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TRAIL: A Three-Step Robust Adversarial
Indoor Localization Framework
Yin Yang, Xiansheng Guo , Senior Member, IEEE, Cheng Chen ,

Gordon Owusu Boateng , Member, IEEE, Haonan Si , Graduate Student Member, IEEE,
Bocheng Qian, and Linfu Duan

Abstract—Indoor localization utilizing received signal
strength (RSS) fingerprint has garnered significant attention
over the past decade because it is readily captured from
the MAC layer of ubiquitous hardware devices. However,
the localization accuracy of RSS fingerprint-based methods
is notably influenced by two primary factors: 1) disparities
between offline and online data distributions induced by
dynamic environmental changes and device heterogeneity
and 2) inconsistencies among hetero-measure samples (dif-
ferent RSS samples collected at the same reference point
(RP) during the online stage) stemming from unknown noise
and interference. To address these issues, we propose
a three-step robust adversarial indoor localization (TRAIL)
framework. The model is pretrained in the first step (Step
A), and an adversarial game is played between a regressor
and a feature extractor within the model in the second step
(Step B) and third step (Step C). Specifically, Step B trains
the regressor to discover more “hard” samples, i.e., hetero-measure samples with notable positioning differences, and
Step C trains the feature extractor to learn a suitable transformation that eliminates the disparities between offline and
online data distributions and the “hard” samples. To harmonize the contributions of the two factors in model training,
we integrate the multiple gradient descent algorithm (MGDA). Experimental results on both actual and simulated datasets
demonstrate that TRAIL outperforms state-of-the-art methods and exhibits robustness in low signal-to-noise ratio (SNR)
environments.

Index Terms— Adversarial learning, indoor localization, received signal strength (RSS), transfer learning.

NOMENCLATURE
DS , DT Source/target domain.
nS , nT Number of samples of source domain/RPs of

target domain.
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XS , XT Source feature matrix/target feature
tensor.

XT ( j, :, :) Hetero-measure matrix of the j th RP in
target domain.

X f
S , X f

T Extracted feature of source/target samples.
YS, ŶS, ŶT True positions of source samples, predict

positions of source/target samples.
yi

S
, ŷi

S
, ŷi

T
True position of the i th source sample,
predict position of the i th source/target
sample.

θe, θr Parameters of feature extractor/regressor.
Lhm, Lmmd, L S Hetero-measure/multi-kernel maximum

mean discrepancy/localization loss
function.

L A, L B , LC Loss function of Step A/B/C.
α, β, µ, ν, ω Weights of different losses.

I. INTRODUCTION

W ITH the rapid development of the Internet of Things
(IoT) paradigm, the demand for precise user and

IoT device localization has surged. Location-based services
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TABLE I
HETERO-MEASURE SAMPLES OF THE SAME RP

are becoming increasingly integral to various applications,
necessitating accurate indoor positioning methods [1]. Existing
indoor positioning systems utilize wireless technologies such
as Bluetooth, Ultrasonic, WiFi, and radio frequency identifica-
tion (RFID), and employ one of three fundamental positioning
techniques: geometry-based methods [2], pedestrian dead reck-
oning (PDR) [3], and fingerprint-based methods [4]. Among
these techniques, WiFi fingerprint-based localization strategies
have garnered significant attention due to the widespread
deployment of WiFi infrastructures and the fact that they do
not require any initial location information.

The fingerprint-based localization method consists of two
stages: offline and online. During the offline stage, the indoor
environment is partitioned into multiple reference points
(RPs), and the signal characteristics (such as received signal
strength (RSS) [5] and channel state information (CSI) [6])
at each RP are recorded to establish a database. During the
online phase, various algorithms (e.g., maximum likelihood
[7], expectation-maximization [8], and random forest [9]) are
utilized to match the signal characteristics measured by the
user with the database to estimate the location.

Due to various factors, such as heterogeneous hardware
and dynamic changes in the indoor environment, there is
typically a significant deviation between the distribution of
online samples and the offline database. This deviation can
lead to prediction errors when applying the model trained
with offline data directly to the online samples. Therefore,
it is imperative to frequently collect a large amount of data
to rebuild the offline database, which incurs high costs. Most
current fingerprint-based indoor localization algorithms, such
as crowdsourcing-based methods [10] and transfer learning-
based methods [11], aim to address this issue.

However, even when taking multiple measurements of the
same RP at the same time with the same hardware, the
resulting RSS samples are not necessarily identical due to
various factors, including but not limited to multipath interfer-
ence, channel noise, human shadow effect, and their combined
effect. In the rest of this article, we refer to these samples as
“hetero-measure samples.” To illustrate the influence of these
unidentified interferences, we intercept the RSS data obtained
by taking measurements of ten base stations (BSs) at the same
RP five times in the UJI dataset [12], as shown in Table I. If a
BS is not detected in the sample, the corresponding RSS value
is −100 dBm. From Table I, it is clear that these interferences
not only result in varying RSS measurements from the same
BS but also lose the signal of some BSs, leading to inaccurate
positioning results.

To effectively exploit the information between hetero-
measure samples, we propose a three-step robust adversarial
indoor localization (TRAIL) framework. In this framework,
we find appropriate cross-domain mappings of source and
target domain data, such that a feature space containing com-
mon knowledge and accommodating unknown disturbances
can be constructed. To achieve this, we first pretrain the model
to learn source knowledge in Step A. Then, we train the
regressor to discover more “hard samples” by maximizing
the discrepancies among localization results of hetero-measure
samples in Step B. Finally, in Step C, we train the feature
extractor to learn the transformation by optimizing the multiple
kernel maximum mean discrepancy (MKMMD) function and
the discrepancies among localization results of hetero-measure
samples simultaneously. In this new feature space, we mini-
mize distribution differences between two domains and place
the data to “soft” points in the regression hyperplane as much
as possible. Here, a “soft” point means its derivative is nearly
zero in all directions. The key novelty of TRAIL lies in
incorporating the reduction of domain distribution discrepancy
and the reduction of hetero-measure data differences, elimi-
nating distribution discrepancy and the combined effects of
all unknown interferences in the online stage. Additionally,
we use the multiple gradient descent algorithm (MGDA)
to balance the adversarial training and domain alignment,
achieving more accurate localization performance.

In summary, the main contributions of this work are as
follows.

1) We design a novel TRAIL framework, named TRAIL,
to solve the domain distribution discrepancy problem
by optimizing the MKMMD function and enhance the
inclusiveness of the model for unknown disturbances by
employing maximum-minimum adversarial training to
learn the associations and differences between hetero-
measure samples. Consequently, the framework can
extract device-independent, anti-dynamic features and
reduce the influence of unknown interferences to achieve
robust localization.

2) Specifically, Step A pretrains the entire model using
source domain data to learn the intrinsic relationship
between RSS samples and their corresponding physical
locations; Step B discovers “hard” samples that are
heavily affected by unknown interference by training the
regressor through maximizing localization differences
between hetero-measure data in the target domain; and
Step C minimizes the MKMMD loss function between
the samples in the source domain and the target domain
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and the localization differences of the hetero-measure
samples in the target domain to train the feature extrac-
tor, so as to find a suitable transformation for precise
localization.

3) TRAIL introduces a novel approach to address the chal-
lenge of unknown interferences in RSS fingerprint-based
indoor localization. Unlike traditional methods that
individually address specific interferences, we use an
adversarial method to enhance the model’s robustness to
the collective impact of various interferences. Compared
with existing techniques, this innovative strategy yields
more precise and dependable localization outcomes.

4) We leverage MGDA to balance the model’s capabilities
in handling dynamic environmental changes and coping
with unknown interferences. This strategy eliminates the
need for specific hyperparameters, contributing to the
model’s robustness and achieving satisfactory results.

The remainder of this article is structured as follows.
Section II discusses the related work. Section III presents our
proposed framework. In Section IV, extensive experiments are
conducted on actual and simulated datasets, and results are
provided. Finally, Section V concludes this article.

II. RELATED WORK

We review related works from three perspectives: transfer
learning, adversarial learning, and fingerprint-based localiza-
tion with hetero-measure samples.

A. Transfer Learning
Transfer learning is a machine learning method that transfers

knowledge from a source domain to a target domain, resulting
in improved performance and reduced training costs. Accord-
ing to [13], most transfer learning algorithms can be primarily
categorized into instance-based or feature-based.

Feature-based transfer learning algorithms seek to find
a feature transformation that can project the data of two
domains into a new feature space with a slight distribution
difference. To achieve this, distance metrics such as maxi-
mum mean discrepancy (MMD) [14], correlation alignment
(CORAL) [15], and Wasserstein distance [16] are commonly
used. Pan et al. [17] used kernel methods to minimize the
MMD function between domains. Sun et al. [18] proposed a
dimension reduction algorithm by manifold learning, which
also narrows the distance between the marginal probability
distributions of the two domains. Methods like DAN [19]
and DeepCoral [15]-integrated MMD or CORAL function
with deep learning to take advantage of neural networks’
strong fitting capability. However, these methods only align
the marginal or conditional probability distribution of the two
domains, ignoring the differences between samples within the
same class.

Instance-based transfer learning methods weight the source
domain data to emphasize samples similar to the target domain
data. However, the selection of weights and the measure
of sample similarity significantly impact these strategies.
In practice, instance-based transfer learning methods are often
combined with other methods to achieve better performance.

For instance, Transloc [20] combined source domain refine-
ment and homogeneous feature space construction to solve
the problem of heterogeneous feature dimensions caused by
BS changes in long-term localization tasks and obtained
acceptable results. Li et al. [21] reduced data distribution
divergences between different domains through multilevel
knowledge transfer, including sample, feature, and model
levels. Guo et al. [22] calculated the similarity between source
and target domain data using the Euclidean distance and
maximized the likelihood function to obtain the most probable
label estimation.

B. Adversarial Learning
Adversarial learning trains the model to defeat a hypo-

thetical adversary attempting to perturb the input, thereby
enhancing the model’s robustness and generalization ability.
Various methods have been investigated to generate adver-
sarial samples for input perturbation [23], [24]. Except for
adversarial learning based on generating adversarial samples,
Ganin et al. [25] were the first to propose combining adver-
sarial ideas and domain adaptation, laying the foundation for
adversarial transfer learning. Based on this concept, a series
of studies have been conducted [26], [27]. Besides, Saito et al.
[28] identified hard target samples that are difficult to classify
using two distinct classifiers and updated the feature extractor
to handle them.

Adversarial learning has found extensive applications in
indoor fingerprint localization. Liu and Wang [29] introduced
a novel tensor GAN that leveraged a three-person adversarial
game involving a generator, a regressor, and a discriminator.
Li et al. [30] employed the DANN [25] concept to tackle the
knowledge transfer issue for indoor localization and developed
a method to generate 2-D RSS fingerprints. In [31], a domain
adversarial graph convolutional network was proposed that
combined adversarial ideas with graph convolutional networks.

C. Fingerprint-Based Localization
With Hetero-Measure Samples

RSS at a specific location varies for various reasons,
including multipath effect, human body shadow effect, chan-
nel noise, etc. There are already many studies that analyze
the above-mentioned interferences separately. For instance,
to address or mitigate the impact of the multipath effect,
Zhao et al. [32] utilized the discrete Fourier transform to
partition the signal into distinct frequency bins and built
an RSS model that considered all the dynamics changes.
Fang et al. [33] translated dynamic multipath effects into
random additive noise in the logarithmic spectrum and pro-
vided a way to reduce it. Fang and Chen [34] utilized a
three-edged constraint to prevent the traditional multichannel
localization algorithm from falling into local optima. To elim-
inate the impact of the human body shadow effect, Husen and
Lee [35] collected the face orientation of a measurer while
collecting fingerprints. Bi et al. [36] used a fuzzy C-means
(FCM) clustering algorithm to create an orientation fingerprint
database (OFPD) in the offline phase. The appropriate OFPD
was selected according to the user’s orientation, and further
matching operations were carried out in the online stage.
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Fig. 1. Model structure diagram. The model includes a feature extractor and a regressor. The green and blue lines represent the flow of source
and target data, respectively. The red dotted boxes represent the data needed to calculate different losses.

However, none of these works jointly considers these inter-
ferences on RSS. In fact, due to the complexity of indoor
environments, most of these interferences act together, so con-
sidering one interference alone is unsuitable for actual tasks.
In addition to these methods that reduce a particular type
of interference individually, other positioning methods either
average the hetero-measure samples or treat them as individual
fingerprints. As a result, the correlation and distinctive infor-
mation among the hetero-measure samples are underutilized.

Unlike existing approaches that either consider only the
distribution differences between domains or mitigate only one
type of interference during the online phase, TRAIL utilizes
a small amount of unlabeled hetero-measure data during
the online phase to eliminate differences in the distribution
between domains and discrepancies in hetero-measure sam-
ples without extra information simultaneously. The underlying
mechanism is to construct a suitable transformation that can
help us perform knowledge transfer efficiently and enhance the
tolerance of the model to unknown interference. Experimental
results demonstrate the superiority of TRAIL even in low
signal-to-noise ratio (SNR) environments.

III. SYSTEM FRAMEWORK

In this section, we present the framework of TRAIL.
Section III-A briefly introduces the problem setting and our
model. In Section III-B, we discuss handling hetero-measure
samples. Then, we describe our three-step adversarial training
approach in Section III-C. Finally, we explain our employment
of MGDA in Section III-D.

A. Overview
Let DS = {XS, YS} = {(xi

S, yi
S)}

nS
i=1 be the labeled source

domain collected during the offline phase, where nS is the
number of samples, xi

S and yi
S are the RSS vector and the

2-D coordinates of the i th sample. Each sample consists of
RSS values of C BSs. Among them

xi
S =

[
x i,1

S , x i,2
S , . . . , x i,C

S

]T
(1)

where x i,c
S denotes the RSS value of the cth BS in the i th

sample. Because we need to learn the unknown interferences
of the target domain rather than the source domain, we just
treat the source domain data as independent fingerprints rather
than hetero-measure data.

Similarly, let DT = {XT } = {(XT ( j, :, :))}nT
j=1 be the

unlabeled target domain collected during the online phase,
where nT is the number of measured RPs, which is not
necessarily equal to the total number of RPs, and XT ( j, :, :)
is the hetero-measure matrix at the j th RP. Notably, there are
at least two hetero-measure samples at each RP as follows:

XT ( j, :, :) =

[
x j,1

T , x j,2
T , . . . , x j,k

T

]T
, k ≥ 2,

x j,k
T =

[
x j,k,1

T , x j,k,2
T , . . . , x j,k,C

T

]T
(2)

where x j,k
T denotes the kth measurement at the j th RP.

As illustrated in Fig. 1, the model proposed in this article
primarily comprises a feature extractor and a regressor. The
feature extractor is intended to learn a feature transforma-
tion that transforms source domain and target domain data
into anti-dynamic and anti-interference features X f

S and X f
T ,

respectively. The regressor uses the extracted features to
predict the position. Let θe and θr be the set of parameters
of the feature extractor and regressor, respectively. Let F and
R represent the feature extractor and regressor function. Given
the source samples XS , we can obtain predicted positions ŶS
as follows:

X f
S = F (XS; θe)

ŶS = R
(

X f
S ; θr

)
. (3)

B. Hetero-Measure Samples Utilization
When performing regression tasks, it is essential to constrain

the absolute value of the derivative of the regression curve
at the sample point to avoid unstable outputs. If the absolute
value of the derivative is too large, even tiny disturbances to the
samples can result in significant errors in the output prediction.
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Fig. 2. Different hetero-measure samples in regression curve. (a) Abso-
lute value of the derivative of the regression curve is more significant at
the “hard” points, and the slight error of the samples leads to the vast
difference in the regression value. (b) Absolute value of the derivative
of the regression curve is smaller at the “soft” points, so more stable
regression values can be obtained.

These problematic samples are referred to as “hard” samples,
as shown in Fig. 2(a). Conversely, we prefer the “soft” samples
to obtain more stable regression values, as shown in Fig. 2(b).
Therefore, we need to make all the samples “softer.” To
achieve this, we can learn a transformation that maps samples
into the “soft” points in the regression curve.

In the context of our fingerprint localization, the
hetero-measure samples can be assumed to be in the same
neighborhood. If the regression positions of hetero-measure
samples at the same RP are close enough, it can be considered
that the hetero-measure samples are “soft.” To measure the
discrepancies among the predicted positions of hetero-samples,
we utilize mean squared error (MSE) loss (referred to as
hetero-measure loss Lhm in the remainder of this article) rather
than variance or covariance. We prefer the MSE loss because
the variance solely characterizes differences in the predicted
positions along a singular dimension within the 2-D coor-
dinates, while the covariance only represents the correlation
between two dimensions. However, we are concerned with the
overall dispersion between the regression locations of hetero-
measure samples, so the sum of Euclidean distances may
be more appropriate. To minimize the hetero-measure loss,
we can train the feature extractor to learn the transformation
and thus improve robustness to the unidentified interference.
It is worth noting that we do not need to find out which sam-
ples are “hard”; what we do is to minimize the hetero-measure
loss of the whole target domain to learn that transformation.

C. Three-Step Adversarial Training
To further improve the training effect, we adopt a three-step

training process, as shown in Fig. 3.
Step A: In this step, we pretrain the entire model with source

data to minimize the localization loss L S . Our optimization
goal is to minimize the loss function L A in Step A, which is
expressed as follows:

min
θe,θr

L A = min
θe,θr

L S

= min
θe,θr

(
1

nS

nS∑
i=1

∥ ŷi
S − yi

S∥
2
2

)
(4)

where θe denotes the parameters of the feature extractor, θr
represents the parameters of the regressor, and ŷi

S represents
the predicted position of the i th source sample.

Fig. 3. Three-step adversarial training. (a) Step A. (b) Step B.
(c) Step C.

Step B: In this step, we aim to train the regressor to detect
“hard” samples as much as possible. To achieve this, we freeze
the feature extractor and train the regressor by maximiz-
ing the hetero-measure loss, i.e., maximize the divergences
among the predicted positions of hetero-measure samples. The
hetero-measure loss is expressed as follows:

max
θr

Lhm

= max
θr

1
nT × C2

k

nT∑
j=1

k∑
m=1

k∑
n=m+1

∥ ŷ j,m
T − ŷ j,n

T ∥
2
2

= − min
θr

1
nT × C2

k

nT∑
j=1

k∑
m=1

k∑
n=m+1

∥ ŷ j,m
T − ŷ j,n

T ∥
2
2 (5)

where ŷ j,m
T represents the predicted position of the mth

measurement of the j th RP and C2
k = (2!/k!(k − 2)!).

Meanwhile, we optimize L S so the regressor can retain
the knowledge learned from the source domain. This means
the regression hyperplane is still suitable for positioning tasks
rather than just focusing on finding as many “hard” samples
as possible. The total loss function L B of Step B is as follows:

min
θr

L B

= min
θr

(αL S − βLhm)

= min
θr

(
α

1
nS

nS∑
i=1

∥ ŷi
S − yi

S∥
2
2

−β
1

nT × C2
k

nT∑
j=1

k∑
m=1

k∑
n=m+1

(
∥ ŷ j,m

T − ŷ j,n
T ∥

2
2

) (6)
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where α and β are the adaptive weights learned by the
following MGDA algorithm for L S and Lhm, respectively.

Step C: In this step, the regressor is fixed. We train the
feature extractor to find the suitable transformation that aligns
the distribution of the source and target domains (achieved by
minimizing the MKMMD loss function Lmmd between offline
and online data) and map samples to “soft” points (achieved
by minimizing the hetero-measure loss function Lhm of the
online data). Besides, to ensure that the extracted features are
not only “softer” and close to the source data but also effective,
i.e., divisible and conducive to the positioning task, the offline
localization loss function L S is added in LC as follows:

min
θe

LC

= min
θe

(
µL S + νLhm + ωLmmd

(
X f

S , X f
T

))
= min

θe

(
µ

nS∑
i=1

∥ ŷi
S − yi

S∥
2
2

+ν
1

nT × C2
k

nT∑
j=1

k∑
m=1

k∑
n=m+1

∥ ŷ j,m
T − ŷ j,n

T ∥
2
2

+ω∥
1

nS

nS∑
i=1

8
(

x f,i
S

)
−

1
nT × k

nT ×k∑
j=1

8
(

x f, j
T

)
∥

2
2

 (7)

where µ, ν, and ω are the adaptive weights learned by
the following MGDA algorithm for L S , Lhm, and Lmmd,
respectively, Lmmd represents the MKMMD loss function,
X f

S , X f
T are extracted features of source and target samples,

and 8(·) is the multikernel map of MKMMD

K
(

x f,i
S , x f, j

T

)
= 8

(
x f,i

S

)
· 8

(
x f, j

T

)
K ≜

{ p∑
u=1

λU .K .u;

p∑
u=1

λu = 1, λu ≥ 0

}
(8)

where λu is the weight and ku denotes the uth different kernel
function.

D. Multiple Gradient Descent Algorithm
In the three-step training process described above, the

optimization objectives of both Step B and Step C consist
of multiple loss functions. The weights of these losses have
an enormous impact on the localization precision of the
model. To handle this, our model employs the MGDA to
alter the weights dynamically, thus eliminating the need for
hyperparameters. To balance the computational complexity
and the retention of the source domain knowledge, we set
L B and LC as follows:

L B = (1 − β) L S − βLhm

LC = L S + νLhm + (1 − ν) Lmmd. (9)

Then, we dynamically compute β and ν by the MGDA
method.

For the two-loss function weights optimization problem [37]

min
θsh,θ1,θ2

(αL1 + (1 − α) L2) (10)

where θsh denotes the shared parameters for both loss func-
tions, and θ1 and θ2 represent the exclusive parameters of
L1 and L2, respectively.

The optimal α̂ of the above problem is given by

α̂=

[(
∇θsh L2 (θsh; θ2)−∇θsh L1 (θsh; θ1)

)⊤
∇θsh L2 (θsh; θ2)

∥∇θsh L1 (θsh; θ1)−∇θsh L2 (θsh; θ2) ∥
2
2

]
+

[a]+ = max (min (a, 1) , 0) . (11)

According to the chain derivative rule and the multivariate
function derivative rule, in Step B, when calculating the
optimal β̂ in (9), we can set θb

sh to be the weight of last fully
connected (FC) layer of the regressor, L1 to be the L S , and
L2 to be the Lhm; in Step C, when calculating the optimal ν̂

in (9), we can set θc
sh to be the weight of final FC layer of the

feature extractor, L1 to be the Lhm, and L2 to be the Lmmd.
For more information about the derivation process of

MGDA, interested readers may refer to [37]. The overall
procedure is summarized in Algorithm 1.

Algorithm 1 TRAIL Algorithm

Data: Source domain data:DS = {(xi
S, yi

S)}
nS
i=1;

Target domain data:DT = {(XT ( j, :, :))}nT
j=1;

fingerprints to be located x̄;
Input: max epoch n;
Output: The predicted position of x̄ : ȳ;

1: Step A:
2: Train the model using (4) with XS
3: i = 0
4: while i < n do
5: Step B:
6: Compute L S , Lhm in (6)
7: Compute β in (9) using (11)
8: Compute L B in (9)
9: Freeze feature extractor and update regressor using

L B
10: Step C
11: Compute L S , Lhm , Lmmd in (7)
12: Compute ν in (9) using (11)
13: Compute LC in (9)
14: Freeze regressor and update feature extractor using

LC
15: i = i + 1;
16: end while
17: Return the predicted position ȳ of x̄

IV. EXPERIMENT

In this section, we describe the experimental datasets and
settings, show the detailed results, and present our discussions.

A. Datasets
We first introduce two datasets A and B used in our

experiment. Table II presents more details about dataset A and
dataset B.
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TABLE II
DESCRIPTION OF THE TWO DATASETS

Fig. 4. Experimental environments of the two datasets showing the
RP locations (blue circles). (a) Floor plan of dataset A. The region in
the dashed red box shows the testbed environment. (b) Floor plan of
dataset B.

1) Dataset A: UJI dataset, which is a WiFi RSS fingerprint
dataset collected on two floors (third and fifth) of the
library at University Jaume I in Spain, covered an area
of 308.4 m2 and spanned 25 months, as shown in
Fig. 4(a). This dataset suffers from dynamic environ-
mental changes and the combined effect of different
interferences. The data for the first month has 11 520
fingerprints, each following month has 3456 fingerprints,
and the last month has 6912 fingerprints. At each RP, the
measurer performed six measurements of RSS values.
The last five measurements are considered valid data
because of the residual influence from the prior RP
measurement. During the 25 months of the experiment,
a total of 620 different BSs appeared in the environ-
ment, with significant changes after the 11th month. For
detailed information about the dataset, readers may refer
to [12].

2) Dataset B: To further examine the localization perfor-
mance of TRAIL under high-noise conditions quanti-
tatively, we conduct simulations of the indoor channel
environment using the path loss lognormal shadowing
model [38]

RSSc
= RSSc

0 − 10γ log10

(
dc

d0

)
+ nc + ne (12)

where RSSc (in dBm) is the RSS measured at the RP
from the cth BS, RSSc

0 is the RSS from the cth BS at
the reference distance, d0 and dc denote the distance
between the cth BS and the RP, γ is the path loss
exponent (PLE), and nc indicates the zero-mean normal
random variable with variance σ 2

c . To distinguish the
source and target domain, we simulate two different
hardware by adding additional noise ne. The mean of
squared distance over noise variance is how we calculate
the SNR in this context, expressed in decibels (dB), i.e.,
σ 2

c = (d2
c /10SNR/10). Additionally, we assume that if

the RSS value is equal to or lower than −100 dBm,

Fig. 5. Network structure for dataset A and dataset B (Conv is the
convolution layer followed by the convolution kernel size. FC is the fully
connected layer followed by the number of nodes). (a) Feature extractor
for dataset A. (b) Regressor for dataset A. (c) Feature extractor for
dataset B. (d) Regressor for dataset B.

the BS cannot be detected. Specifically, we simulate a
20 × 20 m indoor environment with 16 BSs evenly
distributed, as shown in Fig. 4(b). Then, we divide it
into 400 RPs spaced 1 m apart and collect six mea-
surements at each RP, resulting in 2400 fingerprints.
We set γ = 2, sample ne from a zero-mean Gaussian
distribution with a variance of 25, and vary the SNR
from 7 to 20 dB to create 14 pairs of source and target
domains.

B. Experimental Settings
We use the average location error (ALE) distance as the

evaluation metric, which is defined as follows:

ALE =
1
n

n∑
i=1

∥ ŷi
− yi

∥2 (13)

where n is the number of fingerprints, ŷi is the predicted
position, and yi is the true position.

We compare TRAIL with the following transfer learning
methods: TCA [17], DAN [19], DeepCoral [15], and TransLoc
[20]. To compare TRAIL with adversarial-based methods,
we consider DANN [25], MCD [28], and iToLoc [30]. We used
the same experimental parameters in all our methods, i.e.,
0.001 for learning rate, 128 for batch size, 300 for maximum
epoch, and 20 for early stopping. Besides, because the two
datasets have disparate data dimensions, we use different deep
neural network structures for TRAIL, as shown in Fig. 5.
We do not employ TransLoc [20] on dataset B because the
fingerprint of dataset B has no dimensional heterogeneity
problem.
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TABLE III
ALES FOR DIFFERENT METHODS

Fig. 6. ALEs of all methods on dataset A.

In the experiments on dataset A, we utilize all the data
from the first month as the source domain, and the remaining
months serve as the target domain. For each domain adapta-
tion task, we consider out-of-sample setting, i.e., the model
is trained using the first and 80% of the lth month data
(2764 samples) and then used for prediction on the same lth
month unseen test data (692 samples). Because the fingerprint
matrix of dataset A is sparse, we train an autoencoder to
convert the original 620-D fingerprint to a 200-D code and
apply it to all methods, except TransLoc [20] and iToLoc [30].

In the experiments on dataset B, since the simulated envi-
ronment only has 16 BSs, we do not use the autoencoder to
reduce the data dimension. Instead, we use the source domain
and 80% of the target domain data (1120 samples) for each
SNR as the training set and the remaining 20% of the target
domain data as the test set (280 samples).

C. Localization Performance
Table III illustrates the ALEs for all months using dataset

A and for all SNRs using dataset B. Fig. 6 shows the ALEs of
different methods for each month using dataset A. We observe
average ALEs of 3.67 m for TCA [17], 2.69 m for DAN [19],
2.38 m for DANN [25], 2.71 m for DeepCroal [15], 2.25 m for
TransLoc [20], 2.62 m for MCD [28], and 2.54 m for iToLoc
[30]. In contrast, TRAIL achieves an ALE of 1.77 m, which is
at least 21% better than the others. The TCA method shows the
worst performance, probably due to its limited fitting ability,
as it is not a deep learning method. The DANN method

Fig. 7. ALEs of all methods on dataset B.

Fig. 8. CDF of ALEs on dataset A.

performs unsatisfactorily in this experiment as the training of
the domain discriminator requires a large amount of data. The
DAN method only optimizes the MMD distance, leading to
an inferior performance compared to TRAIL.

With the change of BSs after the 11th month in dataset
A, there is a considerable decrease in the similarity between
the source and target domain data, resulting in a significant
increase in ALE for most of the methods. Because TransLoc
is the only method that considers the change of BSs, it has
relatively stable ALEs for all months. Although TRAIL has an
uptick in ALE after the 11th month, it noticeably outperforms
all other methods, demonstrating its superiority for domain
adaptation with large discrepancy and robustness for long-term
indoor localization. Furthermore, in the first ten months, our
strategy also surpasses all others with compelling results,
under the condition that more considerable cross-domain sim-
ilarity leads to close ALEs for all other approaches.

Fig. 7 shows the localization performance on the simulated
dataset B. Except for TCA and iTocLoc, all other methods
produce comparable results in the case of a high SNR. Besides,
the superiority of TRAIL becomes more significant under low
SNR conditions. When SNR = 7 dB, TRAIL achieves an ALE
of 0.9 m, significantly outperforming the other methods.

As shown in Fig. 8, the cumulative distribution function
(cdf) curve of TRAIL outperforms the cdf curves of other
methods on dataset A. Table IV illustrates the percentage of
samples with ALE less than 2 m. We can observe that the
percentage of samples with ALE less than 2 m of TRAIL is
67.31%, outperforming all the comparable methods. This is
14.76% higher than TransLoc and 37.74% higher than TCA.
The cdf of all methods on dataset B when SNR = 7 dB is
depicted in Fig. 9. TRAIL reduces the 90th percentile ALE
by 53%, 55%, 48%, 47%, 40%, and 62% as compared with
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TABLE IV
PERCENTAGE OF SAMPLES WITH ALE LESS THAN 2 m

TABLE V
ALES OF TRAIL WITH DIFFERENT LOSS WEIGHTS

Fig. 9. CDF of ALEs on dataset B (SNR = 7 dB).

DANN, TCA, MCD, DAN, DeepCroal, and iToLoc, respec-
tively. Table IV also illustrates the percentage of samples with
ALE less than 2 m when SNR = 7 dB. We can observe that the
percentage of samples with ALE less than 2 m of TRAIL is
96.25%, while that of DANN, TCA, MCD, DAN, DeepCroal,
and iToLoc are 77.91%, 70.41%, 77.29%, 83.33%, 82.70%,
and 70.02%, respectively.

Comparing the results in Figs. 6 and 7, when SNR is large
without other unknown interference (SNR = 20 dB in Fig. 7),
the ALEs of TRAIL and other methods are very close, which
indicates that TRAIL has similar effects as other methods
in solving the differences in domain distribution caused by
dynamic changes in the indoor environment and equipment
heterogeneity. Increasing the model’s tolerance to unknown
interference will not destroy the original data’s separability.
In addition, TRAIL is much more effective than other methods
in large SNR and real-world environments, thanks to using
the adversarial method to eliminate the combined effects of
different noises during the online phase. The experimental
results on dataset A and dataset B show that TRAIL simulta-

Fig. 10. Effect of different k (dataset B, SNR = 7 dB).

Fig. 11. Comparison between TRAIL and one step training (dataset A).

neously deals with the two error factors in indoor fingerprint
positioning tasks in an effective way. TRAIL consistently
achieved the best results on both dataset A and dataset B,
which certainly demonstrates its universality in a variety of
indoor environments.

To further explore the influence of the number of
hetero-measure samples on positioning results, we conducted
experiments on different k in (2) on dataset B with SNR =

7 dB, as shown in Fig. 10. It can be found that with the
increase of k, the ALE of TRAIL presents a downward trend
while the ALEs of other methods almost hold steady, which
shows that TRAIL can utilize the differences and connections
between hetero-measure samples to improve positioning accu-
racy.

D. Effectiveness of Three-Step Adversarial Training
To validate the effectiveness of the three-step adversarial

training, we introduced a gradient inversion layer between
the feature extractor and the regressor, allowing Lhm to take
its opposite during backpropagation. Subsequently, we trained
two models using the three-step adversarial and one-step train-
ing methods. The localization outputs are presented in Fig. 11.
The three-step adversarial and one-step training strategies
achieve ALEs of 1.77 and 2.51 m on dataset A, respectively.
These results indicate that the three-step adversarial training
method outperforms the one-step training method by a signif-
icant margin of 40%.

E. Effectiveness of MDGA
To analyze the effect of different loss weights on localiza-

tion results, we repeat the experiments on dataset A using the
parameters β = ν = 0.1, 0.01, and 0.001 in (9). As shown
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Fig. 12. Effect of different fixed weights (dataset A).

in Table V, TRAIL with MDGA achieves an ALE of 1.77 m,
while that of fixed weight 0.1, 0.01, 0.001 are 2.87, 1.89, and
2.03 m, respectively.

To further demonstrate the limitation of fixed weight,
we conduct experiments using the fifth and 17th months’ data
in dataset A. In detail, we systematically vary the parameters
β and ν in (9) over the ranges [0.001, 0.009] in increments
of 0.001, [0.01, 0.09] in increments of 0.01, and [0.1, 0.9]
in increments of 0.1. The experiment results indicate that
the change in loss weights significantly impacts TRAIL’s
positioning accuracy. As demonstrated in the third plane of
Fig. 12, a 0.001 variation of β and ν can result in an ALE
difference of up to 0.4 m. This effect is even more pronounced
in the 17th month, where changing the β and ν from 0.04 to
0.05 leads to a decrease of 1 m in ALE. Furthermore, the effect
of the same β and ν on different months is inconsistent. For
example, with β = ν = 0.007, a satisfactory ALE is achieved
in the fifth month, whereas a terrible ALE is performed in the
17th month. With the increase of β and ν, the ALEs in the
17th month show an overall upward trend, while the ALEs
in the fifth month are relatively stable. This is because the
positioning error is mainly caused by the dynamic change of
the indoor environment and the comprehensive interference
in the online stage, which is tackled by Lmmd and Lhm
respectively in TRAIL. However, increasing the weight of Lhm
will affect the transfer effect while decreasing the weight of
it will indulge the online synthesis interference. For the fifth
and 17th months’ data in dataset A, the fifth month’s data
are more similar to the source domain (the first month) data,
so transferring source domain knowledge will result in more
accurate positioning. Therefore, its positioning error increases
as the β and ν increase. For the data of the 17th month, its
similarity to the source domain data is slight, so the weights
less influence its positioning error.

These findings indicate that the weights need to be carefully
selected according to the similarity between source and target
domain data, which means it is impossible to choose a fixed
weight suitable for all months based on empirical observations.
Fortunately, the MGDA can effectively adapt to the changes
in different domain data.

V. CONCLUSION

In this article, we proposed TRAIL, which can alleviate
the problem of distribution discrepancy between online and
offline data and differences among hetero-measure samples

for fingerprint-based indoor localization. Specifically, in Step
A, we pre-trained the model with offline data to learn the
underlying association between offline RSS data and locations.
In Step B, we refined the regressor’s capacity to identify
more intricate “hard” samples. Finally, we trained the feature
extractor to learn a suitable transformation to map the data
into a feature space with slight domain discrepancy and to
the “soft” points of the regression hyperplane. Experiments
on both actual and simulated datasets have validated the
effectiveness of TRAIL. Additionally, TRAIL can be applied
not only with MKMMD but also with other transfer learning
methods, which deserves to be explored in future research.
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