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Abstract—Particulate matter (PM) monitoring and climate
change mitigation actions have been promoted due to the
Paris agreement because of their impact on health and high
mortality rate. High-resolution networks based on hyperlocal
Internet of Things (IoT) sensors can play a fundamental role
in improving data quality. In this context, hyperlocal refers to
air quality IoT systems that allow collecting data in real time
and in the cheapest way in comparison with local reference
stations. Despite these methods are powerful and widely
used by the scientific community, the signal is highly affected
by relative humidity (RH). In this article, we present a system
for measuring nanoparticles based on drying the air sampled and avoiding the hygroscopic growing of the particles.
To the best of our knowledge, this is the first dryer system approach developed for IoT hyperlocal sensors. In addition,
the relevance of our solution is supported by the following points: 1) we propose a new dryer system that has been
patented; 2) our solution can be integrated into an IoT infrastructure that allows it to interact with other services; and 3)
our solution has been validated in a real scenario in the city of Madrid. We have observed that the integration of a dryer
system improves the performance of the OPC-N3 sensor and that we can measure the PM10 and PM2.5 fractions with
high precision, R2

= 0.83. In addition, our solution can measure small particles, such as PM1, with a good correlation
against the reference air quality stations. Thus, our work contributes by improving high-spatial-resolution nanoparticle
monitoring in correlation to official measurements to mitigate climate change.

Index Terms— Particulate matter (PM), sensor system integration, sensor testing and evaluation, smart sensor system.

I. INTRODUCTION

ONE of the key aspects in current digital transformation,
and into the challenges for the next years, is particulate

matter (PM) monitoring as one of the main pollutants related
to traffic emissions in urban areas [1]. In 2015, PM became
one of the top five mortality risk factors in the world, with
an estimation of 4.2 million people premature deaths [2].
In Europe, there are about 300 000 deaths per year due to
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PM2.5 and 245 000 due to inorganic particles [3]. In addition,
particles with a high content of heavy metals, such as vana-
dium and nickel, correlate with cardiovascular mortality and
morbidity [4]. The maximum levels of exposure to these par-
ticles are regulated in Directive 2008/50/EC of the European
parliament and of the council on air quality and cleaner air
for Europe, in addition to other pollutants, such as CO, SO2,
and NOx . The categorization of PM mostly depends on the
aerodynamic diameter size of particles. It is divided into three
subclasses PM10 (d ≤ 10 µm), PM2.5 (d ≤ 2.5 µm), and
PM1 (d ≤ 1 µm), where the smaller particles generate a
higher risk to health [5]. However, the PM monitoring methods
proposed in Directive 2008/50/EC are too expensive to be
implemented in a network with enough nodes to provide a
high spatial resolution.

Hyperlocal air quality monitoring refers to high spatiotem-
poral measurements taken by combining Internet of Things
(IoT) devices that allow the collection of real-time data and are
easy to deploy in several locations, allowing public authorities
to make policy changes [6]. Therefore, cost-effective high-
resolution sensor networks monitoring pollution at fine spatial
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and temporal resolutions [7] are essential to regulating and
performing smart management and making decisions in smart
cities [8]. The importance of hyperlocal air quality sensors
is that an extensive network of several compliant reference
stations and a much larger number of hyperlocal sensors can
deliver reliable, high-temporal-resolution data at neighborhood
scales [9]. In this context, the use of IoT architectures and
smart cities strategies allows for integrating the sensors into a
bigger ecosystem and interacting with other components and
services that improve its performance [10].

In this sense, the use of and research on so-called hyperlocal
IoT sensors has increased in recent years. The need of the
IoT on nanoparticles is highlighted by the fact that real-time
data can ease the process of decision-making, and the IoT
should address this [11]. The IoT devices are based on optical
particle counters (OPCs) that base the measurement on the
assumption that the number of particles is proportional to
the light scattering. In this method, a light source illuminates
the particles, and then, the scattered light from the particles
is measured by a photometer. For particles with diameters
greater than 0.3 µm, the scattered light is roughly proportional
to their number concentration [12]. It has been shown that
such sensors can have an acceptable linear response in the
laboratory. However, there are deviations under real conditions
due to ambient factors, such as temperature and, especially,
relative humidity (RH) [13], [14]. Regarding this last factor,
the correction for humidity growth reduces the bias of the
particulate monitors. [15].

Related to this last issue, water vapor can condense on
aerosol particles, making them grow hygroscopically under
high RH conditions and changing the light scattering coef-
ficient. So, the light scattering method quantifies a larger
diameter and changes, and this error is propagated to calculate
mass concentration [16]. Thus, accuracy and error influenced
by RH are nonlinear with time and depend on the chemical
composition of the particles and season, factors that affect the
growth of the parcel under humidity conditions [17]. To correct
this effect, reference instruments usually have dryer systems
that remove water from particles before measurement. In con-
trast, hyperlocal air quality sensors do not include such drying
processes, resulting in particle sizes being overestimated at
high RH, resulting in PM values being then enhanced relative
to reference measurements, supposing a limitation of state-of-
the-art approaches.

Therefore, we hypothesize that adding a dryer system to
hyperlocal air quality sensors will improve the quality of
the measurements. In this work, we describe the develop-
ment and validation of a humidity correction dryer system
based on silica gel and infrared radiation. The dryer system
has been developed and integrated into three IoT hyper-
local PM devices—based on the Alphasense OPC-N3 sensor
technology—and validated by collocation tests in three refer-
ence stations in the city of Madrid. The system is a circuit
composed of two columns that dries the sample before it
arrives at the sensor. The main contribution of the work is the
validation of a dryer integrated into a hyperlocal air quality
device, since, to the best of our knowledge, this is the first
dryer system implemented in a hyperlocal nanoparticle sensor

TABLE I
PM DEVICES AND TECHNOLOGIES

and the first time this dryer system is tested in a real-time
environment.

The rest of this article is structured as follows. First,
Section II presents all the work done on the use of hyperlocal
air quality sensor and humidity correction approaches. Then,
Section III describes the physical design of our solution as
well as the resources used. From these tests, Section IV
is obtained, which are analyzed in Section V. Finally, the
main milestones and future challenges are presented in
Section VI.

II. STATE OF THE ART

According to the European legislation, the reference method
for PM determination is manual gravimetry, defined in the
norm UNE-EN 12341:2015. However, the same directive
states that methods showing a good correlation with man-
ual gravimetry can be used for monitoring. This last group
includes methods, such as automatic gravimetry, betta atten-
uation, and OPCs, which are quite important as they can be
miniaturized in hyperlocal air quality sensors. For this reason,
other methodologies have been explored to be miniaturized,
such as separation methods. Table I states the technology
behind the devices discussed in this article.

OPCs are based on light scattering, and each particle’s
diameter is computed. Then, the particle’s mass is calculated
using the density of the standard used for factory calibration
and assuming that the particle is spheric. The mass of all
particles belonging to one bin is summed to obtain the mass
concentration, and all the bins belonging to one fraction are
summed to compute the total mass concentration.

A. Hyperlocal Air Quality Sensors
Numerous studies have been conducted to evaluate hyper-

local air quality devices against medium—and high-cost—
reference techniques. In laboratory conditions, the hyperlocal
air quality sensors perform well, normally R2 > 0.85 [30].
However, this is not a realistic result, because these devices
tend to be less precise under real conditions—named field
evaluation in contrast to laboratory evaluation studied the
performance of a low-cost sensor in California, finding a
moderate agreement with beta attenuation monitoring (BAM)
(R2

= 0.35–0.81) [31]. On the other hand, evaluation against
the tapered element oscillating microbalance (TEOM) monitor
has a lower performance (R2

≤ 0.30) with a low concentration
range. However, a higher correlation with the BAM monitor
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(R2 > 0.80) was observed in places with high concentrations
in the same city [32], showing a great difference between
concentration ranges and reference techniques used for valida-
tion. Consequently, it is necessary to understand which factors
affect IoT hyperlocal sensors’ performance.

The first study to make a significant impact on this field was
conducted the study by Wang et al. [24] where three low-cost
sensors Shiney PPD42NS, Samyoung DSM501A, and Sharp
GP2Y1010AU0F were evaluated with the SidePark reference
technique. As a result, very high linearity was obtained with all
sensors (R2 values greater than 0.89) in laboratory conditions.
This study was the first to highlight the critical dependence
on humidity, particle size, and particle chemical composition.
Another problem typically exhibited by these sensors is scale
bias. For example, in this study, Speck sensors for PM2.5 were
used and found to overestimate the concentration by 200% in
indoor conditions and 500% in outdoor conditions, compared
to the GRIMM Reference Dust Monitor [21]. On the other
hand, the Plantower PMS1003 sensor had a bias of +46%
when measuring PM10 [28].

Another important feature is intrasensor variability, the
variation between the measures taken from different devices
for the same manufacturer. In [22], 12 low-cost sensors were
evaluated in their measurement of the PM2.5 fraction, testing
three sensors of the same brand under the same conditions.
For the OPC-N2, a wide range of R2 values were obtained—
between 0.38 and 0.67. This variability was also related to
the treatment done to report data. For example, there were
differences between daily means and hourly means. For the
PMS3003 sensor, the evaluation was conducted for hourly
and daily averages, obtaining R2 values ranging from 0.40 to
0.90. However, the slopes were close to one when the averages
were hourly, and they were much larger in the case of daily
averages [29].

Finally, a deeper analysis is done based on the performance
of the Alphasense OPC-N3, the sensor that will be integrated
into our solution. The South Coast AQMD1 conducted a
field evaluation. This report showed the best performance
for the PM1 fraction and a poor performance for the PM10
fraction. In this sense, the results for hourly means were R2

=

0.78–0.82 for PM1, R2
= 0.61–0.69 for PM2.5, and R2

=

0.48–0.53 for PM10. However, those results got improved for
small fractions when daily mean are applied, R2

= 0.88–
0.90 for PM1 and R2

= 0.69–0.76 for PM2.5, except for
PM10, R2

= 0.22–0.26.
Regarding other technologies, capacitance-based PM sen-

sors are becoming a hot topic in air quality monitoring,
because they can be easily integrated into small devices and
can be combined with particle discrimination methods [33],
[34]. These separation techniques are based on the movement
of phoretic particles in a fluid. The movement of the particles
is based on a gradient that could be electrical (electrophoresis),
chemical (diffusiophoresis), or thermal (thermophoresis) [35].
The motion of particles across gradients, whether thermal,
electric, or concentration, is a well-established phenomenon,
which already has applications in several fields, such as the
study of proteins in molecular biology [36]. More concretely,
thermophoresis has been studied to design real-time PM sen-

sors, and a sensor has been modeled using the finite-elements
method, with promising results [37], [38]. Thermophoresis is
a transport force that occurs due to a temperature gradient,
moving particles less than 2.5 µm in heater regions than bigger
particles, allowing separation [39].

B. Humidity Correction Systems
The effect of humidity on particle size and its application

to particle measurements through light scattering has been
widely studied. The physical explanation is that water vapor
condenses on the surface of aerosol particles, making them
grow hygroscopically—increasing their diameter—under high
RH conditions [40]. To correct for this effect, reference instru-
ments are usually equipped with dryer systems that remove
water from particles by applying heat before measurement..
For instance, Palas Fidas 200 S is an EN 16450 certified static
light scattering PM measurement instrument that incorporates
a dryer system, the intelligent aerosol dryer system (IADS),
used to remove water from particles before measurements [41].
On the other hand, the TEOM microbalance sample passes
through a pair of Nafion dryers, with a specific geometry to
control particle loss, remove water vapor, and reduce humidity
levels. From the exit of the sample equilibration system
(SES), the sample flow is routed through the TEOM mass
sensor, and the bypass flow is routed to the control unit in
the usual fashion. Because of the pressure drop created at
the mass flow controllers, the zone between the mass flow
controllers and the vacuum pump contains air with reduced
water vapor pressure. This dried, low-pressure merged system
flow then becomes the purge flow for the sample and bypasses
Nafion dryers [42]. Other approaches consist of implementing
technologies that are not temperature-dependent. For instance,
a real-time PM2.5 sensor module with the high mass resolution
was developed with the module consisting of a two-stage
aerosol impactor, a thin-film piezoelectric on silicon (TPoS)
MEMS oscillator, and a micropump, achieving a collection
efficiency of 51% for 2.54 µm and 50% for 1.03 µm [43].

In contrast, hyperlocal sensors cannot implement these
systems due to their low size and the complexity of the
previous systems, so there is a need for coupling these
devices with dryer systems. There are some approaches in
this sense in the state of the art, such as the design of a
sample inlet containing Perma Pure dryers [44], allowing the
control of sample RH and temperature. Then, the system
also contains a nephelometer and particle-sizing instrument.
In Perma Pure dryers, the sample aerosol entered the inlet
through a protective cover, which eliminated rain or insects
from the sample train [45]. Another work has developed dryer
systems for reducing the error by humidity on measuring PM
in the ambient air with optical particle measuring instruments.
Two types of dryer systems were designed: dryer systems
using heating and dilution methods, showing a high correlation
with reference systems [46].

Parallel to the physical dryer systems, there are many
state-of-the-art approaches to the moisture problem from
an algorithmic point of view. For example, a mathematical
method was developed to assess the PM levels based on the
resolution of the inverse problem in aerosol tomography [47].
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Beyond this, other approaches seek to remove the signal due
to the humidity. One of these solutions has proposed an RH
correction factor that could be applied to PM data in high
RH conditions. This factor was calculated from historical PM
data measured with an Alphasense OPC-N2 compared against
a TEOM reference instrument based on gravimetry, which
is not affected by humidity measurements [20]. However,
this strategy is not coherent with the physical phenomenon.
On dehydration, particles would reduce in size, not in number,
thus affecting the derived PM in ways that now would depend
on the detailed particle size spectrum.

To overcome this, exhaustive work has been done to
calculate the correction factor from the measured particle
size distribution rather than mass values. The results not
only showed significant improvement in sensor performance
but also retained fundamental information related to particle
composition. Thus, a particle size distribution-based correction
algorithm was developed to correct the influence of RH on sen-
sor measurements. The application of the correction algorithm,
which assumed a physically reasonable correction factor, with
the overestimation of PM measurements reduced from a factor
of 5 before correction to 1.05 after correction [40]. The main
drawback of this study is that this correction factor is highly
dependent on the chemical composition, and it is difficult
to extrapolate these results to other locations or to explain
the seasonal intrinsic variation associated with PM chemical
composition.

C. Hyperlocal Air Quality Networks Across Europe
Beyond a research level, the implementation of hyperlocal

air quality networks has been done by public authorities in
cities under the guidelines of the European Union, aiming to
be climate neutral by 2050, and it needs to reduce at least
55% of emissions by 2030. In Spain, cities, such as Valencia
(https://geoportal.valencia.es/apps/GeoportalHome/es/inicio/),
Santander (https://www.smartsantander.eu/), or Molina de
Segura (https://ciudadinteligente.molinadesegura.es/), have
developed their own smart city platforms. At the European
level, the French AIR Parif platform is of special relevance,
which integrates air quality data, emissions, and forecasting
over an extensive network of sensors (https://www.airparif.
asso.fr/). Helsinki has a promising real-time air quality mon-
itoring platform (https://hri.fi/data/en/dataset/reaaliaikainen-
ilmanlaatu-hsyn-ilmanlaadun-mittausasemilla), and
Amsterdam provides hyperlocal heat maps with hyperlocal
data at street level by combining observations with models
(https://maps.amsterdam.nl/klimaatadaptatie/?LANG=nl).
Finally, implementing policies through these local initiatives
allows for reducing emissions. For instance, research suggests
that a combination of direct regulation of diesel vehicles and
a targeted rebate to encourage substitution between diesel
vehicles and BEVs can reduce PM emissions by 13% [48].

III. MATERIALS AND METHODS
Three units have been developed and installed in three

reference stations in Madrid. This section describes the dif-
ferent methodologies and resources used for this work. First,
a description of the hardware system proposed is done, fol-
lowed by a summary of the IoT-cloud architecture in which

these sensors are integrated. This architecture allows us to
perform a validation based on colocation tests described in
Section III-C. Finally, information about the software and
computational resources used is provided.

A. Hardware of the Dryer System
The designed hyperlocal PM sensors are based on light

scattering, where particles move through an airflow and are
illuminated by a laser beam. The light is then scattered in all
directions according to the particle properties—size, shape,
absorption, and refractive index—and the beam’s wavelength.
This does not affect the measurement process, because it
remains constant [47]. Our solution integrates the Alphasense
OPC-N3 sensor, selected for its measurement capacity and
price competitiveness. However, it is important to high-
light that OPC-N3 is more expensive than the rest of the
sensors presented in the state of the art, because its hard-
ware is more complex and achieves higher accuracy [23],
reaching a range of 0.35 a 40 µm—based on a refraction
index of 1.5 + 0i—and a maximum mass concentration of
2000 µm/m3. It samples particles with a typical flow rate
of 280 mL/min and a velocity of 1000 particles per second.
This sensor is known as an OPC, because it calculates the
diameter of the particle and classifies it into one bin, a size
range in which all particles with a diameter within this
size range are contained. Then, the particle’s mass is calcu-
lated as PM1, PM2.5, and PM10 according to the following
formula:

m =

n∑
i=0

4
3
πr2ρ. (1)

It is easy to note that particle mass scales with particle size
according to a cubic relationship, so small errors in particle
classification lead to large errors in calculated mass. For this
reason, a patented system [49] has been implemented to dry
the air sample and avoid hygroscopic error, as shown in Fig. 1.
The dryer system is based on a Teflon column filled by silica
gel and an infrared radiation lamp. When the lamp is on, the
silica gel absorbs the moisture from the passing air, drying it,
and when it is off, desorption takes place, and the moisture
returns to the air. Therefore, the airflow is as follows: 1) it
enters through the first column and dries out as the lamp is
switched on; 2) it leaves the column and passes through the
optical sensor; and 3) it leaves the sensor and passes through
the exit column, taking up the moisture and regenerating the
silica gel. In order to optimize this process, two optical sensors
are placed, so when air enters one column, it is measured by
one sensor, and regeneration of the second column is allowed.
In the next cycle, the air enters the regenerated column, and
the second sensor measures the particles.

As can be deduced from Fig. 1, the air sample is dried
before passing the sensor. Thus, this affects the signal, because
the hygroscopic growth is removed before the sensor takes
the measurement. In this context, the computed size by the
sensor is closer to the real size, implying a lower value of r
in (1). Consequently, computing mass concentration in a cubic
way generates a more accurate value. This approach presents
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Fig. 1. Scheme of the proposed dryer system, based on a circuit with
two silica columns and two OPC-N3.

the following advantages in comparison with the techniques
exposed in state of the art: 1) it can be implemented inside
an IoT device, which is not possible for the size selectors
in TEOM microbalances [42]; 2) this approach does not
need to generate heat to correct humidity, as occurs in dryer
systems implemented in reference devices or thermophoretic
approaches [37], which implies an energy consumption not
feasible for IoT devices [41]; 3) it is more exhaustive than
the approach proposed by Perma Pure dryers; and 4) it acts
directly over the measurements, which has not done the
algorithmic approaches [47].

Fig. 2 details how the circuit is organized inside the box.
Both dryer columns are connected to one OPC-N3, and each
one is connected to a valve connected to the pump. This
component maintains the flux across the circuit and allows
particles to pass through the sensors. At the bottom of Fig. 2,
a detail of what is inside the column is filled with the silica
gel. It is important to note that the infrared lamp is placed at
the end of the tube, which is in charge of heating the gel and
dry particles when it is on.

The prototype schematized in Fig. 1 is based on two dryer
columns that are in charge of drying the sample and removing
the hygroscopic growth of the particles. For this purpose,
we use two Teflon tubes of 14 and 80 mm in radius, coupled
with two paper filters at the input and output to remove
particles—a surface of 26 239 mm2 of Teflon (Fig. 3). The
radius of the filter is 36 mm, and the radius of the overture
that allows the air to pass is 14 mm—meaning an area of
6912 mm2 of filter paper. The reason for using Teflon as the
main material is that other options, such as silicone, could
induce error, as the particles were prone to adhere to the
walls. However, it is true that for some connections, silicone
tubing must be used to achieve a fixed connection between the
component (filter, solenoid valve, and so on) and the Teflon
tubing. In other words, the aim is to achieve zero contact
between the silicone and the airflow to obtain a lower error.
The tubes are filled with silica gel that is in charge of absorbing

Fig. 2. On the left top, the circuit is presented with the two OPC-N3
sensors, the dryer columns, the pump, and the valve that changes the
cycles. On the right top, a delta of the OPC-N3 and the connection tube
to the valve are shown. On the bottom, a detail of what is inside the dryer
column is shown.

Fig. 3. Scheme of dryer column, composed of Teflon column of 80 mm
and two paper filters with a radio of 36 mm, and 14 mm the radio of the
cavity.

water from particles. This process is accelerated by an infrared
lamp controlled by a temperature sensor inside the column.

Despite the key components described previously, the new
IoT system comprises several components. Table II lists all the
elements needed to replicate the prototype with the required
quantity for a single unit. It is important to note that here,
we refer to the dryer column as the whole system described
in the previous paragraph, with the Teflon cylinder, the silica
gel, and the filters.

According to the Alphasense web page (https://www.
alphasense.com/faqs/), OPC-N3 units are calibrated for sizing
using controlled aerosols of monodisperse polystyrene latex
microspheres of specific sizes. Aerosol number concentration
is compared to an OPC gold standard, previously calibrated
against a certified TSI 3330 OPS instrument. After this factory
calibration, the whole unit, after integrating OPC-N3 with the
dryer, is calibrated in the field with the GRIMM 11-D OPC
reference system, which has a high correlation with manual
gravimetry [20].

B. Architecture
The data collection process is realized through an IoT-cloud

architecture that is organized in different layers, as shown
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TABLE II
COMPONENTS PER DEVICE

Fig. 4. IoT-cloud architecture for data collection, composed from bottom
to top by a sensing layer, a contextual layer, a persistence layer, and a
data analytics layer.

in Fig. 4. The sensing layer comprises the IoT systems and
is the one that directly performs the measurements, using
hyperlocal particle sensors as “things” according to the IoT
paradigm. Then, the contextual intelligence layer integrates
the collected data into an Orion context broker through an IoT
agent. It is important to note that this layer integrates real-time
contextual data. Next, these data are stored by the persistence
layer in a CrateDB database. Finally, the analytics layer is the
JupyterLab interface to perform the statistics through pandas
and sklearn. In this layer, the reference data are injected from
the European Air Quality Portal via the respective application
programming interfaces (APIs) and merged into a single csv
per location. In addition, the csv provided by the Madrid City
Council is added to this layer, as the mobile station (see
Section III-C) does not report to the European Air Quality
Portal. The generated csv files are used to validate our solution,
as explained in Section III-C.

Fig. 5. Workflow for data processing and validation.

C. System Validation
To validate our measurements, this work proposes a data

mining approach based on statistics and inference to determine
the quality of the data, according to the standardized workflow
in data science, by placing our devices next to the reference
stations of local air quality network (colocation test). The
proposed workflow is summarized in Fig. 5, starting on the csv
file generated in the data collection. It is composed of the
following steps: 1) the prevalidation and intercomparison of
the different PM sensors using the student’s t-test, since we can
assume the normality of the data because of the central limit
theorem and the correlation matrix; 2) validation against an air
quality station using the Pearson test and the linear regression
model; 3) study of the noise with the Z -score algorithm for
outliers detection; and 4) the iterative redesign of the solution
and/or colocation tests to improve the performance of the
system.

The evaluation corresponding to the second step of the
workflow has been performed in three different locations in
Madrid, and it was conducted at three granularity levels: on
hourly averaged real data—to validate against the reference
devices, on daily averaged real data—to assess the capac-
ity for long-term monitoring, and on maximum daily—to
study the effect of high concentrations. At these three levels,
we have applied metrics to compare the different devices to the
reference station concentrations quantitatively. These metrics
included Pearson r (2), which is a measure of the strength and
direction of a linear relationship; mean absolute error (MAE)
(3); and coefficient of determination R2 (4). In these equations,
ŷ and y are the predicted and real vectors, m ŷ is the mean of
the vector ŷ, and m y is the mean of the vector y

r =

∑n
i=1

(
yi − m y

) (
ŷi − m ŷ

)√∑n
i=1

(
yi − m y

)2
√∑n

i=1
(
ŷi − m ŷ

)2
(2)

MAE =
1
n

n∑
i=1

|yi − ŷi | (3)
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Fig. 6. Colocation tests in reference air quality stations.

R2
= 1 −

∑n
i=1

(
yi − ŷi

)2∑n
i=1

(
yi − m y

)2 . (4)

The reference devices used to validate our solution were
located on the official air quality stations. These devices are
based on technologies that shows a high correlation with the
manual normalized gravimetry defined in the norm UNE-EN
12341:2015. The official air quality stations report measure-
ments every hour, as the mean of all values measured in an
hour. Later, they are validated and stored in the European Air
Quality Portal from where they can be accessed through an
API. There are two kinds of reference devices. The first one is
based on automatic microbalance (TEOM), and the physical
principle beyond this technology is gravimetry. This device
is installed in the Cuatro Caminos and Escuelas Aguirre air
quality stations. On the other hand, optical methods show a
high relationship with manual gravimetry. In this work, we will
use data from two devices: the FIDA Palas, installed into
Unidad Móvil and the GRIMM 11-D OPC [31], available
in our laboratory. Fig. 6 shows the devices installed in the
reference stations.

D. Data Analysis
Data analysis has been done in a Python 3 environment, due

to the wide availability of data science tools. The libraries used
in this work and its references are summarized in Table III.

These libraries have been used to implement the workflow
proposed in Fig. 2. The first step is the extraction of the csv
file, which can be found in Zenodo (Zenodo Respository).
Once the csv file is obtained, the intravariability test is per-
formed with the ttest_ind() function from scipy by separating
data from different columns. Then, the linear models are
performed with the oms() function from statmodel and the
Z -score and outliers by implementing (5). The reference data
were obtained from the European Air Quality Portal API

TABLE III
LIST OF USED LIBRARIES

(https://fme.discomap.eea.europa.eu), by setting as parameters
CountryCode = ES, Pollutant = 10 (PM10) or 6001 (PM2.5),
Year_from = 2021, Year_to = 2022, Source = E1a, and
EoICode = ES0118A (Escuelas Aguirre) or ES1525A (Cuatro
Caminos). The meteorology has been extracted from the
Madrid Open Data Portal (https://datos.madrid.es). The data
from the mobile unit have been provided by the Madrid city
council, as it is not available and it is necessary to ask for
them

Z =
x − µ

σ
. (5)

The system is hosted in an OVHcloud (OVH) server with
an Intel1 Xeon1 CPU E3-1245 V2 @ 3.40 GHz—eight cores
operating system with 31 GB of RAM and 1 TB of storage.
The operating system is Ubuntu 18.04 × 86_64.

IV. RESULTS

The following results were obtained from three collocation
tests. A total of two devices were deployed in the Escuelas
Aguirre reference station and Cuatro Caminos reference sta-
tion, and one device was deployed in the Unit Movil station.
Just to clarify, the three deployed devices’ locations were the
same during all the tests. Thus, three locations were tested,
and the devices did not move during the testing period. All
experiments were performed simultaneously, with an hourly
sampling rate from July 10, 2021 02:00:00 to August 31,
2021 23:00:00. We obtained data from 1205 observations.
Regarding weather conditions, collocations tests were taken in
summer conditions in Madrid, with humidity values ranging
from 11% to 85% and temperature values ranging from 17 ◦C
to 42 ◦C. The RH median is equal to 32%, and the temperature
median is equal to 26.6 ◦C.

A. Data Analytics and Data Mining
Fig. 7 shows the correlations between the different variables

that our device can measure against our reference OPC,
GRIMM 11-D. This is important, because a high correla-
tion could help to implement better calibration models. It is
possible to observe a high correlation against the largest bins—
particles with a diameter between 0.35 and 10 µm—and the
PM1, PM2.5, and PM10 fractions. Also, the correlation with
humidity and temperature is also significant.

As explained in materials and methods, the solution is based
on a two-component system with two OPC-N3 sensors fed
by two different columns, so it is important to test if there
is high variability between sensors and columns. Using an
independent t-test to compare the measured means between

1Registered trademark.
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Fig. 7. Correlations between reference variables and device features.

columns, we obtain significant p-values for PM1, PM2.5,
and PM1 (p = 2.75 × 10−14, p = 2.75 × 10−39, and
p = 2.75 × 10−34). Fig. 8 shows the probability distribution
for both columns and the comparison of the mean and standard
deviation values. It is observed that the distribution represented
in orange is wider, counting particles for a bigger size. On the
other hand, the blue distribution is narrower, meaning lower
variability in the measurements.

B. Humidity Effect and Drying
Regarding the humidity monitoring, the results are sum-

marized in Fig. 9. It can be noted that the humidity values
were low in general. Still, higher values were indeed obtained
at night. The same occurred with the temperature, with high
values during all the monitoring periods—even greater than
40 ◦C. The comparison between the ambient humidity and
the OPC-N3 internal humidity provided interesting insights,
allowing us to quantify the effect of the dryer system. This
analysis was done in Escuelas Aguirre and Cuatro Caminos,
since the mobile unit did not provide humidity data. Fig. 9
shows that internal humidity (orange) was lower than ambient
humidity (blue), especially at night—for Escuelas Aguirre, the
mean and maximum humidity reduction were 43% and 56%,
respectively. In contrast, for Cuatro Caminos, they were 46%
and 60%, respectively. However, the correlation between the
internal and external humidities is quite high. This pattern
occurs in both stations, with Pearson coefficient 0.82 for
Escuelas Aguirre and 0.98 for Cuatro Caminos.

C. Hourly Mean Validation
The hourly mean validation was performed against the

hourly values of the reference air quality data (Fig. 10). For
this, hourly means were computed for the data of each device.
This treatment is unnecessary for the reference measurements,
because air quality stations report hourly means by default.
The metrics used were the Pearson coefficient and the MAE.
The best results were obtained for the mobile station (mobile
unit) with r = 0.84, r = 0.88, and r = 0.68 for PM10,
PM2.5, and PM1, respectively. In the other two stations, the
results were quite similar for PM10 (0.86 for Cuatro Caminos

Fig. 8. Comparison of probability distributions between columns per
fraction (PM1, PM2.5, and PM10). The text in each histogram shows
the results of the independent t-test.

and 0.79 for Escuelas Aguirre) but worse for PM2.5 (0.60 and
0.59, respectively).

Regarding MAE, the patterns differed for PM10 frac-
tion, where the higher value was for the Unidad Móvil
(18.12 µg/m3). In contrast, the PM2.5 fraction showed
a higher error for Cuatro Caminos and Escuelas Aguirre
(5.89 and 5.30 µg/m3) in comparison with Unidad Móvil
(4.65 µg/m3). For PM1, the error observed was larger than
PM2.5 (4.11 µg/m3).

The next step in the validation of the measures is to use
linear regression to test how close the measured values and
the real ones were. Thus, the relationship between the two
variables was a linear function of slope equal to 1 and intercept
equal to 0. The slope represents the bias error, and the intercept
represents the stochastic error. The graphic outputs of the
model are presented in Fig. 11, from where a high linearity
could be deduced, and error bars have been calculated from
the tests at the three locations and coincide with the ranges of
R2 and MAE for all the tests.
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Fig. 9. Hourly mean validation of our device against air quality reference
station. The metrics used are Pearson coefficient and MAE.

Fig. 10. Hourly mean validation of our device against air quality
reference station. The metrics used are the Pearson coefficient and
MAE. The 1264 hourly samples were taken.

Studying this hypothesis requires to analyze the statistics
related to the regression model: the intercept, the slope, the
F-test, and the associated P-value. In addition, the most
important metric to evaluate the model is the coefficient of
determination. All these results are shown in Table IV. The
results were quite similar for all the fractions. For PM10,
R2 was equal to 0.74, 0.62, and 0.83 for Cuatro Caminos,
Escuelas Aguirre, and Unidad Móvil, respectively. In contrast,
for PM2.5, R2 was equal to 0.356, 0.344, and 0.828 for Cuatro
Caminos, Escuelas Aguirre, and Unidad Móvil. Finally, for
PM1, the result was R2

= 0.50.

D. Daily Mean Validation
The daily mean validation was performed against the hourly

values of the reference air quality data (Fig. 12). For this, daily

Fig. 11. Linear regression model for each fraction at each air quality
station.

TABLE IV
LIST OF USED LIBRARIES

means were computed for the data of each device and each
air quality station. The best results were obtained for Unidad
Móvil with r = 0.97, r = 0.93, and r = 0.78 for PM10, PM2.5,
and PM1, respectively. In the other two stations, the results
were quite similar for PM10 (0.96 for Cuatro Caminos and
0.95 for Escuelas Aguirre), but worse for PM2.5 (0.80 in both
devices). It is important to note that the correlations improved
when applying daily means.

About MAE, the patterns differed for the PM10 frac-
tion, where the highest value was for the Unidad Móvil
(16.95 µg/m3). However, the PM2.5 fraction presented a lower
error for Cuatro Caminos and Escuelas Aguirre (3.79 and
3.94 µg/m3) in comparison with Unidad Móvil (4.12 µg/m3).
For PM1, the error observed was 4.11 µg/m3. An improvement
in comparison with hourly means was also observed, but it was
less notorious than for the Pearson coefficient.

E. Daily Maximum Validation
The daily maximum value validation was performed against

the hourly values of the reference air quality data (Fig. 13). For
this, maximum values were computed for each device’s data
and air quality station. The best results were obtained for the
mobile station (Unidad Móvil) with r = 0.94, r = 0.94, and
r = 0.58 for PM10, PM2.5, and PM1, respectively. The results
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Fig. 12. Daily mean validation of our device against air quality reference
station. The metrics used are Pearson coefficient and MAE. The 53 daily
samples were taken.

Fig. 13. Daily maximum validation of our device against air quality
reference station. The metrics used are Pearson coefficient and MAE.
The 53 daily samples were taken.

in the other two stations were r = 0.91 for Cuatro Caminos
and r = 0.85 for Escuelas Aguirre for PM10. On the other
hand, the results for PM2.5 were r = 0.60 and r = 0.61 for
Cuatro Caminos and Escuelas Aguirre, respectively.

Regarding MAE, the values were quite higher than daily
and hourly means. For PM10 fraction, the highest value
was for Escuelas Aguirre (42.65 µg/m3). In addition, the
PM2.5 fraction showed a higher error for Cuatro Caminos
and Escuelas Aguirre (11.18 and 11.60 µg/m3) in comparison
with Unidad Móvil (6.29 µg/m3). For PM1, the error observed
was larger in comparison with PM2.5 (6.36 µg/m3).

F. Outliers Detection
The outliers analysis was done for the PM10 fraction and

in the Cuatro Caminos device, because it was the noisiest
device, and the PM10 fraction had a high variability and a
large error due to the size of the particles belonging to this

Fig. 14. Temporal distribution of Z-score for PM10 in Cuatro Caminos
air quality station.

fraction. The first step was to compute the Z -score according
to the definition exposed in statistical methods. The results
are presented in Fig. 14. Therefore, we show the temporal
evolution of the Z -score across time. Positive values mean the
measurements were higher than expected, and negative values
mean the values were lower than expected. In general, values
over 3 and under −3 are usually considered outliers. Here,
measurements with a high Z -score in the first week and some
peaks in the second week of August are possible. The highest
value was a peak close to Z = 14.

Once the outliers were identified, we applied a filter
and an imputation method (mean imputation) to substitute
the abnormal values. This step is critical, because a high
Z -score could be an outlier or an event with extreme values—
in the context of particulate, a dust Saharan intrusion may be
an example. To analyze if these high Z -score values were
outliers, we computed the Pearson coefficient after applying
a filter of z = 10, z = 3, and z = 1 (Fig. 15). The initial
correlation (r = 0.86) became lower when the filter was
stricter (r = 0.78, r = 0.53, and r = 0.45 for z = 10,
z = 3, and z = 1). In contrast, the filters could improve the
initial error (13.9 µg/m3) when using a narrow window for
the Z -score (13.5, 12.5, and 10.4 µg/m3).

V. DISCUSSION

Emerging hyperlocal IoT nanoparticle sensors are devices
based on light scattering that allow to implementation of
high-resolution networks and assess the effectiveness of cli-
mate change mitigation policies. This technology is currently
limited by external factors, such as humidity. For this reason,
in this article, we have proposed a new hyperlocal IoT system
that helps in sample drying and removes the effect of humidity
in the measurement.
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Fig. 15. Comparison between signals after applying a Z-score filter
(z = 10, z = 3, and z = 1).

The first important point that can be extracted from the
results presented is that a high variability exists between the
two sensors integrated into the device. The p-values for the
t-test showed a significant difference between the means in
all fractions, and Fig. 8 also showed a significant difference
between the probability distributions. In this sense, this vari-
ability could affect the results and should be considered. This
may be due to load loss in different points of the circuit
that cause asymmetries or differences in the sensor coming
from the factory, especially related to the wear of the laser
of the optical sensor. A different hypothesis could be that the
variability of the sensors is high [22].

The proposed solution considerably improved the perfor-
mance of the Alphasense OPC-N3 sensor in field conditions,
showing high linearity with the reference equipment, as seen
in Fig. 10. In general terms, our solution outperformed
OPC-N3 according to the evaluation carried out by the South
Coast AQMD. For PM10, we obtained R2 ranging from
0.62 to 0.83 for hourly measurements, contrasting with R2

=

0.48–0.53 for the single sensor. A similar pattern occurred
for the PM2.5 fraction, achieving values ranging from 0.34 to
0.82 compared with R2

= 0.61–0.69. In this case, we achieved
a greater score in the best scenario but a lower score in the
worst one. However, the PM2.5 results were more coherent
with the 0.38–0.67 proposed for OPC-N2 [29]. Finally, R2

=

0.50 for PM1, which was lower than the obtained in the
validation done by the South Coast AQMD (0.78–0.82). It is
important to notice that we could only validate PM1 against
one station, so there is a lack of statistical evidence to compare
with the proposed ranges. On the other hand, we achieved
similar performances to those obtained in the state of the art for
PM2.5 using machine learning approaches, with R2 ranging
from 0.78 to 0.83, compared with 0.78 and 0.88 [50].

Regarding the dryer’s effectiveness, the analysis presented
in Fig. 9 shows a significant reduction in the humidity levels
after passing the columns. All internal humidity values col-
lected were below the ammonium sulfate efflorescence point
(35% RH) [41], which can be considered representative of
urban environments [51]. That means that the effect of the
hygroscopic growth is not significant on the measurement.
However, to confirm this hypothesis, some limitations of
our approach should be addressed. The first one is that the
correlation between internal and ambient humidity is quite
high, meaning that the dryer is reducing the humidity but
not removing it. Thus, the humidity changes still affect the
system, but with a lower impact. The second one is related
to locations, as we have only tested our system in the city
of Madrid. The weather conditions could be quite different in
coastal cities, such as Valencia or Santander, more continental
locations, such as Berlin, or Nordic places, such as Helsinki.
It is true that the experiments’ humidity and temperature
ranges are wide—covering from 11% to 85% and from 17 ◦C
to 42 ◦C. Still, it is necessary to test the system in differ-
ent cities to confirm its effectiveness, because the humidity
and temperature distributions are centered in dry and hot
values.

Another important topic is how the temperature and the
chemical composition affect the system and the measurements.
The results show a low correlation between the temperature
and the mass concentration signal, suggesting that there is
no significant dependency between them. This is in line with
(1), as temperature is not used for the computation of mass
concentration. It could indeed affect density, but this effect is
not significant in the study ranges. In addition, we demonstrate
that our system is robust to extreme high temperature condi-
tions, as it happens in Madrid during July. However, future
tests should evaluate the system for extreme cold conditions.
Finally, the effect of the chemical composition cannot be
deduced from this study, as it is necessary to test the system in
colocation tests in stations with different aerosol compositions.
Urban environments indeed present similar compositions, with
a κ = 0.61 [52]. Thus, to test this effect, comparing urban with
rural locations is necessary.

Despite the linearity of sensor response not being assumed,
it is the proper way to check the quality of the air quality
system according to new standards, such as CEN/TS 17660
[53]. In an ideal scenario, the relation between the response
of the sensor and the reference should be linear, with a slope =

1 and an intercept = 0. The slope stands for the bias error,
whereas the intercept represents the nonsystematic error. Our
results show that the slope is close to one, reducing the
systematic error. There is indeed a considerable nonsystematic
error. The same occurs with the MAE, which has high values
in the three fractions. These facts show a high noise and
unbiased error that should be addressed in the following
iterations. The hypothesis is that we are dealing with two
sensors in the devices, and the uncertainties related to each
one are added. New designs could try to use only one device
and check if the noise problems are reduced. In addition,
more robustness checks are needed in more cities and different
reference stations.
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Regarding daily means, the devices were colocated to the
reference station for 52 days. The results improved for all
the fractions and all the locations in terms of correlations and,
in consequence, in terms of R2, as occurred when we compare
against the reference technique. In contrast, as concluded
in previous studies, the MAE does not get large when we
apply daily mean measurements [40]. Compared with the
evaluation of the South Coast AQMD, the solution improved
the performance of the OPC-N3. For PM10, we obtained R2

=

0.90–0.94 in contrast to the R2
= 0.22–0.26 for the OPC-N3,

and for PM2.5, we achieved R2
= 0.80–0.86. Finally, for PM1,

we reached R2
= 0.68, lower than the values obtained by

AQMD.
Finally, the results obtained by the daily maximum showed

a good correlation with the reference, but the values of MAE
were so high, especially for PM10, with values higher than
40 µg/m3. This is because the signal is especially noisy in
the higher values, so the computation is inaccurate. For this
reason, it is necessary to analyze the effect of this noise and
the presence of outliers. In this sense, we observed that, for
the Cuatro Caminos station, there were some measurements
with a Z -score over than Z = 10—close to Z = 14—that
supposes a high deviation of the means. When we imputed
these values with the mean, we obtained a reduction of the
error, but also a reduction of the correlation. That could mean
that these extreme peaks are associated with real events but,
due to the intrinsic noise to the signal, are also amplified and
obtain an extreme value and reduce the accuracy, especially
for the daily maximum values. This increment in the noise
linked to maximum values is related to optical methods, since
the error in the measurement increases cubically when we
compute mass concentration from number concentration, thus
being higher for large values.

An important discussion point is the effect of the reference
technology on the PM2.5 fraction. This study used FIDAS
Palas as a reference instrument in the Unidad Móvil, based on
light scattering, and TEOM in Cuatro Caminos and Escuelas
Aguirre, based on oscillating microbalance. In this sense,
we observed better results against optical methods than against
TEOM, and this aspect should be studied. Other factors could
cause the difference observed, but the similar results for PM10
suggest that this is not a problem for the stations.

However, the proposed system presents some limitations,
which are detailed as follows: 1) the use of two sensors in
the circuit could add error due to the intrasensor variability;
2) the error is still important when measuring higher concen-
trations; and 3) the proposed system does not take into account
the effect of particle composition and size [13]. To better
understand these issues, it is necessary to implement more
exhaustive networks. Thus, the main challenge is to validate
the system in more reference points across Europe, imple-
menting a dense monitoring network covering all the factors
affecting performance. The next steps will be to implement
and perform this validation, also trying different approaches to
optimize the intrasensor variability. In addition, some algorith-
mic approaches should be implemented to consider size and
chemical composition. Thus, coupling optical particle methods
with spectrometric techniques to assess chemical composition

in real time can help in assessing particle composition impact
on measurements [54].

The technology proposed in this article highlights several
challenges and future research steps in applying hyperlocal
devices. The first one is the evaluation of low emission zones
(LEZs), because these devices allow monitoring the evolution
of nanoparticles and their correlation with the policies taken
by public administrations. In this sense, it is possible to
compute key performance indicators (KPIs) in a function of
the concentration of nanoparticles. Those indicators could be
related to several measures implemented in some cities in
state of the art. For instance, several studies highlight the
importance of implementing electric buses as urban transport
and correctly managing schedules and routes [55]. In this
sense, our solution could help to optimize the parameters
seeking to reduce nanoparticle emissions. On the other hand,
different approaches look for the security of different users,
such as cyclists [56]. In this sense, our solution could improve
the recommendation of healthy routes and bike stations.

Thus, the quality of the hyperlocal devices allows us to go
beyond and use this information as input for more complex
models. Recent studies have shown that hyperlocal air quality
sensors could identify the sources of the particles by coupling
the sensor to a mobile vehicle [57]. Our solution meets the
requirements to be linked to a mobile device well. Therefore,
it could improve the accuracy in the state of the art. Other
approaches deal with exhaustively quantifying the impact of
different scenarios in terms of environmental benefits (i.e.,
reduction of CO2 emissions, noise pollution, and traffic con-
gestion) and quality of service for the users [58]. In this
context, monitoring nanoparticles could be a key strategy,
because it provides a wide variety of real-time data that
could be used to feed these models. So, the research and
improvement on hyperlocal air quality sensors will play an
essential role in the solutions related to LEZs and impact
estimations.

VI. CONCLUSION

In this work, we have described and evaluated a nanopar-
ticle measurement system based on two silicon columns,
demonstrating that the drying of the air samples substantially
improves the measurements made with respect to the OPC-N3
hyperlocal sensor. Moreover, the results obtained with respect
to the reference measurements are quite good, with the values
of R2

= 0.83 for PM10 and PM2.5 in the best scenario for
hourly averages and Pearson’s coefficients above 0.80 for daily
averages and maxima. In addition, we have shown that these
devices can be integrated into an IoT architecture and interact
with a real-time calibration service to improve data quality.

The results obtained open new research possibilities, which
can be classified along two lines. On the one hand, improving
the quality of the data in three different aspects: 1) design
of the dryer system, seeking to optimize certain aspects,
such as airflow pressure losses, dryer efficiency, or sensor
wear; 2) eliminating intrinsic noise from the signal, by means
of methods to reduce electronic noise or the application of
moving averages or the elimination of outliers; and 3) using
real-time calibration models. On the other hand, the generation
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of high-quality hyperlocal data allows for progress in the
following lines that have been limited so far in state of the
art: 1) the generation of high-resolution air quality networks
that allow estimating the impact of measures, such as LEZ;
2) the improvement and calibration of chemical transport
models used to model the spatiotemporal distribution of pol-
lutants; and 3) the calculation and estimation of the origins of
pollution.
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