. On the other hand, when
we use two MRFTs of β = −0.7 and β = −0.4, we get
more accurate identification results. The sensitivity of the
identification method to additional white gaussian noise is
tabulated in Table I.

This necessitates the use of the frequencies of two MRFT
tests in identification to avoid the use of the amplitude of the
oscillations. We excited the system in (28) with two MRFTs
of β = −0.4 and β = −0.7 which produced oscillations
with frequencies of 0.708 and 1.022 Hz respectively. A similar
sensitivity analysis was conducted for the identification based
on the two frequencies where a white noise with standard
deviation of 3% was added to the two resultant frequencies,
which resulted in the identification with mean Td = 0.6404 s
and standard deviation of 0.1956 s, and for the time delay,
we have mean τ = 0.0679 s with standard deviation of
0.0168 s. The error percentage in this case was 8.5% and
6.73% for Td and τ , respectively, which is significantly lower
than the case when the amplitude of the oscillations was
considered in the identification. Therefore, we only depend
on frequency measurements for experimental identification.
The computations required for the identification using the
two frequencies case was less than 0.1 s on common modern
processors, leading to real-time applicability.

B. Experimental Setup
We validate the proposed identification methodology

experimentally using two different UAV platforms.
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Fig. 3. Experimental hexarotor UAV Design II.

Furthermore, we have developed a test rig for the
estimation of UAV propulsion system dynamics which
will be used as prior knowledge for MRFT-based
identification.

1) UAV Platform: The UAV platform used for the exper-
iments is a dji F550 hexarotor that uses a Navio2 flight
controller with Raspberry Pi 3B+. Two UAV designs equipped
with TDK-Lambda i7A dc–dc voltage regulators on their
electric power train are used for experimentation. The voltage
regulators fix the static gain of the system; therefore, the
battery voltage drop no longer affects propulsion system gain.
In UAV Design I, dji E305 propulsion system is used, and
in UAV Design II, dji E600 propulsion system is used. The
position and yaw states of the UAVs are measured using
OptiTrack motion capture system with sampling at 200 Hz,
and the roll and pitch measurements of the UAV are obtained
from the onboard IMU with sampling at 200 Hz. The
communication between the ground station and the flight
controller is done over a WiFi network, with ROS being used
as a middleware. The UAV Design II used in the experiments
is shown Fig. 3.

2) Test Rig for the Estimation of Propulsion System
Dynamics: The altitude dynamics of the UAV system consist
of two time constants and a time delay. The time constant
corresponding to aerodynamic drag and the time delay are
expensive to test offline. Therefore, the time constant of the
propulsion system is identified offline on a test rig, and
the other two parameters will be identified online based
on the MRFT oscillations.

To test propulsion dynamics, we prepared a fulcrum balance
that is free to rotate around its center. We placed the propulsion
system on one side of the balance and Kistler 9272 force
sensor with a high sampling rate of 1 KS/s on the other side
of the balance. A step command is then used as an input to
the propulsion system, and the resultant force is then observed
by the force sensor.

For the two propulsion systems used in the experimentation,
a least mean squares method was used to fit the parameters
of the propulsion system to the measurement data. The
parameters thus obtained for the two propulsion systems are
tabulated in Table II, and the step response of the identified
propulsion dynamics model is compared with the measured
propulsion force in Fig. 4.

Fig. 4. Identified propulsion dynamics are compared to the step test of
the actual propulsion system.

C. Real-Time Identification Results
The identification is performed on each control loop

separately. Altitude is tested with MRFT of β values of
−0.4 and −0.7, and attitude is tested with beta parameters
of β = −0.5 and −0.8. The MRFT parameters are chosen to
be spread out as much as possible within the constraints of
the amplitude and frequency permissible in the experimental
setup. For the attitude dynamics, higher values of β are
used because lower values of β produced oscillations with
amplitudes that are dangerously high.

The frequencies of the two oscillations obtained for altitude
dynamics are 0.63 and 1.1 Hz for β = −0.4 and β = −0.7,
respectively. Therefore, the time period of oscillations in the
first test is 1.58 s and for the second test is 0.909 s. To ensure
that the UAV has achieved steady state oscillations, we should
produce a few oscillations that have the same frequency
and amplitude. In our experiments, we ensure that three
oscillations have the same amplitude and frequency. Moreover,
we consider a transient time before the UAV achieves steady
state oscillations. For our experiments, we consider a transient
time of 1.5 s for each test. The known Tp is scaled down to the
UFM to obtain the set of possible UAV parameters [Tp, Td , τ ]

on the UFM. The intersection of the two scaled manifolds
gives the identified process parameters as illustrated in Fig. 5.
The time taken for this computation on average takes 0.2 s.
The overall time taken for the identification of parameters
of the altitude dynamics is 10.66 s. Identification results for
both altitude and attitude dynamics are shown in Table III.

The accuracy of the identified parameters in the identifica-
tion experiments cannot be assessed because we cannot access
the ground-truth parameter values. We propose to introduce
some increment to the time delay in the flight controller
software, which is known, therefore can be compared against
the estimated value. We chose to add a time delay of 20 ms
to the altitude feedback loop. The manifolds’ intersection is
shown in Fig. 5(b) for the case of 20 ms additional time delay.
Also Table III shows the identification results with the added
delay. The experimental video and results are given in [19].
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Fig. 5. Parameters for the altitude dynamics as well as the attitude
dynamics are obtained from the intersection point of the two manifolds.
(a) Identification of the pitch parameters based on the intersection of
the two manifolds. (b) Parameters identified for the altitude dynamics
of the system with an additional 20 ms added are given by the
point of intersection of the two manifolds.

D. Comparison With the Literature
The identified parameters are compared to the parameters

obtained by another state-of-the-art identification method
which is the DNN-MRFT method [18] in Table IV.
The parameters obtained by DNN-MRFT are close to the
parameters obtained from our proposed identification methods
for the altitude dynamics. However, DNN-MRFT failed to pick
up the additional 20 ms introduced to the altitude dynamics.
This might be attributed to the fact that DNN-MRFT performs
identification by selecting from a discrete set of values, i.e.,
the DNN used within this method is a classifier.

VI. CONCLUSION

This article presented a real-time system identification
method utilizing the homogeneity properties of the MRFT and
the LPRS. The identification method presented can identify the
drag coefficient and time delay of a UAV. The identification
method is shown to be fast and stable and, therefore,
applicable in real-time applications. The two MRFTs required
for identification are performed within seconds and the
parameters can be found within a fraction of a second,
which facilitates the real-time applicability of the method. The
accuracy of the identification is demonstrated by showing the

identification of the known incremental delay of the system.
It was also shown that this method more accurately identifies
the known incremental delays than another benchmark real-
time identification method, which also provides very accurate
controller tuning.

So far, the altitude and the attitude dynamics of the
UAV are considered for identification, but a similar iden-
tification could be employed in the future to identify the
parameters of the underactuated lateral dynamics of the UAV
as well.
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