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A Compact 16-Channel Input Thermally
Adsorption-/Desorption-Controlled Intelligent

Odor Sensing System
Toshiki Niinomi , Atsuo Nakao, Yosuke Hanai, Hiroshi Ushio, Takuya Hayashi, and Masaya Nakatani

Abstract—In this study, we developed a compact thermally
adsorption-/desorption-controlled odor sensing system (TC-
OSS). The absorption and desorption of odor molecules or
volatile organic compounds (VOCs) are controlled by sensor
temperature giving a high resistance value in a VOC adsorbed
state at low temperature and a low resistance in a VOC
desorbed state at a high temperature. The system elimi-
nates many gas flow control parts required in conventional
odor sensing systems realizing a significant compactness.
The developed TC-OSS comprises a 16-channel VOC sens-
ing elements array fabricated on a small heater showing
high sensitivity (3-ppb sensing capability with signal-to-noise
ratio (SNR) as high as ∼15 dB). With the assistance of artifi-
cial intelligence (AI) postprocessing, a discriminative classifier of five standard VOCs with high a successful probability
(∼95.8%) is demonstrated.

Index Terms— Discriminative classifier, fluidly adsorption-/desorption-controlled Odor sensing system (FC-OSS),
polymer-nanocomposite conductive membrane (PCM), Principal component analysis (PCA), thermally adsorption-
/desorption-controlled odor sensing system (TC-OSS), volatile organic compounds (VOCs).

I. INTRODUCTION

THE odor sensing systems (OSSs) capable of identifying
odor molecules similar to human and animal olfactory

receptors are highly expected for applications to hygiene man-
agement [1], environmental monitoring [2], medicines [3], [4],
individual authentication [5], prevention of fire disasters [6],
and food industry [7]. A practical OSS must be equipped with
two functionalities; a high sensitivity to odor molecules or
volatile organic compounds (VOCs) contained in air with tiny
fractional amounts (typically with ppm or lower order) and
a capability of identifying or discriminating various VOCs.
To meet these requirements, in recent years, arrayed OSSs
powered by machine learning or artificial intelligence (AI)
systems are intensively developed [8], [9], [10], [11], [12].

A common architecture of such an OSS consists of: 1)
an integrated arrayed sensor chip with several to several
hundred types of VOC-sensing materials that respond differ-
ently to different VOCs; 2) a module that pattern-recognizes
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sensor responses using statistical methods such as principal
component analysis (PCA) [13] and AI based on a deep-
learning system [14]; 3) an inlet/outlet gas-flow control system
consisting of a flow path that connects the input line for
VOCs (and a reference gas) to a main chamber containing
the sensor module and to the outlet from which the used gas
is pumped; and 4) a system that controls adsorption and des-
orption of odor molecules impinging on the sensing devices.
Regarding to 1), various types of chemical sensors have been
proposed. Sensors utilizing a MOSFET [15], a quartz crystal
microbalance (QCM) [16], and surface acoustic wave (SAW)
filters [17] as transducers, have been developed. We have been
developing sensors using carbon nanoparticles [1], [18], [19]
as transducers because of their high sensitivities. Regarding
to 4), in conventional OSSs, desorption of VOCs is done
simply by exposing the sensing elements to a clean (or
filtered) gas or pure nitrogen introduced from an inlet line
“independent of” a sample gas line for a sufficiently long
period as illustrated in Fig. 1(b). Such systems require not only
a filter for the reference gas but also an electrically controlled
valve for switching the flow of the VOCs. Although such
systems have been demonstrated their high level of utility [1],
[18], [19], downsizing the entire system is difficult because
of the existence of the flow control system with many parts.
For practical applications where OSSs are set in a car and on
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Fig. 1. Architecture of (a) TC-OSS and (b) FC-OSS. TC-OSS does not
require an input fluidic system.

a drone [20], a robotics system [21], downsizing is essential.
The systems are also considered to be applicable to specific
social infrastructures such as wastewater/garbage treatment
plants [20], plant pest and disease monitoring sites [22], and
composting plants [23].

In this article, in order to downsize a conventional OSS,
we propose a new OSS in which the adsorption and desorption
of VOCs are thermally controlled. The new control system
not only eliminates the many flow-control parts but also
makes the reset operation independent of the input flow-control
operation. The conventional system requires a water filter and
a VOC filter to generate refreshing gas, and valves to switch
between refreshing gas and sample gas from the VOC source,
but the new system does not use refreshing gas, so these parts
are not required. The newly developed OSS is equipped with a
16-channel-chemical sensor array composed of heat-resistant
materials, with a small heater and with a postprocessor of an
AI software. A high sensitivity to VOCs [down to ppb level
with 15-dB signal-to-noise ratio (SNR)] and high capability
of discriminative classification of standard test VOCs (with a
typical success rate of 95.8%) are demonstrated.

II. SYSTEMS AND MATERIALS

A. Thermally Adsorption-/Desorption-Controlled Odor
Sensing System

In Fig. 1(a), the configuration of the presently developed
thermally adsorption-/desorption-controlled OSS (TC-OSS) is
shown. The TC-OSS consists of an odor sensing elements
(OSELs) array, of a heater underneath the OSEL array, of a
data processing system including a controller and a postpro-
cessor with an AI function. The temperature of the OSEL array
is raised to desorb VOCs and lowered to adsorb VOCs simply
by turning on and off the heater, respectively. The temperature
control system comprises a feedback loop with a temperature
sensor, a controller, and a heater.

During operation, the TC-OSS is set in a chamber where
VOCs diluted in a reference gas are introduced from an inlet
system. It is emphasized that this configuration is signifi-
cantly smaller and simpler than that of a conventional fluidly

Fig. 2. (a) Chemical sensor for detection of gas molecules and
(b) voltage divider for resistance measurements.

adsorption-/desorption-controlled OSS (FC-OSS), as illus-
trated in Fig. 1(b). In addition to the main sensing module,
in an FC-OSS, at least two independent source gas lines
connected after an inlet control valve, two filters for pro-
ducing a refresh gas, and direct and filtered exhaustion gas
lines controlled by an outlet valve are required. Furthermore,
mutual dependence on controlling the gas flow and sensor
status (adsorption/desorption) is considered to be a serious
disadvantage for practical applications. Thus, the configuration
of the FC-OSS suffers from inherent complexity in system
implementation and architecture [1], [19].

B. Odor Sensing Element
In Fig. 2(a), a schematic of the developed 16-channel

OSEL array is illustrated. Each OSEL consists of a
polymer-nanocomposite conductive membrane (PCM) dis-
persed with carbon nanoparticles exhibiting a finite resistance
(RO) [1]. On adsorbing VOC molecules, the PCM expands in
volume and exhibits a higher resistance (RO,a) than that before
the adsorption (RO,b) showing VOC sensitivity. For quantifi-
cation, a sensitivity parameter, Sen, (defined as follows) is
used:

Sen =
RO,a − RO,b

RO,b
. (1)

To obtain RO (RO,a and RO,b), we measure a voltage across
RO denoted by V1, in series with a reference resistor, Rref,
under a constant bias voltage denoted by VCC [Fig. 2(b)]. With
this configuration, RO at any status of an OSEL is calculated
as follows:

RO =
V1

Vcc − V1
· Rref. (2)

On the other hand, the selection of PCM materials is based
on two criteria. First, to sense a variety of VOCs, the range
of the McReynolds constants [24] of 16 PCMs is made as
wide as possible, i.e., 229–4219 (Table I). A material with
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TABLE I
PCM MATERIALS USED FOR 16-CHANNEL OSELS

a larger McReynolds constant exhibits larger polarity. This,
in turn, enables one to discriminate a wide range of odorants’
polarities which are well known to be highly correlated with
human perception [25]. In general, the higher polarity odorants
adsorb more easily onto the OSEL with high polarity, and the
lower polarity odorants adsorb more easily onto the OSEL
with lower polarity. Second, for all the PCMs, the main chains
of the compounds are selected to be siloxane because of their
excellent stability against high temperatures. Thus, selected
PCMs are listed in Table I. Carbon nanoparticles, for which a
low-cost and mass-production compatible fabrication has been
established, were adopted as electronic conduction sites within
the PCMs.

C. Microheater
The temperature of all the 16 PCMs is controlled by a

single heater consisting of a Pt-/Ti-wire patterned on a Si
substrate [Fig. 2(a)]. Pt/Ti (200/10 nm) was vapor deposed on
the Si substrate and patterned using photolithography to form
a meander wiring. By driving the microheater by a constant
current source with a pulsewidth modulation (PWM) scheme,
a 0.8-W effective dc power output is obtained. Thus, one
sensing cycle (desorption and adsorption) described in Fig. 3 is
employed. The periods of heating and cooling are determined
to allow the entire OSEL array to be heated (cooled) in
a temperature range between 30 ◦C and 70 ◦C. The 16-
channel PCM array was then, laminated on the microheater.
The time constant (RC) calculated from the thermal resistance
R (133.9 [K/W]) and thermal capacity C (0.4183 [J/K]) of
the microheater is 56.0 [s], and the power of 0.8 W (voltage

Fig. 3. Sensor temperature (blue line) and PWM signal (orange line)
for one sensing cycle.

Fig. 4. Schematic of experimental setup consisting of a VOC-gas
generator, TC-OSS, and a backside exhaustion pumping system.

16 [V], current 50 [mA]) is given to the heater. Under these
conditions, the temperature can be raised to 70 ◦C by heating
for 30 s. With this architecture, a total size of 6.5 mm (W ) ×

6.0 mm (D) × 1.05 mm (H), is realized.

III. RESULTS AND DISCUSSION

A. Experimental Setup
In Fig. 4, a schematic of the developed TC-OSS is illus-

trated. The TC-OSS is connected to a VOC-gas generator
in front and to a pumping exhaustion line in the back. The
VOC-gas generator consists of a concentration control part
that generates a fixed concentration of a VOC by bubbling a
VOC source with dry nitrogen gas and a humidity control part
which generates a carrier gas, i.e., nitrogen with 0% relative
humidity.

The flow rate of each gas is 50-mL/min set by the backside
pump. As for odor sources, five kinds of VOCs and the dry
nitrogen used in the standard qualification test of the olfactory
measurement operator (in Japan) are prepared as listed in
Table II [26]. The concentration of each VOC is set at the
threshold of empirically determined human odor perception.

B. Characteristics of OSELs
1) Temperature Dependence of the Sensitivity Parameter:

To determine the temperature control protocol, temperature
dependence of the Sensitivity parameters [defined as (1)] are
analyzed with all the VOCs listed in Table II. As an example,
in Fig. 5, the temperature dependences (30 ◦C–80 ◦C) of Sen
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TABLE II
STANDARD VOCS AS PREPARED ODOR SOURCES

Fig. 5. Adsorption amount of odor molecules could be controlled by
sensor temperature.

parameters of all 16 channels (OSELs) in response to the
VOC of type A (1.659 ppm of β-Phenylethyl alcohol) are
plotted. The Sen parameter of each channel is normalized by
its value at a temperature of 30 ◦C. It is confirmed that Sen of
all the OSELs indicating that the adsorption characteristics or
odor sensing capabilities are nearly compatible among all the
OSELs indicating that they are controllable with this unified
temperature protocol. On the other hand, desorption of the
decrease with nearly the same slope up to 40 ◦C (0.058 /◦C),
OSELs can be controlled by simply setting the reset tempera-
ture at 70 ◦C because Sen of all the OSELs reach 0.1 or below
in a temperature range higher than ∼70 ◦C. Controllability and
temperature uniformity with this architecture are demonstrated
by the nearly identical response of all the PCMs (Fig. 5).
Thus, we confirm that the developed 16 channels OSELs are
controllable for both adsorption and desorption operations by
the single microheater described in Section II-C.

2) Coverage of the Standard Odor Range: Next, we investi-
gate the applicability of the developed TC-OSS to the standard
odor range (Table II). In Fig. 6, output waveforms or the
normalized resistance measured with a representative OSEL
(channel 12) in response to five standards VOCs (Table II) and
to dry nitrogen are plotted. We observe that for all five types of
VOCs (even for types D and E with low concentrations), the
OSEL output exhibits sizable variation indicating the appli-
cability of the present OSEL to the wide odor range. Since
the OSEL does not respond to nitrogen, the waveform of the

Fig. 6. Normalized signals output from channel 12 of OSEL in response
to standard VOCs (Table II).

Fig. 7. Difference between odor and N2 waveforms (sensor CH12).

response to nitrogen (black line) shows the pure temperature
characteristics of the OSEL itself. During the heating period,
the microheater is turned on and the resistance increases with
the rise of the sensor temperature. On the other hand, during
the nonheating (cooling) period, the resistance decreases. It is
noted that the time constants of the rising period (30 s) and
falling period (60 s) are consistent with the estimation made
in Section II-C.

To exclude the temperature dependence of the OSEL itself
as described above, i.e., the response to the nitrogen flow,
subtraction of the nitrogen signal is made from each signal
with the VOC input and plotted in Fig. 7. Thus, the zero level
of the vertical axis represents the output due only to nitrogen.
Whereas the resistance value of the OSEL increases due to
the adsorption of odor molecules in a lower temperature range
(in the nonheating period) [1], [18], [19], the resistance value
decreases (returning to the initial state) due to the desorption
of the odor molecules from the PCM in a higher temperature
range (during the heating period). These signals are considered
to be due only to the VOCs. Taking the maximum values as
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Fig. 8. Data flow for sensor signals. FE stands for FE producing 1-
D vector data consisting of various feature parameters extracted from
the raw input data with a compressibility, N. ID is identification data
processed by Lightgbm. To Lightgbm, data of multiple cycles (typically
20) are fed.

Fig. 9. How to divide waveforms when calculating features.

the signals and the variance of the signal fluctuations as noise,
signals-to-noise (S/N) ratios for A–C are estimated to be 41.8,
37.4, and 36.4 dB, respectively. In the same way, even for the
low-concentration samples of type D and E, S/N ratios of 14.6
and 16.2 dB, respectively, are obtained demonstrating the high
sensitivity of the present OSELs.

C. VOCs Identification by a Machine Learning
A diagram of the data processing flow is illustrated in Fig. 8

describing the present system. Time-series data output from
the 16 channels of OSELs are sampled with a 100-Hz sampling
rate for 90 s leading to 9000 points/channel denoted as the
output parameter of the preprocessor, M. Then, the data of
each channel are fed into the feature extractor (FE) producing
a 1-D 1 × M /N vector data consisting of various feature
parameters. Here, the parameter N represents an effective
compressibility per channel. The feature parameters are sensi-
tivity and slope [1], [27] of the raw data as listed in Table III.
The sampling process of the typical sensor signal or resistance,
R(t), is illustrated in Fig. 9. Optimization of the compression
ratio is determined experimentally. Finally, the 1-D vector
data of the feature parameters are fed into a commonly used
pattern recognizer, i.e., Lightgbm. Since adsorption speed and
adsorption concentration are considered to different depending
on the type of VOCs, the feature parameters are configured to
detect these differences.

In actual experiments, we calculated the sensitivity parame-
ters and slopes in a one cycle of the output signal waveform at
ten predetermined timings giving 20 types of feature param-
eters, as illustrated in Fig. 9. Regarding to definition of the
feature parameters in Table III, Sen(k) in (3) represents the
rate of change of the signal from t(0) (the measurement
start point). SL(k) in (4) and (5) represents the slope of the
interval from t(k − 1) to t(k). TWh is the time width of
one heating cycle and TWl is the nonheating cycle. Sen(k)

represents the amount of response, and SL(k) represents the

TABLE III
FEATURES LIST

TABLE IV
NUMBER OF DATA POINTS LIST

speed of response. These features are important factors for
odor discrimination.

In the present work, compressibility N is 450 (9000
points/20 feature values). A total of 320 [16(ch) ×

9000(M)/450(N )] feature parameters are obtained as
described at the bottom of the right column of Table IV.
Even with this highly compressed data, pattern recognition by
Lightgbm is shown to be possible by the proper configuration
of a decision tree. It is noted that in the reference system,
the raw data are directly input to the Lightgbm system as a
huge set of explanatory variables, i.e., 144 000 points/cycle,
as described in the bottom of the left column in Table IV.
Pattern discrimination using such a large amount of data is
impractical, particularly for the present real-time processing
system.

The data sets of 200 pulses (40 pulses × 5 standard VOCs),
and the 320 types of the feature values were calculated from
all response pulses of the standard VOCs. As an example,
Fig. 10(a) shows the response (40 pulses × 5 standard VOCs)
of a sensitivity parameter, described as SL(10), of CH 12 to
the five standard VOCs (Table II). In this case, while the
difference among A–C is clearly recognized, the difference
between D and E is not well resolved. However, by utilizing
the response of Sen(10) of CH14, not only the difference
among A–C but also the difference between D and E is clearly
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Fig. 10. Response of (a) SL(10) from sensor CH12 and (b) SN(10) from
sensor CH14.

TABLE V
RESULT OF THE PREDICTION OF THE CLASSIFICATION USING

LIGHTGBM

distinguished, demonstrating the effectiveness of the present
methodology.

Finally, machine learning is performed using all 320 types
of feature values as input data to classify standard VOCs.
Lightgbm [28], a data analysis method termed as “supervised
learning,” is used as the machine learning algorithm. It is
based on a decision tree method classifying target variables
(types of VOCs) at each node by utilizing the feature values

Fig. 11. Lightgbm, one of the decision tree methods.

as explanatory variables (Fig. 11). All data were divided into
two sets, used as training data and evaluation data. The data
combination was randomly changed, and 100 repeated evalu-
ations were performed. As shown in Table V, we succeeded
in predicting five standard VOCs with a high accuracy rate of
95.8% ± 2.7%. As shown in Table II, the concentrations of D
and E are only about 1/1000 of those of A–C . Detecting D and
E is very difficult, but the present OSS successfully detects
them with the F-score as high as 0.86 and 0.83, respectively.
The F-score represents the harmonic mean of precision and
recall as follows [29]:

F score = 2 ·
Precision · Recall

Precision + Recall
. (6)

IV. CONCLUSION

1) We demonstrated a compact and highly sensitive TC-
OSS comprising 16 PCMs with high heat resistance and
a microheater.

2) By employing the single heater control architecture, the
compactness of the system due to the elimination of a
significant amount of gas flow-control parts necessary
for conventional systems is demonstrated.

3) We confirmed the high sensitivity for five standard VOCs
(Table II) such that the SNR of the detected signals is
as high as ∼15 dB even with the VOC level of 3 ppb.

4) With the assistance of a Lightgbm AI system, we suc-
ceeded in predicting the VOCs with a high accuracy rate
of 95.8% ± 2.7% (Table V).

5) The developed TC-OSS is expected to be highly useful
for many social infrastructures.
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