
IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024 8563

Efficient Embedded Fixed-Point Direction of
Arrival Method

Tiago Troccoli , Juho Pirskanen, Jorge Morte, Aleksandr Ometov , Senior Member, IEEE,
Elena Simona Lohan , Senior Member, IEEE, Ville Kaseva, and Jari Nurmi , Senior Member, IEEE

Abstract—Radio direction finding, traditionally used for
localizing radio signal sources, has been adapted for Blue-
tooth to enable indoor localization of wireless devices. This
adaptation is particularly relevant for achieving accurate
indoor localization within Internet-of-Things (IoT) networks,
especially in battery-powered and resource-limited embed-
ded systems. However, the intricacies of implementing
direction of arrival (DOA) methods in such systems, notably
those lacking a floating-point unit (FPU), present significant
computational challenges. This article addresses these chal-
lenges by introducing an innovative fixed-point DOA method,
rooted in the estimation of signal parameters via rotation
invariance techniques (ESPRIT). Diverging from traditional
complex eigenvalue decomposition, our approach employs
a simpler power method for DOA estimation and phase off-
set compensation, utilizing a straightforward trigonometric
equation. It also integrates an improved carrier frequency
estimator, also based on ESPRIT, which is tens of times more
accurate than the conventional method of averaging phase
differences. We conducted bare-metal level experiments on an nRF52840 system on chip to evaluate execution time,
memory footprint, angle accuracy, and energy consumption. The fixed-point implementation demonstrated an execution
time of 2.3 ms and an energy consumption of just 0.348 nWh. These figures represent a 5.9-fold increase in energy
efficiency and a 4.4-fold improvement in speed compared to the conventional software-based floating-point approach
while maintaining an angle accuracy ranging from nearly 2◦ to under 0.5◦, depending on the signal-to-noise ratio.
However, in IoT devices equipped with an FPU, the hardware-based floating-point technique still edges out, being 0.8 ms
faster and slightly more energy efficient at 0.319 nWh.

Index Terms— Array signal processing, direction of arrival (DOA), embedded systems, sensor arrays, sensor data
processing.

NOMENCLATURE

X Matrix (uppercase boldface).
x Vector (lowercase boldface).
x Scalar (italic).
IN Identity matrix of size N .
0N Zero column vector of size N .

Manuscript received 8 January 2024; accepted 22 January 2024.
Date of publication 6 February 2024; date of current version
14 March 2024. This work was supported by the European Union’s
Horizon 2020 Research and Innovation Programme under Marie
Skłodowska Curie Grant Agreement 956090 (Approximate Computing
for Power and Energy Optimisation (APROPOS), http://www.apropos-
itn.eu/). The associate editor coordinating the review of this article and
approving it for publication was Dr. Waltenegus Dargie. (Corresponding
author: Tiago Troccoli.)

Tiago Troccoli is with the Faculty of Information Technology and
Communication Sciences, Tampere University, 33720 Tampere, Finland,
and also with WIREPAS Ltd., 33720 Tampere, Finland (e-mail:
tiago.troccolicunha@tuni.fi).

Juho Pirskanen, Jorge Morte, and Ville Kaseva are with WIREPAS
Ltd., 33720 Tampere, Finland.

Aleksandr Ometov, Elena Simona Lohan, and Jari Nurmi are with
the Faculty of Information Technology and Communication Sciences,
Tampere University, 33720 Tampere, Finland.

Digital Object Identifier 10.1109/JSEN.2024.3361658

(•)−1 Inverse.
(•) Complex conjugate.
(•)T Transpose.
(•)H Conjugate transpose.
Im{•} Imaginary part.
Re{•} Real part.
E {•} Expectation.
(•)≪ (•) Arithmetic left shift.
(•)≫ (•) Arithmetic right shift.
j =
√
−1 Imaginary unit.

|•| Absolute value.
diag[•] Diag operator.
⌊•⌋ Floor function.
∥•∥ Euclidean norm.
arctan2(•) Two-argument arctangent.

I. INTRODUCTION

A. Overview of Radio Direction Finding

RADIO direction finding (RDF) represents a mature sub-
field within array signal processing, finding applications

across various domains. Its relevance spans from traditional

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0022-2589
https://orcid.org/0000-0003-3412-1639
https://orcid.org/0000-0003-1718-6924
https://orcid.org/0000-0003-2169-4606

8564 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

Fig. 1. Illustrative example of an IoT mesh network with an indoor positioning system in a factory.

uses in marine and aircraft navigation systems to emerging
paradigms, such as joint sensing and communication in future
wireless systems, automotive radar, and drone surveillance [1].
This increasing importance is driven by technological advance-
ments and the ready availability of powerful and cost-effective
multiantenna hardware platforms. In recent years, RDF has
found application in wireless communication systems of the
Internet of Things (IoT), particularly in Bluetooth, to locate
wireless devices in indoor environments where satellite-based
radio-navigation systems are inadequate. This advancement [2]
aims to enhance accuracy beyond the previous indoor localiza-
tion technology that relied on received signal strength (RSS).

In earlier approaches, Bluetooth Low Energy (BLE) tags
transmitted radio frequency (RF) signals, and receivers esti-
mated the distances between tags and themselves based on
RSS to calculate the tags’ positions. However, RSS-based
localization relies on the mapping between RSS and distance,
which is often inaccurate and highly sensitive to indoor
environmental changes, not to mention multipath fading,
signal obstruction, and interference from other devices [3].
These fluctuations make it difficult to establish a consistent
mapping between RSS and distance. Even if RSS-based local-
ization systems employ fingerprinting techniques involving a
database of RSS measurements at various locations, managing
and updating this fingerprint database due to the dynamic
nature of indoor environments can be complex and resource-
intensive. While the accuracy of such localization systems is
acceptable in some cases, certain situations demand higher
precision.

Notably, high-accuracy indoor localization plays a cru-
cial role in autonomous robots and automation systems,
enabling them to navigate, avoid obstacles, and perform tasks
with accuracy and efficiency. Industries such as manufactur-
ing, healthcare, and hospitality benefit from this technology
to streamline operations and improve productivity, while

warehousing and logistics utilize it to track and manage assets
within their facilities.

The radio direction-finding feature in Bluetooth technology
enables the estimation of directions of arrivals (DOAs) [4],
thereby facilitating precise positioning, potentially with sub-
meter accuracy as reported by some companies [5], [6],
[7], [8]. This advancement leverages devices equipped with
antenna arrays to estimate the azimuth and elevation angles
of radio signals emitted from transmitters. This process aids
in pinpointing the location of transmitters through techniques
such as triangulation. In this context, the literature defines
“anchor nodes” as devices with known locations, equipped
with antenna arrays, while “mobile nodes” are those whose
locations are not predetermined.

Furthermore, BLE plays a pivotal role in wireless com-
munication within IoT networks. Here, DOA-based indoor
positioning systems can be integrated into networks com-
prising small, battery-operated embedded systems that have
limited computational power. Fig. 1 illustrates an example of
an IoT mesh network incorporating a DOA-based positioning
system.

B. Challenges in RDF
The inherent complexity of the DOA estimation naturally

suggests cloud computing as a viable solution for indoor
localization within IoT networks. However, this approach is
often impractical, especially in certain structures such as mesh
networks that incorporate numerous devices. In these setups,
anchor nodes would be required to continuously transmit
measured signal data—often hundreds of bytes—from one
device to another until reaching the cloud. This process would
not only rapidly drain their batteries but also contribute to
increased network traffic. Another alternative could be the
installation of internet cables directly to anchor nodes. While
this might alleviate the cited problems, it introduces a notable

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8565

increment in infrastructure costs, making it a less favorable
option. A more efficient and cost-effective solution lies in
implementing the DOA method in anchor nodes. This local-
ized processing means that only the estimated DOAs, which
typically comprise a few bytes, need to be transmitted.

However, incorporating DOA methods into IoT devices
poses a significant challenge due to their limited computational
resources and reliance on battery power [9]. Conversely, DOA
methods involve complex numerical algorithms that require
substantial resources and are time-consuming, leading to rapid
battery drain, long execution time, and resource starvation.
In addition, IoT devices typically operate on simple real-time
operating systems (RTOSs), where they concurrently handle
small tasks such as sensor data acquisition and communication
with other devices [10]. The execution of DOA methods within
such a multithreaded environment becomes even more chal-
lenging, necessitating careful consideration of computational
resource management. Consequently, the development of DOA
algorithms for IoT devices requires an innovative approach
that strikes a balance between resource limitations and DOA
accuracy, all while mitigating its impact on battery life and
maintaining a reasonable real-time system performance.

Typically, the research on DOA lacks sufficient practical
consideration from the computer implementation perspective.
Often, studies are conducted using multiparadigm pro-
gramming languages, particularly MATLAB, which already
provides a variety of prebuilt numerical functions, leading to
less incentive to develop custom numerical algorithms specif-
ically for DOA techniques. However, when these methods
must be implemented on limited embedded systems, numerical
algorithms must be created from scratch due to the limited
or nonexistent support offered by C programming language
libraries and even third-party libraries. Moreover, widely used
linear algebra external libraries such as LAPACK [11] and
Armadillo [12] are unsuitable for constrained embedded sys-
tems. While the Common Microcontroller Software Interface
Standard (CMSIS) Software Library [13] is designed for such
devices, it lacks some numerical algorithms required for DOA
methods.

In addition, it is worth noting that low-cost and low-power
embedded processors commonly found in IoT devices often
lack a floating-point unit (FPU) [14], which is responsible
for executing arithmetic operations involving floating-point
numbers. Notably, only one out of four systems on chip (SoCs)
manufactured by Nordic Semiconductor, featuring Bluetooth
Direction Finding capability, includes an FPU [15], as shown
in Table I. SoCs without an FPU tend to be more cost-
effective than those equipped with one, potentially improving
the feasibility of indoor localization solutions. Even in cases
where an FPU is present, disabling it could serve as a means to
mitigate power consumption. In both scenarios, the utilization
of a DOA method that employs floating-point numbers would
result in the C/C++ compiler performing floating-point arith-
metic via software instead of utilizing hardware [16], [17],
consequently leading to a significant increase in execution
time, easily exceeding many folds. For this reason, employing
fixed-point arithmetic, which uses binary integer numbers
to represent fractional values, emerges as a solution. This

TABLE I
SOCS WITH BLUETOOTH DIRECTION FINDING CAPABILITY

technique circumvents the necessity for an FPU, as the proces-
sor executes integer arithmetic operations while maintaining
the fractional nature of numbers.

C. Motivations and Contributions
The primary motivations of our research are focused on

extending battery life and reducing computational latency in
constrained embedded systems that operate Bluetooth Direc-
tion Finding within IoT networks.

This article provides the following novel contributions:
1) development of an optimized DOA method named

estimation of signal parameters via rotation invariance
techniques (ESPRIT) specifically for Bluetooth Direc-
tion Finding using an L-shaped array of antennas;

2) adaptation of an ESPRIT-type frequency estimator to
accurately estimate the carrier frequency offset (CFO);

3) pioneering work on a fixed-point DOA method;
4) practical experiments at the bare-metal level for four key

performance criteria: angle accuracy, energy consump-
tion, memory footprint, and execution time.

This article is organized as follows. Section II explains
related research in the domain of DOA employing Bluetooth
and important manuscripts about real DOA implementations.
Section III outlines the ideal model that governs RDF taking
into account L-shaped uniform arrays. Notably, Nomencla-
ture lists all mathematical operations utilized in that section
and subsequent parts of the document. Section IV gives an
algorithmic-level overview of the DOA method upon which
this research is based. Section V describes the working
principles of the Bluetooth Direction Finding feature and its
mathematical model. Section VII delves into the mathematical
details of the novel fixed-point DOA method. Section VIII
describes the experiment setups and discusses its results.
Conclusions are drawn in Section IX.

II. RELATED WORKS

In the study [18], researchers explored the application of
Bluetooth Direction Finding in an outdoor environment to
estimate the position of a single drone. While this real-world
application is both interesting and valuable, we identified
certain limitations in their implemented solution. Initially, they
employed a simple beamformer technique that relied on find-
ing the peak of the pseudospectrum during the first estimation

8566 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

of DOA. Although peak searching can be time-inefficient,
given its one-time usage, we acknowledge its practicality.
Subsequently, recognizing that the direction between two
consecutive measurements does not change significantly, they
utilized the Nelder–Mead method, an optimization technique
used for finding the maximum or minimum of functions
without derivatives. However, it is important to note that the
Nelder–Mead algorithm does not guarantee convergence to a
stationary point since it is a heuristic approach. Moreover,
considering that the pseudospectrum might not even be convex,
the method could potentially converge to a local maximum
instead of the global maximum where the peak resides leading
to inaccurate direction estimation. In addition, we observed
that the CFO estimation process was also time-inefficient as
it required peak searching.

In the master thesis [19], the author presented a novel
algorithm based on the multiple signal classification (MUSIC)
method, which utilized the Bluetooth Direction Finding fea-
ture. He implemented this algorithm using a custom linear
and rectangular array of antennas connected to an embed-
ded device. To enhance the accuracy of CFO estimation,
he employed a return-to-first switching pattern. However, this
approach resulted in a reduction of half the number of samples
available for estimating the DOA, potentially impacting its
accuracy. To mitigate this issue and address the multipath com-
ponent at the receiver, he incorporated the multitone technique.
This technique involved commanding the transmitting device
to consecutively send a burst of packets carried by different
frequencies within a short time interval.

In addition, to further reduce the impact of multipath
effects, he applied the CLEAN algorithm, which resulted in
an increased execution time but improved accuracy. As his
method was based on MUSIC, one of the major drawbacks
remained the exhaustive peak searching operation, which
added computational complexity. Furthermore, as MUSIC
requires an accurate array response model, the employment of
array calibration techniques such as mutual coupling, switch
leakage, and path imbalance was crucial for the method’s suc-
cess. The results highlighted the importance of CFO estimation
in effectively applying phase compensation and demonstrated
the effectiveness of the multitone technique in addressing
multipath effects.

Wan et al. [20] investigated the application of the improved
signal subtraction subspace (ISSS) algorithm in Bluetooth
Direction Finding feature for a uniform linear array (ULA)
and a uniform rectangular array (URA) of antennas in a BG22
Bluetooth Dual Polarized Antenna Array Pro Kit. The ISSS
algorithm incorporates a spatial smoothing technique along
with a median filter for phase compensation, aiming to reduce
the impact of the RF switch. The research findings indicated
an average positioning error of 0.92 m for single receivers and
0.30 m for dual receivers in a 3 × 3 m2 room. In addition,
the mean absolute error (MAE) in angle estimation varied
across three channels, recorded at approximately 4◦, 4.8◦, and
3.9◦. However, the median filter utilized only the reference
period, which is composed of only eight samples. Such a
small number of data can easily undermine the phase offset
estimation decreasing the angle accuracy considerably.

In the study presented in [21], experiments on BLE Direc-
tion Finding were conducted both in an anechoic chamber and
an open, unobstructed outdoor environment with a concrete
surface. The experiments utilized an nRF52811, equipped with
a uniform circular array (UCA), as the receiver. The DOAs
were estimated by calculating the average phase difference
from sequentially retrieved samples across every two adjacent
antennas. With the antenna switching period set at 4 µs, the
authors claimed that this setup allowed for a full 360◦ phase
rotation, thus avoiding the need for phase compensation.

Despite these claims, the study overlooked the impact of
CFO, a significant factor in BLE devices using low-cost oscil-
lators. In addition, the research methodology employed a basic
DOA estimator that relied on the average phase difference.
While straightforward, this technique is less comprehensive
compared to more advanced DOA methods that account
for communication noise and leverage the configurations of
antenna arrays. This article notably lacked metrics such as
average DOA error estimation, opting instead to present data
through histograms and graphs that illustrated the phase dif-
ferences observed between antennas.

As outlined in the research [22], Hajiakhondi-Meybodi et al.
explored the estimation of BLE signals using phase differences
in addition to a nonlinear least squares (NLS) method to
mitigate the multipath propagation effect. They applied the
Kalman filter to deal with the phase shift caused by the
RF switch. In addition, they experimented using an angle-
of-arrival development kit (DK) composed of two ULA and
a CC2640R2F microcontroller. The angle estimation process
considered eight channels, yielding an angle error of less
than 10◦ for azimuth angles within ±60◦. However, errors
increased significantly for angles beyond this range. Notably,
this study focused exclusively on the azimuth angles using
ULAs, which omitted elevation angles that a planar array could
have provided.

As specified in the study [23], Ye et al. conducted a series
of experiments on BLE Direction Finding using three different
channels. They utilized both a URA and a ULA, paired with
an nRF52833 SoC, to estimate azimuth and elevation angles
and the position of transmitters. The study employed the prop-
agator direct data acquisition (PDDA) for angle estimation and
implemented a least squares (LS) method to compensate for
CFO effects. The ULA’s average angle estimation errors were
reported as approximately 4.8◦, 5.1◦, and 2.3◦ for channel
37, 38, and 39, respectively, across a range of 20◦–160◦.
Meanwhile, the URA was specifically used for positional
estimations. In this setup, the URA was stationary, while the
transmitter was placed at various locations. The research team
observed average positional errors of 0.59, 0.74, and 0.77 m
for the respective channels.

In our previous research [24], we explored a modified
DOA method based on MUSIC, which was implemented
in floating-point numbers, using an L-shaped array for the
Bluetooth Direction Finding feature. However, in that study,
we utilized a CFO estimation approach that, upon reflection,
was found to have limitations as it relied solely on samples
from the reference period leading to poor estimation results.
The phase compensation technique involved computing the

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8567

TABLE II
COMPARATIVE OVERVIEW OF RELATED PAPERS

inverse of a matrix and directly applying it to the samples.
While this technique improved the calculation of the inverse
of the phase compensation matrix, it still suffered from time
inefficiency compared to the solution we implemented in
this current research. Furthermore, this modified version of
MUSIC required finding polynomial roots, leading to the
time-consuming polynomial root-finding method based on QR
decomposition. In addition, as MUSIC relies on the direct
application of array responses, achieving a highly accurate
array calibration becomes crucial in that approach.

Table II provides a comparative overview of previously
cited related studies. Our research contributes to the advance-
ment of the field by refining a well-established DOA method,
termed ESPRIT, specifically for Bluetooth Direction Finding
applications. Diverging from traditional approaches that rely
solely on floating-point operations, our method incorporates
fixed-point arithmetic. This adaptation addresses the limita-
tions of embedded systems that lack a dedicated FPU, making
our solution more practical for a wider range of applications.

In addition, accurate estimation of the CFO is crucial for
effective phase compensation caused by the RF switch. The
suggested approach from [6], [25], and [26] involves averaging
the phase difference between two consecutive samples of the
reference period, as detailed in [24]. However, this method
does yield poor estimations as demonstrated in the experi-
mental findings in Section VIII. Another option is to employ
MUSIC as a frequency estimator [27], but it requires a time-
consuming exhaustive search to identify the peak frequency.

To address these limitations, we customized an ESPRIT-type
frequency estimator. This approach avoids the shortcomings
of the aforementioned methods while providing reliable fre-
quency estimation. Unlike the previous frequency estimators,
our method is designed to account for modeling inaccuracies
and noise factors, and it utilizes a greater number of samples

than what the reference period typically allows. Moreover,
this research offers valuable insights by analyzing energy
consumption, memory footprint, and execution time, which
are frequently neglected in most investigations, despite their
importance in the realm of resource-constrained embedded
systems.

III. IDEAL MODEL FOR L-SHAPED UNIFORM ARRAY

The L-shaped uniform array consists of two orthogonal
ULAs, each containing M antennas, arranged in the xy plane
with a separation of 1 meters between adjacent antennas,
as depicted in Fig. 2. This distinctive configuration facili-
tates the implementation of DOA methods by treating it as
two separate ULAs, which are characterized by their simple
structure, thus enabling the use of less intricate DOA tech-
niques. Notably, despite the cited simplicity, their arrangement
exhibits interesting properties, as elaborated on in Sections IV
and VII, which make them amenable to the application of
well-established DOA techniques.

In the ideal model, all antennas are assumed to be identical
and isotropic. Suppose that there are d (d < M) independent
far-field narrowband stationary radio signals, si (t), such that
i = 1, . . . , d, incident on the array plane at 2-D angle
(θ1, φ1), (θ2, φ2), . . . , (θd , φd) in which θi ∈ [−π, π] is the
azimuth and φi ∈ [−(π/2), (π/2)] is the elevation angle. Note
that the azimuth angle is measured counterclockwise relative to
the positive x-axis, and the elevation angle is defined relative
to the xy plane. Let us also assume the signals propagate in
an additive white Gaussian noise (AWGN) channel and in a
linear and nondispersive transmission medium, in directions
k(θi , φi) that can be expressed in spherical coordinates as

k(θi , φi) ≜ −k

cos(θi) cos(φi)

sin(θi) cos(φi)

sin(φi)

 (1)

8568 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

Fig. 2. Depiction of a receiver equipped with an L-shaped array with its
antennas (black dots), angles, and the incoming signal.

where k = (2π/λ) is the wavenumber and λ is the wavelength,
while the minus sign indicates that the wave, which carries the
signal, is traveling away from the source.

Assume that the L-shaped array is not subject to nonide-
alities, such as mutual coupling and cross-polarization effect.
In addition, consider that all antennas are identical, having
isotropic gain functions, i.e., g(θ, φ) = 1, and are not affected
by perturbations and imperfections. By defining γi = (θi , φi),
the model of the signal samples received by the x-axis and
y-axis arrays at a timestamp t can be expressed as in [28]

x(t) = Ax (γ)s(t)+ nx (t) (2)
y(t) = Ay(γ)s(t)+ ny(t) (3)

where γ =
[
γ1 γ2 . . . γM

]T is the column vector of azimuth
and elevation angle for each signal source and x(t) =[
x1(t) x2(t) . . . xM (t)

]T is the array observation at timestamp
t of the x-axis ULA, which is a vector of the signal samples for
each antenna in the x-axis ULA, such that xi (t) corresponds
to a single signal sample received from the antenna i at
timestamp t , likewise for y(t) =

[
y1(t) y2(t) . . . yM (t)

]T in
the case of the y-axis ULA. Moreover, s(t) ∈ Cd×1 is a
vector of signals of d transmitters, nx (t),ny(t) ∈ CM×1 are
the AWGN, and Ax (γ),Ay(γ) ∈ CM×d are the ideal steering
matrices of the x-axis array and the y-axis array, respectively,
as

Ax (γ) =
[
ax (γ1) ax (γ2), . . . , ax (γd)

]
(4)

Ay(γ) =
[
ay(γ1) ay(γ2), . . . , ay(γd)

]
(5)

and ideal array responses are defined as

ax (γi)
T
=

[
1 e− jk(γ2)

T r1,0 , . . . , e− jk(γd)
T rd,0

]
(6)

ay(γi)
T
=

[
1 e− jk(γ2)

T r0,1 , . . . , e− jk(γd)
T r0,d

]
(7)

where the vector rp,q =
[

p1 q1 0
]T represents the position

of an antenna relative to the origin in the Cartesian coordinate

Fig. 3. Implemented ESPRIT divides the ULA into two subarrays of size
m = M− 1 with M− 2 overlapping antennas.

system. This means that the generic form of the dot product
is

k(γi)
T rp,q = −k

[
p1ui q1vi 0

]T (8)

where

ui ≜ cos(θi) cos(φi) (9)

vi ≜ sin(θi) cos(φi). (10)

Noting that the x-axis ULA consists of antennas positioned
only along the x-axis, and similarly for the y-axis array along
the y-axis, (6) and (7) can be simplified to

ax (γi)
T ≜

[
1 e jk1ui , . . . , e jk(M−1)1ui

]
(11)

ay(γi)
T ≜

[
1 e jk1vi , . . . , e jk(M−1)1vi

]
(12)

which better describes array responses.

IV. UNITARY TLS ESPRIT
ESPRIT [29] is a highly regarded subspace-based technique

used for estimating the DOA by leveraging the shift-invariance
property of specific planar arrays. Unlike other commonly
used methods, such as MUSIC involving time-consuming
peak searching operations, ESPRIT offers a more efficient
alternative by eliminating this step. In addition, ESPRIT does
not rely on precise array responses and its direction estimation
accounts for modeling errors to some extent, thereby eliminat-
ing the need for full array calibration. The shift-invariance
property of the uniform array of antennas allows for the
application of ESPRIT to estimate both azimuth and elevation
angles in the L-shaped array, using both the x-axis and y-axis
arrays separately. While the implementation discussed here
focuses on the x-axis array, the procedure remains the same
for the y-axis array.

Subspace-based techniques rely on proven properties of the
matrix space defined by the covariance matrix in the following
equation:

Rxx = E
{

x(t)x(t)H
}
∈ RM×M (13)

where the eigenvectors of Rxx can be categorized into two
orthogonal subspaces: the signal subspace (Us) and the noise
subspace (Un). The eigenvectors related to the d largest
eigenvalues span the signal subspace, whereas the others M−d
eigenvectors span the noise subspace.

The standard ESPRIT method divides the x-axis ULA into
two subarrays. In the implemented solution, the two subarrays
are composed of m = M − 1 consecutive antennas and
M − 2 overlapping ones, as shown in Fig. 3. It is possible

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8569

to create those subarrays by multiplying the steering matrix A
conforming to

J1 ≜ [Im 0m] ∈ Rm×M

J2 ≜ [0m Im] ∈ Rm×M (14)

where Im is the identity matrix and 0m is a column vector
of zeroes, both with size m. It can be shown that the shift-
invariance propriety of the d array responses is expressed in
line with

J1Ax︸ ︷︷ ︸
1st

subarray

9 = J2Ax︸ ︷︷ ︸
2nd

subarray

(15)

where

9 ≜ diag
[
e jk1u1 e jk1u2 , . . . , e jk1ud

]
. (16)

However, the steering matrix is unknown a priori. Since the
range of the signal subspace (Us) spans the same space as the
range of A for incoherent signals [30], the standard ESPRIT
estimates the subspace rotational operation (9) from the signal
subspace (Us) compliant with

J1Us9 = J2Us . (17)

Equation (17) represents an overdetermined system, and in
real-world scenarios, the equality does not hold precisely due
to errors present on both sides of the system. These errors
stem from factors such as estimating the signal subspace and
modeling inaccuracies in the array response. To address this,
the standard ESPRIT estimates 9 using the LS method, which
considers the error on the system’s right-hand side. However,
for a more accurate solution of 9, the total LS (TLS) approach
is preferred as it takes into account errors on both sides of the
equation [30], [31], [32], [33].

In this research, the implemented solution utilizes a cus-
tomized version of the Unitary TLS ESPRIT algorithm,
a modified variant of the standard ESPRIT algorithm. It is
important to note that the Unitary TLS ESPRIT algorithm is
specifically designed for planar arrays that fulfill two essential
conditions [34]:

1) dual shift-invariant property;
2) centrosymmetric property.

Since ULAs possess centrosymmetric and shift-invariant struc-
tures, as a result, the uniform L-shaped array satisfies the cited
conditions as it estimates DOAs separately in two ULAs. Uni-
tary transformations ensure that all centrohermitian matrices
are converted into real ones offering several advantages over
the standard ESPRIT. It reduces the memory footprint and
computational burden by avoiding complex matrices, which
requires more memory and computational resources than real
matrices. Moreover, our Unitary TLS ESPRIT incorporates a
built-in forward–backward averaging method to mitigate the
impact of multipath propagation on the estimation of DOA,
particularly in indoor environments where signal reflections
are intensified.

This article does not delve into the mathematical details
underpinning the ESPRIT algorithm’s workings. Instead,
it provides an algorithmic-level overview to better explain the

modifications on the Unitary TLS ESPRIT undertaken by this
research. For a comprehensive mathematical analysis, please
refer to [32], [33], and [35].

Let 5p ∈ Cp×p be any antidiagonal identity matrix, that is,

5p ≜


0 0 . . . 0 1
0 0 . . . 1 0
.

0 1 . . . 0 0
1 0 . . . 0 0


and Qn ∈ Cn×n be an unitary transform matrix defined as

Q2n ≜
1
√

2
=

[
In jIn
5n − j5n

]
or

Q2n+1 ≜
1
√

2
=

 In 0 jIn

0T
n
√

2 0T
n

5n 0 − j5n


depending on whether its size is even or odd. The algorithm
is outlined in the following.

1) Collect N array observations for timestamp t1, t2, . . . , tN
to estimate the covariance matrix

Rxx ≈ R̂xx =

(
1
N

)
XXH (18)

where

X ≜
[
x(t1) x(t2), . . . , x(tN)

]
∈ CM×N . (19)

2) Apply forward–backward averaging on the covariance
matrix, that is,

R̂ f b
xx ≜ R̂xx +5M R̂xx5M (20)

to mitigate coherent signals’ effect due to the multi-
path reflections [36]. Since R̂ f b

xx is a center-hermitian
matrix, we apply the unitary transformation to convert
that complex-valued matrix into a real-valued one in
accordance with

C ≜ QH
M R̂ f b

xx QM

= Re{QH
M R̂xx QM } ∈ RM×M . (21)

3) Apply eigendecomposition (EVD) to find the signal
subspace Us of the real covariance matrix C. The signal
subspace is composed of eigenvectors corresponding to
the d largest eigenvalues.

4) Thereafter, let us define

K1 ≜2 Re{QH
m J1 QM }

K2 ≜2 Im{QH
m J1 QM } (22)

as unitary transformation of J1 and J2, respectively.
5) Estimate the matrix ϒ ∈ Rd×d from the following

equation:

K1Usϒ ≈ K2Us (23)

by means of TLS. To do that, first, compute the matrix

E ≜

[
(K1Us)

T

(K2Us)
T

] [
(K1Us) (K2Us)

]
. (24)

8570 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

Since E ∈ R2d×2d is a real symmetric matrix, then it is
diagonalizable [37]; thus, we can apply EVD resulting
in E = V6VT , in which 6 = diag[σ1, σ2, . . . , σ2d] is
the matrix of its eigenvalues in such a way that σ1 ≥

σ2 ≥ · · · ≥ σ2d . Let us partition these two matrices into
four ones

V ≜

[
V11 V12
V21 V22

]
and 6 ≜

[
61 0
0 62.

]
Thus, the right submatrix

[
V12 V22

]T is made up of
eigenvectors associated with the d smallest eigenvalues.
If V22 is nonsingular, then ϒ = −V12V−1

22 . Otherwise,
there is no solution for the TLS [38].

6) The eigenvalues of ϒ contain information about DOAs.
Thus, the next step is to compute them as

� ≜ diag
[
ω1 ω2, . . . , ωd

]
(25)

such that wi ≜ tan

(
k1ui

2

)
and, therefore, extract

the direction for each signal source by the following
operations:

ui =
2 arctan(ωi)

k1
, 1 ≤ i ≤ d. (26)

Algorithm 1 provides a concise summary of the 1-D TLS
ESPRIT. For y-axis ULA, the only distinction lies in the input,
denoted as Y, and the output, represented by vi .

Algorithm 1 Summary of 1-D Unitary TLS ESPRIT
Algorithm

Input: matrix X composed of N array observations and the
number of signals (d).

Output: DOA information ui , i = 1, . . . , d.
1) Compute the real-valued signal subspace, Us , as the d

dominant eigenvectors of

C = Re{QH
M R̂xx QM }

by applying an EVD algorithm on C.
2) Solve the real-valued invariance equation below for ϒ ,

K1Usϒ ≈ K2Us ,

by means of TLS using an EVD algorithm.
3) Calculate the eigenvalues of ϒ , which are

� = diag
[
ω1 ω2 . . . ωd

]
, thereafter, extract the DOA

information, ui , that is,

ui =
2 arctan(ωi)(

2π1
λ

) , i = 1, . . . , d.

A. Frequency Estimation
In addition, ESPRIT can also serve as a frequency estimator.

Consider a signal composed of d harmonic components

z(t) =
d∑

i=1

αi e j2π fi t . (27)

Suppose that the signal is uniformly sampled by one single
antenna with a sampling period T satisfying the Nyquist
criterion, resulting in Ns samples z(1), z(2), . . . , z(Ns), where
z(n) represents the discrete-time signal, which is equivalent
to its continuous counterpart z(nT). In this scenario, we can
define a sample matrix Z with m < Ns rows as follows:

Z ≜


z(1) z(2) z(3) · · · · · ·

z(2) z(3) z(4) · · · · · ·

...
...

...
. . .

...

z(m) z(m + 1) z(m + 2) · · · z(Ns)

 . (28)

We can decompose Z ∈ Cm×Ns into two matrices as
expressed in

Z = AzS

=


1 . . . 1
ν1 . . . νd
ν2

1 . . . ν2
d

... · · ·
...

νm−1
1 . . . νm−1

d


α1ν1 α1ν

2
1 . . .

...
...

...

αdνd αdν
2
d . . .

 (29)

where νi = e j2π fi T . The matrix Az could be viewed as
a steering matrix of a ULA as both have a Vandermonde
structure where each column could be treated as the array
response corresponding to a single signal transmitter. The
matrix S could be considered a matrix whose columns contain
samples from d transmitters the same way as s(t) in (2)
and (3) for t = T, 2T, . . . , Ns T . As a result, it is possible
to utilize the Unitary TLS ESPRIT algorithm to estimate
the unique frequencies fi by exploiting the shift-invariant
and centrosymmetric properties of ULAs. The key distinction
from the standard Unitary TLS ESPRIT lies in (26), which is
replaced with

fi =
2 arctan(wi)

2πT
(30)

since wi ≜ tan((2π fi T)/2). For a detailed mathematical
analysis, refer to [39].

V. RF SWITCH MODEL

Theoretically, all antennas in an array should sample signals
simultaneously from each antenna port. However, achieving
this would require each antenna to have its own RF front
end, consisting of analog-to-digital converters, filters, mixers,
and low-noise amplifiers. Manufacturing every antenna with
such components would lead to increased power consumption,
physical size, and overall cost, particularly for constrained
embedded IoT devices. A practical solution to overcome these
limitations is to use a single RF front end and an RF switch
that allows each antenna to operate with the front end at
different times, as depicted in Fig. 4. By doing so, the array
can still sample signals from all the antennas in the array,
albeit not simultaneously. As Bluetooth protocol supports this
radio architecture for its direction-finding capability, in this
study, we employed the switching protocol described in the
Bluetooth v5.1 specification [4] with an L-shaped array.

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8571

Fig. 4. Overview of a simplified RF front end connected with a
microcontroller.

Bluetooth applies Gaussian frequency-shift keying (GFSK)
to modulate 0s and 1s into different frequency shifts [40].
These frequency shifts are centered around the carrier fre-
quency (fc) and include a frequency deviation (± f1).
Bluetooth operates within the Industrial Scientific and Medical
(ISM) band from 2.40 to 2.41 GHz. This band is divided into
40 channels, each spaced 2 MHz apart. During a Bluetooth
connection, devices dynamically utilize a subset of available
channels for communication in which the channel selection
is controlled by an adaptive frequency hopping algorithm.
As a result, Bluetooth communication involves the use of
multiple frequencies rather than a single fixed frequency.
It is important to note that changing the frequency also
affects the wavelength, which is a crucial factor in the DOA
calculations. To maintain a constant frequency during in-phase
and quadrature (IQ) sampling, the transmitter emits a constant
tone extension (CTE), which consists of a continuous stream
of digital ones, extending for a duration of 160 µs.

The Bluetooth Core Specification v5.1 sets specific timing
regulations for switching and sampling in the context of CTEs,
as illustrated in Fig. 5. It outlines a structure where CTE
processing time is segmented into three parts: a 4-µs initial
guard period, followed by an 8-µs reference period, and then
an alternating series of slots designated for either switching
or sampling. During this alternating series, denoted as the
switch-sample period, sampling occurs in the sampling slots
and antenna switching occurs in the switch slots. Sample
and switch slots may either be 1 µs or 2 µs long. Since
this research considers 1-µs slot duration, Bluetooth defines
74 slots for sampling and switching. As a result, the IQ sample
interval is Ts = 2 µs. During the reference period, the system
gathers eight IQ samples every 1 µs from the first antenna,
without any antenna switching. These eight reference samples

might enable the receiver to estimate the phase difference due
to the RF switch.

Standard models commonly assume narrowband signals to
simplify the calculation of DOA techniques as it approximates
the propagation delays between antennas using phase shifts of
the complex envelope. We can consider that assumption if the
bandwidth of the signal is small compared to the inverse of the
propagation time over the array aperture. Mathematically, the
criterion for narrowband approximation is given by Bτ ≪ 1
[30], [41], where B represents the bandwidth of the signal (in
hertz) and τ is the propagation time (in seconds) for the signal
to travel across the antenna array. In our case, τ corresponds
to the time it takes for the signal to traverse a single ULA
of antennas, as the implemented solution processes two ULAs
separately. We can express this relationship as

Bτ = 106
(

M1
c

)
= 106

(
Mλ

2c

)
(31)

where 1 = λ/2, B = 1 MHz, and M denotes the number
of antennas in the ULA. In the context of constrained IoT
devices, arrays of antennas typically consist of a small number
of elements. We found that many indoor localization solutions
employ small URAs of 4 × 4 or 3 × 3 antennas; nonetheless,
in our case, M = 4. Since λ = c/ fc where c is the speed of
light, (31) simplifies to

Bτ = 106
(

M
2 fc

)
≈ 0.000208× M ≪ 1. (32)

Therefore, BLE satisfies the narrowband condition, and
if we take into account all the cited assumptions given in
Section III as well, the mathematical model is the same as (2)
and (3) in addition to the phase shift due to the RF switch.
As a result, it is imperative to develop a phase compensation
to make the DOA method work properly. In (33), the received
bandpass signal is represented in a complex format

u(t) = Re(s(t)e j2π fct)

= I (t) cos 2π fct − Q(t) sin 2π fct (33)

where t is the time and s(t) = I (t) + j Q(t) is called the
complex envelope. The receiver extracts the IQ components
of the baseband signal, where the central frequency (fc) is
translated to dc [25]. Consequently, the IQ components can
be represented by

s(t) = Ae j (2π fT t+ψ)

= A cos(2π fT t + ψ)︸ ︷︷ ︸
I (t)

+ j A sin(2π fT t + ψ)︸ ︷︷ ︸
Q(t)

(34)

where A is the amplitude, fT = f1 + fo, f1 = 250 kHz
considering LE 1M physical layer [4], and fo is the CFO.
The mathematical model must account for the CFO as the
crystal oscillator of low-cost BLE devices possesses significant
inaccuracy. According to Core Specification v5.1, the deviation
of the center frequency can reach up to ±150 kHz. Moreover,
the phase shift due to the RF switch of the kth sample is given
by

s(t + kTs) = s(t)e j2π fT kTs . (35)

8572 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

Fig. 5. Depiction of the transmitter and receiver operations.

Fig. 6. Example of the Round-Robin switch pattern of an L-shaped array with seven antennas. Note that both ULAs have the fourth antenna in
common.

Therefore, to determine the phase shift caused solely by the
RF switch, it is necessary to estimate the frequency fT .
We adopted a Round-Robin switching pattern in our research
to sequence each antenna’s signal sampling in an orderly and
fair manner, as depicted in Fig. 6. It starts with the x-axis
ULA, where each antenna captures the signal once, following
a sequence from the first to the M th antenna. The process
then continues in the same sequential manner along the y-
axis ULA. It is important to note that the M th antenna,
at the junction of both ULAs, samples twice. Moreover, the
switching sequence is initiated at the final slot of the previous
reference period. Therefore, the Round-Robin pattern captures
75 samples, 74 from the switch-sample period, and one from
the last reference period slot.

The L-shaped array observation, in this case, is defined
as one single sequence of the Round-Robin pattern, that is,
when all antennas in the x-axis and y-axis ULAs complete
the IQ sampling operation, while the x-axis array observation
(likewise for the y-axis) is expressed as

xs(t) =


x1(t)

x2(t + Ts)
...

xM (t + (M − 1)Ts)

 . (36)

Based on (35), (36) amounts to

xs(t) =


x1(t)

x2(t)e j2π fT Ts

...

xM (t)e j2π fT (M−1)Ts

 = Oax (γ)s(t) (37)

where O ∈ CM×M is the phase shift matrix caused by the RF
switch, which is a diagonal matrix defined in (38)

O ≜ diag
[
1 e j2π fT Ts , . . . , e j2π fT (M−1)Ts

]
. (38)

Bluetooth Direction Finding can only track the DOA of
a single transmitter [4]. Consequently, the L-shaped array
observation model is defined as[

xs(t)
ys(t)

]
=

[
Ox(t)
Oy(t)

]
=

[
Oax (γ)

Oay(γ)

]
s(t)+

[
nx
ny

]
(39)

where s(t) is a scalar that represents a signal from a single
transmitter in opposition to the multiple signals denoted in
vector s(t) found in (2) and (3). Moreover, the number of
L-shaped array observations in the CTE is equal to N =
⌊75/2M⌋. Notably, 75 is the total number of samples and 2M
is the number of samples in the L-shaped array observation.
Observe that since 75 is not divisible by 2M , the last 75
mod 2M samples are not used. Therefore, we can define the
matrix Xs similar to (19)

Xs ≜
[
xs(t1) xs(t2), . . . , xs(tN)

]
(40)

such that tn = 2(n − 1)MTs .

VI. SIGNED FIXED-POINT ARITHMETIC

Fixed-point arithmetic is a valuable technique employed
to represent fractional numbers using integers, serving as
an alternative to floating-point calculations. This approach
proves particularly advantageous for microcontrollers lacking
a dedicated FPU, as it enhances energy efficiency and com-
putational speed compared to the reliance on software-based
floating-point arithmetic. However, even in situations where
microcontrollers have an FPU, utilizing fixed-point arithmetic
can still provide benefits in certain applications, particularly
when it comes to energy consumption, as the FPU can be
disabled.

More specifically, fixed-point numbers, as their name sug-
gests, are integer numbers with a fixed number of bits to
represent the integer and fractional components of a frac-
tional number. In the processing of fixed-point numbers, the

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8573

Fig. 7. Illustrative building blocks representation of signed fixed-point
numbers.

Fig. 8. Example of a fixed-point number with its integer and binary digit
representations.

processor treats them as regular binary integers, utilizing
integer arithmetic. However, from a programmer’s perspective,
a virtual radix point is conceptually placed at a fixed position.
While fixed-point numbers can be designed with varying
lengths, this research specifically focuses on the 32-bit signed
fixed-point number, as depicted in Fig. 7 since constrained
embedded processors, such as the Arm Cortex M4 and M33
found in SoCs with direction-finding capabilities, operate
exclusively in 32-bit mode.

The signed fixed-point representation is often used in the
Qm.n format in which m and n are the number of bits of the
integers and fractional part, respectively. Let us also define
f as the fixed-point number and I as its represented integer
number in two’s complement. Fig. 8 shows an example of a
Q4.3 fixed-point number, f = 10010.0112, represented as an
integer number, I = 100100112. As we can clearly see, its
value in decimal notation is

10010.0112 =
−1× 27

+ 1× 24
+ 1× 21

+ 1× 20

23

= −13.62510.

In general terms, signed integer numbers in two comple-
ments format are represented by

I = −2m+nbm+n +

m+n−1∑
i=0

(2i bi) (41)

where bm+n, . . . , b2b1b0 are binary digits that represent f in
Qm.n format. Therefore, the value of a signed fixed-point
number can be calculated according to f = I/2n .

Consider two arbitrary Qm.n numbers, denoted as fa and
fb. From a computer’s perspective, it can be demonstrated [16]
that the four fundamental arithmetic operations can be exe-
cuted solely using the signed integer representations of these
numbers in two’s complement format, denoted as Ia and Ib,
as shown in Table III. It is important to note that we are
utilizing integer division that outputs the integer part of the
quotient only. Its equation can be represented as q = ⌊a/b⌋,
where a, b ̸= 0 and q are signed integer numbers. Notably,
Arm Cortex M4 and M33 processors, which are widely

TABLE III
FIXED-POINT ARITHMETIC OPERATIONS AND THEIR EQUIVALENT

SIGNED INTEGER OPERATIONS

employed in low-cost IoT devices, perform the integer division
utilizing SDIV assembly instruction [17], thereby avoiding the
need for an FPU.

When implementing a solution using fixed-point represen-
tation, it is crucial to consider two important parameters:
resolution and range. During execution, if a number is less
than the resolution or falls outside the range permitted by the
fixed-point format, the method may encounter issues such as
crashes or produce erroneous results. Furthermore, the overall
accuracy of the implemented solution is tightly linked to
the accuracy of the fixed-point representation. The following
paragraphs define these three parameters.

1) Resolution: It refers to the smallest possible nonzero
real number that can be represented in a digital system.
In the context of fixed-point format, it corresponds to
the gap between two consecutive numbers that can be
represented. For a signed fixed-point format denoted as
Qm.n, the resolution is 2−n .

2) Accuracy: It denotes the closeness of a value represented
in a fixed-point format with its true value. That is,
it measures the representation error that arises when
approximating a real number using a fixed-point format.
In other words, accuracy quantifies how well a fixed-
point representation captures the exact value of the
original real number.

3) Range: The range of signed fixed-point numbers can be
determined by considering the range of signed integer
numbers in two’s complement representation with a total
of m+n+1 bits. This range is given by [−2m+n, 2m+n

−

1]. Therefore, the range of signed fixed-point numbers
is given by [−2m+n, 2m+n

−1] × 2−n , which simplifies
to [−2m, 2m

− 2−n
].

VII. IMPLEMENTED SOLUTION

The implemented solution builds upon our previous method,
as described in [42], which utilizes a 1-D Unitary TLS
ESPRIT algorithm optimized for estimating a single DOA.
In this research, we have expanded our method to incor-
porate the RF switch and estimation of both azimuth and
elevation angles and the CFO. To achieve this, we employ
an L-shaped uniform array and ensure accurate estimation of
the CFO, which is crucial for precise phase compensation
in the presence of the RF switch and for accurate angle
estimation. Furthermore, the implemented solution employs
the fixed-point representation as many constrained embed-
ded systems are absent from an FPU, thereby relying on

8574 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

software-based floating-point operations, which are time- and
energy-inefficient. To address this properly, we have developed
efficient fixed-point numerical computations specifically tai-
lored for this purpose, as standard numerical methods may not
be suitable for fixed-point numbers. Moreover, we replaced the
inverse power method employed in [42] with an even simpler
analytical algorithm.

The optimization principles guiding the development of the
implemented solution not only prioritize time efficiency but
also aim to mitigate computational resource consumption to
minimize energy usage. In addition, special consideration is
given to ensure the feasibility of the solution in a multithread
environment, as many constrained IoT devices utilize basic
RTOS. The solution is designed at the bare-metal level,
developed in C99 programming language, and adopts the
Q15.16 fixed-point format. To achieve the goal of minimal
computational resource consumption and enhance portability,
all numerical methods were built from scratch, eliminating the
reliance on external libraries. This approach ensures greater
control over resource utilization and enables the solution to be
efficiently implemented on various platforms. The developed
solution includes tailor-made numerical methods such as the
power method, a frequency estimator, fixed-point implementa-
tions of an inverse tangent, tangent, and inverse sine functions,
as well as auxiliary linear algebra algorithms, for exam-
ple, vector norm calculation and matrix–vector multiplication.
These custom numerical methods are specifically designed to
meet stringent resource constraints and enhance the efficiency
of the solution.

A. Power Method
In our research [42], we introduced the power method

as a more efficient alternative to computationally inten-
sive eigenvalue decomposition for single DOA estimation.
This technique capitalizes on the fact that the signal sub-
space consists of only one eigenvector. In such a scenario,
instead of resorting to eigenvalue decomposition algorithms
that unnecessarily compute all eigenvectors and eigenval-
ues, the power method proves to be a more efficient
choice. This method accurately estimates the eigenvector
associated with the largest absolute eigenvalue [43], which
represents the signal subspace as demonstrated in the next
paragraphs.

By employing the power method, our implemented solution
avoids the complexities associated with EVD algorithms, such
as their time-consuming nature and high memory usage. For
instance, the QR algorithm, a well-established EVD method,
has a complexity of O(n3) per iteration [44], and it often
requires additional steps, such as performing a Hessenberg
decomposition and searching for the eigenvector related to
the largest eigenvalue in this specific case. In contrast, the
power method has a simpler complexity of O(n2) per iteration,
in our case, and involves straightforward computations. In our
solution, we have observed that the power method typically
converges within just four iterations, making it highly efficient
for single-source DOA estimation.

To guarantee the convergence of the power method, the
input matrix must be diagonalizable, there must exist one

single eigenvalue with the greatest absolute value, and it must
be a real number [45]. For instance, if the eigenvalues of a
diagonalizable matrix are denoted as λi ∈ R for i = 1, . . . ,M ,
and if |λ1| > |λ2| ≥ · · · ≥ |λM |, then the matrix satisfies the
convergence requirements. The matrix C, defined in (21), is a
real covariance matrix; thus, it is symmetric [46]. Therefore,
it is diagonalizable, and its eigenvalues are real numbers [47].
For C to have one single largest absolute eigenvalue, there
must exist one single line-of-sight (LOS) signal source in
the absence of coherent signals. The latter requirement is
caused by multipath propagation effects and is also a manda-
tory requisite for subspace DOA methods. Nevertheless, the
forward–backward averaging technique applied in the Unitary
TLS ESPRIT aims to mitigate coherent signals’ effect.

Algorithm 2 Power Method
Input: covariance matrix C.
Output: signal subspace Us .
Define v1 = [1, 1, . . . , 1]T ∈ RM , v0 = 0M , k = 1,
tol ≪ 1 ∈ R>0, and K ∈ Z>0.

while k ≤ K and ∥vk − vk−1∥
2 > tol do

vk+1 ← Cvk

vk+1 ←
vk+1

∥vk+1∥
k ← k + 1

end
if k > K then

/* Convergence failed */
return NU L L

end
else

/* Convergence succeeded */
return vk

end

The power method computes the eigenvector related to
the largest absolute eigenvalue, which is the signal subspace
for single-source DOA estimation. More precisely, since C
is a real covariance matrix, it is positive semidefinite [46],
meaning that all eigenvalues are nonnegative. The LOS com-
ponent of the received signal that constitutes the eigenvalue
of the signal subspace is greater than the eigenvalues of the
noise subspace [28], [33], and since they are all nonnega-
tive, eigenvalues of the noise subspace cannot be equal to
or greater than the one of signal subspace in magnitude.
Therefore, the eigenvalue of the signal subspace is the greatest
in magnitude; hence, its corresponding eigenvector is the
signal subspace. The same reasoning applies to the y-axis
ULA.

In the implemented power method (see Algorithm 2),
the eigenvalue is not computed since only its eigenvector
is required. The chosen parameters were K = 30 and
tol = 10−6. Through numerous experiments, it was observed
that Algorithm 2 typically converges within four to five
iterations, and in all experimental instances, 30 iterations
were more than sufficient. Therefore, for k > 30, it is
assumed that the algorithm fails to compute the signal
subspace.

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8575

B. Solving the Total LS
The total LS procedure can be analytically computed in the

implemented solution as it estimates a single DOA. In this
scenario, the matrix ϒ from (23) reduces to a scalar value,
denoted as ϒ , and no longer possesses eigenvalues. The matrix
E from (24) becomes a 2 × 2 matrix, resulting in a corre-
sponding eigenvector matrix V of the same size. Therefore,
the DOA information can be extracted using

ϒ = −
V12

V22
(42)

where V12 and V22 ̸= 0 can be calculated analytically by
solving a 2 × 2 eigenvector problem, commonly found in
introductory linear algebra textbooks, such as [48]. With the
DOA information contained in the scalar ϒ , (26) is replaced
with

u1 =
2 arctan(ϒ)

k1
. (43)

C. BLE ESPRIT
Algorithm 3 introduces a novel Unitary TLS ESPRIT

method termed BLE ESPRIT. This method incorporates the
power method and leverages the shift-invariant property to
simultaneously extract the DOA information and perform
phase compensation through a simple trigonometric equation.
By employing this approach, it avoids the computationally
expensive operations of calculating the phase compensation
matrix (O), computing its inverse (O−1), and performing
matrix multiplication.

Specifically, to extract the samples x(t) and y(t) from
the Round-Robin switch pattern samples xs(t) and ys(t), the
conventional approach involves computing the phase compen-
sation matrix O and finding its inverse, as exemplified in (44)
and applied in our previous research [24][

x(t)
y(t)

]
=

[
O−1xs(t)
O−1ys(t)

]
. (44)

However, the implemented solution adopts a faster approach
based on a simple trigonometric equation, bypassing the time-
consuming steps of matrix inversion and multiplication.

To derive (52), consider that by splitting the x-axis ULA
into two subarrays, as illustrated in Fig. 3, the shift-invariant
property and Vandermonde structure still hold even if the
samples are performed sequentially in a Round-Robin switch
pattern, that is,

J1Oax (γ)︸ ︷︷ ︸
1st

subarray

e j2π fT Ts e jk1u1 = J2Oax (γ)︸ ︷︷ ︸
2nd

subarray

. (45)

More precisely,

J1Oax (γ)e j (2π fT Ts+k1u1) = J2Oax (γ). (46)

Therefore, it is possible to apply ESPRIT. Observe that the
shift-invariant equation incorporates an additional phase shift,
2π fT Ts , caused by sampling the signal sequentially. In step
2, as described in Algorithm 3, the method estimates ϒ that
contains fT , Ts , and u1. The sample period (Ts) is known and

fT is provided as a prior estimation in Algorithm 4; thus, the
method requires calculating u1 from ϒ , which is equal to

ϒ = tan

(
2π fT Ts + k1u1

2

)
. (47)

The first attempt could involve extracting the angle of (47)
by applying the inverse of tangent; however, we found experi-
mentally that the angle may exceed π , which is the periodicity
of the tangent function. Even if such an angle does not
exceed π in theory, (47) is considerably sensitive to numerical
errors and the total LS estimation, which could overestimate
the angle beyond π . Thus, the implemented solution applies
a trigonometric identity to isolate u1 before calculating it.
By defining a ≜ k1u1/2 and b ≜ 2π fT Ts/2, from the
trigonometric identity in (48)

tan(a + b)︸ ︷︷ ︸
ϒ

=
tan(a)+ tan(b)

1− tan(a) tan(b)
(48)

we can isolate tan(a), as long as 1 − tan(a) tan(b) ̸= 0,
in accordance with (49)

tan(a) =
ϒ − tan(b)

1+ ϒ tan(b)
(49)

thereby allowing the recovery of u1, as demonstrated in (52).
The y-axis ULA of antennas follows the same procedure to
calculate vi .

Algorithm 3 Summary of BLE ESPRIT
Input: matrix Xs composed of N array observations,

fT and the number of signals d = 1.
Output: DOA information u1.

1) Compute the real-valued signal subspace, as the
dominant eigenvector of

C = Re{QH
M R̂xx QM } (50)

by applying the Power Method.
2) Solve analytically the real-valued invariance

equation below for ϒ ,

K1Usϒ ≈ K2Us, (51)

by applying TLS.
3) Extract u1 by simultaneously applying the phase

compensation, that is,

u1 =

2 arctan


ϒ − tan

(
fT

2

)

1+ ϒ tan

(
fT

2

)


k1
. (52)

D. BLE Frequency Estimator
Algorithm 4 presents an overview of the frequency esti-

mator. It leverages the dual sampling of the M th antenna,

8576 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

adhering to the principle that a higher number of samples leads
to greater accuracy in estimation. Define the sequence

z(n) = {xs(T), ys(T), xs(2T), ys(2T)

. . . , xs(Ns T), ys(Ns T)} (53)

where z(n) represents the samples of the M th antenna for
all L-shaped array observations and T = MTs is the sam-
pling period of the cited antenna. Therefore, it is possible
to construct the matrix Z, as defined in (28). The frequency
estimator, as described in Section IV-A, evaluates fi from
νi = e j2π fi T . In our case, fi = fT = f1 + fo such that
f1 = 250 kHz and fo is unknown; therefore, the phase of νi
is

ξ = 2π(250000+ fo)MTs︸︷︷︸
T

. (54)

After some calculation, (54) yields

ξ = Mπ + 2πT fo. (55)

In Algorithm 4, it is important to note that step 3 involves
extracting fo from ϒ = tan(ξ/2); therefore,

ϒ = tan

(
Mπ

2
+ πT fo

)
. (56)

If M is even, M = 2n, and then

ϒ = tan(nπ + πT fo) = tan(πT fo). (57)

The last equality comes from the tangent function period-
icity, specifically tan(α) = tan(kπ + α) for any k ∈ Z and
α ∈ R. However, if M = 2n + 1, thus, (56) becomes

ϒ = tan

(
nπ +

π

2
+ πT fo

)

= tan

(
π

2
+ πT fo

)
= − cot(πT fo)

= −
1

tan(πT fo)
. (58)

From the result of (58), we can derive (59)

tan(πT fo) = −
1
ϒ
. (59)

As a result, the CFO (fo) estimation depends on whether
M is even or odd; thus, the total frequency is computed in line
with (63). In addition, since the estimation of fo depends on
the inverse of tangent, the calculation is bounded by its range,
which is

∣∣π/2∣∣, in accordance with∣∣πT fo
∣∣ < π

2
H⇒

∣∣ fo
∣∣ < 1

2T
. (60)

Consequently, in order for Algorithm 4 to effectively esti-
mate fo, it is crucial that its absolute value be less than half
of the sampling frequency of the M th antenna.

E. Fixed-Point Numerical Methods
Accurate computation of trigonometric functions relies

on the Taylor series [49], which is a mathematical technique

Algorithm 4 Summary of BLE Frequency Estimator
Input: matrix Z composed of samples from the M-th

antenna.
Output: Estimated frequency f̂T .

1) Compute the real-valued signal subspace, as the
dominant eigenvector of

C = Re{QH
M R̂zz QM }. (61)

by applying the Power Method.
2) Solve analytically the real-valued invariance

equation below for ϒ ,

K1Usϒ ≈ K2Us, (62)

by applying TLS.
3) Estimate the frequency in Hertz, that is,

f̂T = f1 +



arctan(ϒ)
πT

, if M is even

arctan

(
−

1
ϒ

)
πT

, if M is odd.

(63)

used to approximate a function by utilizing an infinite sum of
expressions derived from the function’s derivatives at a single
point. However, in practical computation, the Taylor series is
truncated and represented with a finite number of components.
For instance, (64) expresses such series for the inverse of
a tangent when zero is the point where the derivatives are
considered

arctan(x) =
∞∑

n=0

(−1)n x2n+1

2n + 1
. (64)

Such a series is known as the Maclaurin series, a special
and well-established practical case of the Taylor series that
employs successive derivatives of the function at point zero.
However, we have discovered that implementing directly such
a series using fixed-point representation is not feasible without
any supporting methods. The reason is that the terms of the
series converge to zero after just a few iterations when |x | < 1,
leading to a highly inaccurate approximation as |x | increases.
This issue mainly arises from the power component (x2n+1),
which causes the terms to become very small. In the fixed-
point representation of the implemented solution (Q15.16),
the resolution, which is about 1.5 × 10−5, is insufficient to
accurately represent these diminishing terms. Furthermore, for
large x , the power component (x2n+1) rapidly becomes greater
than the upper bound of Q15.16. Other trigonometric functions
suffer from a similar effect.

To address these limitations, certain fixed-point libraries
constrain the domain range of the function and incorporate
techniques such as lookup tables or a combination of the
Taylor series and lookup tables [50], [51]. In cases where
values fall outside the truncated domain, computations are
performed using trigonometric identities. Such technique is
implemented in well-established fixed-point libraries such

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8577

TABLE IV
FIXED-POINT APPROXIMATION OF TRIGONOMETRIC FUNCTIONS AND THEIR PERFORMANCE PARAMETERS

as CMSIS DSP Software Library, which was developed by
Arm, IQ—Math Library, which was implemented by Texas
Instruments, and Fix32 [13], [52], [53]. However, the lookup
table technique alone lacks our desired accuracy and requires
substantial memory to reduce numerical errors, even when
merged with the Taylor series.

In our implemented solution, we have opted for the Padé
approximant [54] to compute the tangent and Lagrange inter-
polation with minimax optimization [49] to compute the
inverse of tangent and the inverse of sine since these tech-
niques attain sufficient accuracy and are more time-efficient
than the Taylor series as they employ noniterative simple
equations. Notably, Padé approximant of order [3/2] was
generated using MATLAB to estimate the tangent function
in the range of |x | < π/4, while a trigonometric identity
is computed for values falling outside that range. Table IV
shows the trigonometric functions with their approximations
employed by the implemented solution.

In situations where embedded processors lack an FPU or
have a disabled FPU, the built-in hardware square root opera-
tion is unavailable. Thus, the implemented solution must resort
to a software implementation of the square root tailor-made
for fixed-point representation. Interestingly, certain processors
may offer an integer square root operation that can be utilized
without requiring an FPU, which may allow for the application
of fixed-point square root [55]. However, this is not the
case for embedded processors widely used in constrained
IoT devices, namely, Arm Cortex M4 or Arm Cortex M33,
where such built-in operation is unavailable as well. The
implemented solution incorporates the Babylonian method
for finding square roots [56]. This iterative method exhibits
quadratic convergence and has been found to consistently
converge in our fixed-point format. Given a real number a ∈ R,
the Babylonian method calculates the square root of a by
iteratively computing

xn+1 =
1
2

(
xn +

a
xn

)
. (65)

F. L-Shaped BLE ESPRIT
In conclusion, Algorithm 5 provides an overview of the

implemented solution. Essentially, it comprises three modified
Unitary TLS ESPRIT algorithms. One algorithm is dedicated
to estimating the frequency using samples from the M th
antenna, while the other two are utilized to compute the
u1 and v1 values from the x-axis and y-axis ULAs. Note that
arctan2(·) is the four-quadrant inverse tangent.

Algorithm 5 Summary of L-Shaped BLE ESPRIT

Input: matrix
[

Xs
Ys

]
composed of N array observations

and the number of signals d = 1.
Output: Azimuth (θ) and elevation (φ) angles.

1) Estimate fT through Algorithm 4.
2) Estimate u1 and v1 by applying Algorithm 3 two

times, one on Xs and another on Ys , respectively.
3) Estimate the azimuth and elevation angles

θ = arctan2(u1 + jv1),

φ = arccos
(√

u2
1 + v

2
1

)
.

VIII. EXPERIMENTS

The objective of this experiment consisted of demonstrating
the feasibility of the implemented solution for commercial
embedded IoT devices and validating it experimentally in a
simulated indoor environment encompassing multipath prop-
agation, fading, noises, and CFO. The experiment involved
comparing the performance of the fixed-point implementation
alongside the floating-point implementation, both with and
without the support of an FPU. By conducting this comparison,
we sought to evaluate the impact of using fixed-point arith-
metic versus floating-point arithmetic and the influence of the
FPU on the overall performance of the solution. The results
obtained from this analysis not only serve as evidence of the

8578 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

TABLE V
SIMULATION PARAMETERS IN MATLAB

solution’s effectiveness but also provide valuable insights for
making informed decisions about the implementation approach
in real-world scenarios.

In summary, in our experiment, we generated artificial
baseband signals in MATLAB, which served as the input for
our solution implemented in the C99 programming language.
The solution was executed on a resource-constrained embed-
ded IoT device. Therefore, we could measure its memory
footprint, execution time, energy consumption, and accuracy.
To ensure maximum reliability, the device ran the implemented
solution without any operating systems or software layers; it
was programmed at the bare-metal level. Fig. 9 illustrates an
overview of the experiment.

A. Experimental Setup
The simulation generates artificial baseband signals employ-

ing a combination of MATLAB’s 5G Toolbox, Phased Array
System Toolbox, and Communication Toolbox. Table V shows
the parameters of the simulation. To accurately represent
indoor environments, we employed the tapped delay line
(TDL-E) channel model that accounts for LOS propaga-
tion and simulates the multipath propagation phenomenon in
addition to the AWGN. The simulation randomly generates
a CFO based on a Gaussian distribution within the range
of ±30 kHz. These CFO values were based on empirical
experiments conducted in [27], which estimated that 99%
of CFO values in the CTE fell within this interval. For the
antenna array configuration, we utilized an L-shaped array
composed of seven isotropic antennas, with five antennas
forming each ULA. This configuration is suitable for IoT
devices, considering its small size. The distance between
antennas was set to half the wavelength of the BLE carrier
frequency.

To measure the memory footprint (RAM and flash), exe-
cution time, energy consumption, and accuracy, we employed
an nRF52840 DK that comes with an nRF52840 SoC having
an Arm Cortex-M4 of 64 MHz with an FPU. The SoC did
not use an operating system or software layers. Table VI
summarizes the implementation parameters. For fixed-point
implementation, the floating-point coprocessor was disabled in
the Co-Processor Access Control Register (CPACR) following
the reference manual [57] and illustrated in Fig. 10. For the

Fig. 9. Overview of the experiment.

TABLE VI
IMPLEMENTATION PARAMETERS

floating-point implementation, the floating-point coprocessor
was activated, and the hardware floating-point instructions
and hardware floating-point linkage (-mfloat-abi=hard) were
activated as well, so the processor could fully operate the
FPU. All devices of the nRF52 series support BLE, and
although nRF52840 does not have Bluetooth Direction Finding
capability, it is almost identical to other nRF52 and nRF53
devices that do have it. Notably, the nRF52 and nRF53 devices
are a well-known series of constrained IoT devices developed
by Nordic Semiconductor with a radio module of Bluetooth

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8579

Fig. 10. Depiction of the CPACR that activates and disables the FPU.

5.1 or later versions and come with an Arm Cortex-M4 or
Arm Cortex-M33 embedded processor.

The implemented solution used the 32-bit signed-fixed point
in Q15.16 format since both embedded processors, namely,
Arm Cortex M4 and Arm Cortex M33, operate natively
in 32-bit format only. For its floating-point implementation,
it employed the single-precision floating-point (FP32), under
IEEE 754-2008 specification since the FPU of Arm Cortex-
M4 does have support for FP32 only. Hence, floating-point
operations with FP32 attain the fastest execution time as
empirically shown in [42] and achieve the same accuracy
as the other two floating-point formats. Although the cited
embedded processors also support half-precision floating-point
(FP16), it is utilized solely as a storage format for Arm
Cortex-M4.

When operating in FP16, the processor promotes the data
to FP32 before performing calculations and demotes it back
to FP16 afterward [58]. This process introduces a small over-
head that can increase both flash consumption and execution
time. Slower execution times can result in higher energy
consumption as well. Furthermore, the FPU of both embedded
processors lacks support for double-precision floating-point
(FP64) calculations. Therefore, the C compiler emulates FP64
computations [17], [59], leading to additional computations
and a significant increase in execution time and flash usage.
In fact, DOA methods using FP64 were found to be approx-
imately 20 times slower than those using FP32, as reported
in [42].

To accurately measure energy consumption, we employed
the Otti Arc, a power measurement tool connected to the
nRF52840 DK. For measuring the execution time, we utilized
the Saleae logic analyzer. However, in both measurements,
it was necessary to activate a general-purpose input/output
(GPIO) port. Therefore, a GPIO signal was set to a high state
when the implemented solution started to execute and set to
a low state when it finished. This allowed us to determine the
start and end points of the method and facilitate the accurate
measurement of both energy consumption and execution time.
However, due to the activation of the GPIO port, energy usage
may be slightly overestimated.

While the clock cycles for arithmetic operations supported
by the FPU are readily available in [60], the execution times
for fixed-point operations are intricately tied to the custom
assembly code either manually implemented or generated by
the C compiler. Consequently, we conducted measurements
to determine the clock cycles required for each fixed-point
arithmetic operation. Table VII shows the results. Fixed-point
addition and subtraction demonstrate efficiency, necessitating
just a single clock cycle each, as they utilize native Arm Cortex
M4 integer addition and subtraction instructions.

TABLE VII
CLOCK CYCLES FOR EACH OPERATION

In contrast, fixed-point multiplication and division involve
a more intricate set of instructions, elucidated in the sub-
sequent subsection. The clock cycle measurements for these
operations were obtained through a detailed manual analysis
of the assembly code, generated by the C compiler, cross-
referenced with their corresponding clock cycle for each
assembly instruction reported in the Cortex-M4 Technical
Reference Manual [61]. Fixed-point division stands out as
a particularly intricate operation. It invokes two functions
from the ARM Embedded Application Binary Interface,
specifically __aeabi_ldivmod.S [62] and udivmoddi4.c [63].
Unfortunately, due to the complexity and extensive code size
of the latter function, manual measurement of its clock cycles
proved unfeasible. Nonetheless, we estimated that the remain-
ing portion of the fixed-point division operation consumes
approximately 21 clock cycles.

Moreover, we calculated the root mean square error (RMSE)
of accuracy considering 500 azimuth–elevation pairs for each
signal-to-noise ratio (SNR). In mathematical terms, the RMSE
of accuracy is defined as

RMSE(θ, φ) =

√√√√(1
L

)∑L

i=1
((θi − θ̂i)2 + (φi − φ̂i)2)

(66)

where L = 500 is the number of estimated azimuth–elevation
pairs, and θ and θ̂ are the actual azimuth and its estimation
in degrees, respectively, similarly for the elevation (φ) angle.
We evaluated the performance of different pairs under various
SNR conditions, specifically at 10, 15, 20, 25, and 30 dB.
In total, we analyzed a dataset comprising 2500 pairs. Note
that Bluetooth typically requires a minimum SNR of 10–15 dB
for reliable operation. SNR values below 10 dB are likely
to result in receiver failures during decoding and subsequent
cyclic redundancy check failures as well [64]. Note that the
RMSE of frequency follows a similar equation, namely:

RMSE(fT) =

√√√√(1
L

)∑L

i=1
(fT,i − f̂T,i)2 (67)

where fT,i and f̂T,i are the actual frequency and its estimation
in Hz, respectively.

B. Results and Discussion
Fig. 11 depicts the angle accuracy comparison between the

floating-point implementation [see Fig. 11(a)] and the fixed-
point implementation [see Fig. 11(b)]. Initially, we observe

8580 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

Fig. 11. Visualization of (a) accuracy of the floating-point implementa-
tion and (b) fixed-point implementation.

Fig. 12. Visualization of (a) accuracy of the frequency estimator
implemented in this research and (b) phase differences average.

a marginal difference in accuracy between the two imple-
mentations. However, as the SNR increases, the fixed-point
implementation quickly catches up and demonstrates compa-
rable accuracy to its floating-point counterpart. Note that plot
Fig. 11(a) refers to software- and hardware-based floating-
point methods since they have the same accuracy. Fig. 12
presents the frequency accuracy comparison between the phase
differences average approach [see Fig. 12(b)] suggested by
Silicon Labs and Bluetooth, and the implemented solution [see
Fig. 12(a)] in this research. This suggested that the solution
utilizes only eight samples that constitute the reference period.
On the other hand, our implemented solution is not limited
to the reference period and utilizes 20 samples along with an
improved estimator (see Algorithm 4), as clearly demonstrated
in the experiment.

Table VIII presents the performance metrics of the imple-
mented solution using different numerical representations:
fixed-point, floating-point with FPU support, and floating-
point without FPU support. The floating-point implementation
without FPU relies totally on software-based floating-point
computations, resulting in significantly slower execution times
compared to both the FPU-supported floating-point and fixed-
point implementations, which benefit from hardware-based
calculations. Interestingly, the floating-point implementation

TABLE VIII
PERFORMANCE METRICS

with FPU support showcases the fastest performance, even
surpassing the fixed-point solution.

This can be attributed to the fact that while fixed-point
addition and subtraction operations require only one clock
cycle, fixed-point multiplication needs 11 cycles, and division
operations take a long time surpassing 21 cycles, exceeding
the time required for floating-point multiplication and division
computations, as indicated in Table VII. It is a consequence of
the 32-bit fixed-point multiplication and division computations
as they require the utilization of 64-bit integers as an interme-
diate step [16]. However, because the Arm Cortex M4 and
M33 architectures lack native support for 64-bit calculations,
these operations introduce a slight overhead as they are exe-
cuted in software. Section VIII-C provides a more detailed
explanation.

From Table VIII, it can be observed that the fixed-point
implementation utilizes slightly more flash memory compared
to its two counterparts. This is because the hardware-based
floating-point implementation requires only a single line
of assembly code to perform multiplication and division
operations, while the fixed-point implementation necessitates
multiple lines of code, resulting in a small increase in flash
memory usage, where the programming instructions are stored.
Surprisingly, this increment is even higher than that of the
software-based floating-point solution. In terms of RAM con-
sumption, since all implementations utilize four bytes of
data (FP32 and Q16.15), they exhibit the same RAM usage,
as RAM stores the programming data. Notably, those memory
consumption satisfies the requirements for devices in Table I.

We observed a clear linear relationship between energy
usage and execution time. Specifically, the software-based
floating-point implementation exhibited a 6.73 times slower
execution time compared to its hardware-based counterpart,
resulting in approximately 6.42 times higher energy consump-
tion. In line with this trend, the fixed-point implementation,
being 1.53 times slower than the hardware-based approach,
would be expected to consume around 1.53 times more energy.
However, interestingly, this was not the case. The fixed-point
implementation only consumed energy 1.09 times higher than
the hardware-based alternative. We attribute this energy-saving
effect to the absence of the FPU, which was disabled in the
fixed-point solution.

Moreover, coin batteries, commonly utilized in small elec-
tronic devices, including constrained IoT ones, exhibit a

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8581

Fig. 13. Depiction of fixed-point multiplication, C = A × B,
in Q15.16 format.

capacity range of 1 to 2000 mAh.1 Considering the fixed-point
implemented solution as the sole source of energy consump-
tion, the nRF52 series can operate approximately from about
9.5 million to 6.2 trillion cycles. Thus, the implemented
solution is well-suited for battery-powered small embedded
devices. However, it is important to note that the experiment
did not measure the energy usage of the RF front end. This
limitation stems from our setup’s absence of a real array of
antennas as we artificially generated the signals. Consequently,
in practice, we assume that the measurement was assessed after
IQ sampling.

C. Fixed-Point Shortcomings
When performing fixed-point multiplication, the interme-

diate result of the operation in parentheses, Ia × Ib (in
Table III), requires storage as a 64-bit signed integer. This
is because a 32-bit integer is insufficient to represent the
resulting value. Let us consider an example to illustrate this.
Suppose that we have two fixed-point numbers in Q15.16 for-
mat, fa = 40 and fb = 3, which are viewed from the
computer perspective as signed integers Ia = 262144010
and Ib = 19660810, respectively. To calculate the fixed-point
multiplication, we perform a signed integer multiplication of
Ia and Ib, resulting in 51539607552010 as an intermediate
step. This value exceeds the maximum positive number that
can be represented by a 32-bit signed integer, which is 231

−1.
Consequently, to accommodate the result, a 64-bit signed

integer is required. In the next step, we perform a right
shift operation of 51539607552010 by 16 bits, denoted as
51539607552010 ≫ 16, yielding 786432010. This value,
represented in Q15.16 format, corresponds to 120, and it
fits within a 32-bit signed integer, effectively restoring the
result to the original format. Fig. 13 illustrates the fixed-point
multiplication process. A similar analysis can be applied to
the fixed-point division operation as well.

To reduce the overhead associated with fixed-point mul-
tiplication and division, some developers implement their
operations in assembly code instead of relying on the
compiler’s implementation in C. While fixed-point multipli-
cation is generally efficient requiring a few lines of assembly

1According to Mouser Electronics, see: https://www.mouser.com/c/power/
batteries/coin-cell-battery.

Code. 1: Example of a Q15.16 Fixed-Point Multiplication

code, as shown in the provided example (see Code 1), division
can be time-consuming and complicated. To address this issue,
the division operation often employs the Newton–Raphson
method to estimate the reciprocal of the divisor (b) in the
fraction a/b, resulting in c = 1/b. This transforms the
division operation into a multiplication operation, namely,
a × c. The application of the Newton–Raphson method
for reciprocal estimation is feasible because it only requires
multiplication and addition operations to find the reciprocal.
The Newton–Raphson method is an iterative approach that
utilizes linear approximation to find increasingly accurate
approximations to the roots of a real-valued function. In the
case of finding the reciprocal of a real number b, the reciprocal
can be obtained as a zero of the function defined as

f (x) =
1
b
− x . (68)

By repeatedly applying (69) in each iteration, the method
calculates the root, which represents the reciprocal

xi+1 = xi −
f (xi)

f ′(xi)
= xi (2− bxi). (69)

However, it is crucial to select an appropriate initial point
when applying the Newton–Raphson method. Choosing an
improper initial point can result in the method either failing to
converge or producing an incorrect estimation. In addition, it is
important to set a maximum number of iterations to ensure the
termination of the method. The specific value for the maximum
number of iterations can be determined through empirical
analysis and fine-tuning. Furthermore, to expedite fixed-point
division, certain implementations employ a combination of a
lookup table and the Newton–Raphson method [52], [65]. This
approach can enhance the efficiency of the division operation
by leveraging precomputed values stored in a table and utiliz-
ing the Newton–Raphson method to refine the approximation
further. However, it is important to note that this research
did not include the development of custom fixed-point multi-
plication and division operations. Instead, it relied on the C
compiler’s run-time library.

Nevertheless, there are approaches available to mitigate the
impact of fixed-point division operations and reduce their
frequency in firmware. One such approach involves leveraging
the properties of fixed-point numbers, particularly when the
divisor is equal to 2m , where m is a positive integer. In such
cases, an arithmetic shift operation can be employed, which

8582 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

can be executed in an assembly instruction that takes one
single clock cycle. This operation involves right-shifting the
dividend a by m bits, so the division operations become
a ≫ m. The use of arithmetic shift is possible because fixed-
point numbers are essentially integer representations from the
computer’s perspective.

Furthermore, if multiple divisions with the same divisor b
are performed successively in a loop, it is time-efficient to
precalculate the reciprocal of b, denoted as c = 1/b, before
entering the loop. This allows the successive divisions to
be transformed into simple multiplications, which are faster
operations. Nevertheless, it is worth noting that modern C
compilers are often equipped with intelligent optimizations
that may automatically apply such approaches to improve code
performance.

D. Limitations
Our implemented solution encounters three primary lim-

itations, each presenting an opportunity for enhancement.
The first involves the use of the C compiler’s runtime
library for fixed-point multiplication and division, which
is potentially inefficient for our specific needs. A custom
assembly code implementation of these operations could
improve the execution time of our implemented solution lead-
ing to reduced energy consumption. Notably, integrating the
Newton–Raphson method with lookup tables seems a promis-
ing strategy for improving fixed-point division, as outlined in
Section VIII-C.

The second limitation comprises the matrix multiplication.
Although our implemented solution bypasses the time-
consuming eigenvalue decomposition by employing the power
method, it still depends on the brute-force approach for matrix
multiplication in (61). This approach entails multiplying each
row of one matrix with each column of the other. Although
there are fast matrix multiplication algorithms available, such
as the Strassen or Coppersmith–Winograd methods, their prac-
tical implementation presents considerable challenges. More
specifically, these cited advanced algorithms, while theoreti-
cally offering quicker asymptotic complexity, are impeded in
real-world applications by their high constant factors rendering
them impractical for matrices of a size manageable by con-
strained embedded systems [66]. In addition, these algorithms
increase memory consumption and are complex to implement,
posing further limitations to their usability in many practical
scenarios.

The third limitation concerns the array response. Imple-
menting a DOA method for practical antenna array systems
typically benefits from array calibration to capture the actual
array response and hardware imperfections. Although our
implemented solution does not require a precise array response
such as MUSIC, incorporating an array calibration technique
could enhance its accuracy.

IX. CONCLUSION

This research confirmed the effectiveness of the imple-
mented solution for Bluetooth-enabled IoT devices. Our
study’s cornerstone comprised the introduction of a novel

fixed-point DOA method. This method, deeply rooted in
ESPRIT, diverges from conventional practices by employing a
simpler power method for DOA estimation. It incorporates
an enhanced carrier frequency estimator, which is tens of
times more accurate than the conventional method of aver-
aging phase differences. In addition, the research highlighted
the need for developing new numerical methods, specifically
designed for fixed-point arithmetic, as prevalent floating-point
techniques may prove inadequate or inefficient when directly
translated to a fixed-point format.

Our research demonstrated that the fixed-point approach
substantially reduced execution time, clocking in at a
swift 2.3 ms, alongside a low energy consumption of
just 0.348 nWh. In direct comparison, this method signifi-
cantly surpassed the software-based floating-point alternative,
exhibiting a substantial 5.9-fold boost in energy efficiency
and a 4.4-fold acceleration in processing speed. Notably, this
was achieved with virtually no compromise on accuracy. The
empirical findings of this evaluation definitively conclude that
software-based floating-point computations lag in efficiency
when juxtaposed with their fixed-point counterparts.

Our research also revealed that for IoT devices equipped
with an FPU, the hardware-based floating-point algorithm still
holds a slight edge in terms of speed and energy efficiency
compared to its fixed-point alternative. This is because the
hardware-based floating-point approach, benefiting from direct
hardware support, accomplishes faster mathematical opera-
tions. In conclusion, while the fixed-point method significantly
enhances the execution in systems lacking an FPU, it is
the hardware-based floating-point technique that prevails in
devices where such a computational resource is present.

REFERENCES

[1] M. Pesavento, M. Trinh-Hoang, and M. Viberg, “Three more decades
in array signal processing research: An optimization and structure
exploitation perspective,” IEEE Signal Process. Mag., vol. 40, no. 4,
pp. 92–106, Jun. 2023.

[2] Bluetooth SIG. (2015). Indoor Positioning Service 1.0. Accessed:
Jan. 27, 2023. [Online]. Available: https://www.bluetooth.com
/specifications/specs/indoor-positioning-service-1-0/

[3] S. R. Jondhale, R. S. Deshpande, S. M. Walke, and A. S. Jondhale,
“Issues and challenges in RSSI based target localization and tracking
in wireless sensor networks,” in Proc. Int. Conf. Autom. Control Dyn.
Optim. Techn. (ICACDOT), Sep. 2016, pp. 594–598.

[4] Bluetooth SIG. (2019). Bluetooth Core Specification V5.1. [Online].
Available: https://www.bluetooth.com/specifications/specs/core-
specification-5-1/

[5] Bluetooth SIG. (2019). Enhancing Bluetooth Location Services
With Direction Finding. Accessed: Jan. 27, 2023. [Online].
Available: https://www.bluetooth.com/wp-content/uploads/2019/03/1901
_Enhancing-Bluetooth-Location-Service_FINAL.pdf

[6] G. Pau, F. Arena, Y. E. Gebremariam, and I. You, “Bluetooth 5.1:
An analysis of direction finding capability for high-precision location
services,” Sensors, vol. 21, no. 11, p. 3589, May 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/11/3589

[7] Quuppa. (2020). Bluetooth Direction Finding: Going Beyond Bea-
cons. Accessed: Jan. 27, 2023. [Online]. Available: https://www
.quuppa.com/bluetooth-direction-finding-going-beyond-beacons/

[8] P. Karlsson. Getting Started With Bluetooth for High Precision
Indoor Positioning. Accessed: Jan. 27, 2023. [Online]. Available:
https://content.u-blox.com/sites/default/files/Indoor-positioning-Getting-
started-u-blox-WhitePaper.pdf

[9] Y. B. Zikria, H. Yu, M. K. Afzal, M. H. Rehmani, and O. Hahm,
“Internet of Things (IoT): Operating system, applications and protocols
design, and validation techniques,” Future Gener. Comput. Syst., vol. 88,
pp. 699–706, Nov. 2018.

TROCCOLI et al.: EFFICIENT EMBEDDED FIXED-POINT DOA METHOD 8583

[10] Y. B. Zikria, S. W. Kim, O. Hahm, M. K. Afzal, and M. Y. Aalsalem,
“Internet of Things (IoT) operating systems management: Opportunities,
challenges, and solution,” Sensors, vol. 19, no. 8, p. 1793, Apr. 2019.

[11] E. Anderson et al., LAPACK Users’ Guide. Philadelphia, PA, USA:
SIAM, 1999.

[12] C. Sanderson and R. Curtin, “Armadillo: A template-based C++ library
for linear algebra,” J. Open Source Softw., vol. 1, no. 2, p. 26, Jun. 2016.

[13] Arm. Common Microcontroller Software Interface Standard. Accessed:
Jul. 18, 2023. [Online]. Available: https://arm-software.github
.io/CMSIS_5/General/html/index.html

[14] W. Elmenreich, A. Wolf, and M. Rosenblattl, “Providing standardized
fixed-point arithmetics for embedded c programs,” in Intelligent Techni-
cal Systems. Dordrecht, The Netherlands: Springer, 2009, pp. 101–114.

[15] Nordic Semiconductor. (2019). Bluetooth Direction Finding. Accessed:
Jul. 28, 2023. [Online]. Available: https://www.nordicsemi.com
/Products/Bluetooth-Direction-Finding

[16] Y. Zhu, “Fixed-point and floating-point arithmetic,” in Embedded Sys-
tems With ARM Cortex-M Microcontrollers in Assembly Language and
C. New York, NY, USA: E-Man Press, 2015, ch. 12, pp. 269–322.

[17] J. Yiu, The Definitive Guide To ARM® Cortex®-M3 and Cortex®-M4
Processors. Cambridge, U.K.: Newnes, 2013.

[18] M. L. Sollie, K. Gryte, T. H. Bryne, and T. A. Johansen, “Outdoor nav-
igation using Bluetooth angle-of-arrival measurements,” IEEE Access,
vol. 10, pp. 88012–88033, 2022.

[19] L. Yao, “Bluetooth direction finding,” M.S. thesis, Dept. Elect. Eng.,
Math. Comput. Sci., TU Delft Electr. Eng., Delft, The Netherlands, 2018.

[20] Q. Wan et al., “A high precision indoor positioning system of BLE
AOA based on ISSS algorithm,” Measurement, vol. 224, Jan. 2024,
Art. no. 113801.

[21] N. Paulino, L. M. Pessoa, A. Branquinho, and E. Gonçalves, “Design
and experimental evaluation of a Bluetooth 5.1 antenna array for angle-
of-arrival estimation,” in Proc. 13th Int. Symp. Commun. Syst., Netw.
Digit. Signal Process. (CSNDSP), Jul. 2022, pp. 625–630.

[22] Z. Hajiakhondi-Meybodi, M. Salimibeni, K. N. Plataniotis, and
A. Mohammadi, “Bluetooth low energy-based angle of arrival estimation
via switch antenna array for indoor localization,” in Proc. IEEE 23rd
Int. Conf. Inf. Fusion (FUSION), Jul. 2020, pp. 1–6.

[23] H. Ye, B. Yang, Z. Long, and C. Dai, “A method of indoor positioning
by signal fitting and PDDA algorithm using BLE AOA device,” IEEE
Sensors J., vol. 22, no. 8, pp. 7877–7887, Apr. 2022.

[24] T. Troccoli et al., “Direction of arrival method for L-shaped array with
RF switch: An embedded implementation perspective,” Sensors, vol. 23,
no. 6, p. 3356, Mar. 2023.

[25] Silicon Labs. (2021). AN1297: Custom Direction-Finding
Solutions Using the Silicon Labs Bluetooth Stack. Accessed:
Jan. 27, 2023. [Online]. Available: https://www.silabs.com/documents/
public/application-notes/an1297-custom-direction-finding-solutions-
silicon-labs-bluetooth.pdf

[26] M. Woolley. (2021). Bluetooth Direction Finding A Technical Overview.
Accessed: Jul. 18, 2023. [Online]. Available: https://www.bluetooth.
com/wp-content/uploads/Files/developer/RDF_Technical_Overview.pdf

[27] S. Cloudt, “Bluetooth low energy direction finding on embedded hard-
ware by mitigating carrier frequency offset and multipath fading,”
Ph.D. thesis, Dept. Elect. Eng., Eindhoven Univ. Technol., Eindhoven,
The Netherlands, 2021.

[28] Z. Chen, G. Gokeda, and Y. Yu, “Overview of basic DOA estima-
tion algorithms,” in Introduction to Direction-of-Arrival Estimation.
Norwood, MA, USA: Artech House, 2010, ch. 3, pp. 31–63.

[29] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[30] E. Tuncer and B. Friedlander, Classical and Modern Direction-of-Arrival
Estimation. New York, NY, USA: Academic, 2009.

[31] B. Ottersten, M. Viberg, and T. Kailath, “Performance analysis of the
total least squares ESPRIT algorithm,” IEEE Trans. Signal Process.,
vol. 39, no. 5, pp. 1122–1135, May 1991.

[32] Z. Chen, G. Gokeda, and Y. Yu, “DOA estimations with ESPRIT algo-
rithms,” in Introduction to Direction-of-Arrival Estimation. Norwood,
MA, USA: Artech House, 2010, ch. 5, pp. 81–122.

[33] A. M. Zoubir, “Subspace methods and exploitation of special array
structures,” in Academic Press Library in Signal Processing (Array
and Statistical Signal Processing), vol. 3. New York, NY, USA: Aca-
demic, 2014, ch. 15, pp. 651–717.

[34] V. Madisetti and D. Williams, “ESPRIT and closed-form 2-D angle
estimation with planar arrays,” in Digital Signal Processing Handbook
on CD-ROM. Boca Raton, FL, USA: CRC Press, 1999, ch. 63.

[35] M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to obtain increased
estimation accuracy with a reduced computational burden,” IEEE Trans.
Signal Process., vol. 43, no. 5, pp. 1232–1242, May 1995.

[36] E. Tuncer and B. Friedlander, “Narrowband and wideband DOA estima-
tion for uniform and nonuniform linear arrays,” in Classical and Modern
Direction-of-Arrival Estimation. New York, NY, USA: Academic, 2009,
ch. 4, pp. 125–160.

[37] C. R. Johnson and R. A. Horn, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[38] I. Markovsky and S. V. Huffel, “Overview of total least-squares meth-
ods,” Signal Process., vol. 87, no. 10, pp. 2283–2302, 2007.

[39] A.-J. Van Der Veen, C. M. Vanderveen, and A. Paulraj, “Joint angle and
delay estimation using shift-invariance techniques,” IEEE Trans. Signal
Process., vol. 46, no. 2, pp. 405–418, Feb. 1998.

[40] Bluetooth SIG. (2021). Bluetooth Core Specification V5.3. [Online].
Available: https://www.bluetooth.com/specifications/specs/core-
specification-5-3/

[41] A. M. Zoubir, “DOA estimation methods and algorithms,” in Aca-
demic Press Library in Signal Processing (Array and Statistical Signal
Processing), vol. 3. New York, NY, USA: Academic, 2014, ch. 14,
pp. 599–650.

[42] T. Troccoli, J. Pirskanen, A. Ometov, J. Nurmi, and V. Kaseva, “Fast
real-world implementation of a direction of arrival method for con-
strained embedded IoT devices,” in Proc. 12th Int. Conf. Internet Things,
Nov. 2022, pp. 1–8.

[43] A. Gilat, Numerical Methods for Engineers Scientists. Hoboken, NJ,
USA: Wiley Global Education, 2013.

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge, U.K.: Cambridge Univ. Press, 2007.

[45] W. Ford, “The algebraic eigenvalue problem,” in Numerical Linear
Algebra With Applications. Boston, MA, USA: Academic, 2015, ch. 18,
pp. 379–438.

[46] J. Solomon, “Designing and analyzing linear systems,” in Numer-
ical Algorithms: Methods for Computer Vision, Machine Learning,
and Graphics. Boca Raton, FL, USA: CRC Press, 2015, ch. 4,
pp. 75–76.

[47] W. Ford, “The symmetric eigenvalue problem,” in Numerical Linear
Algebra With Applications. Boston, MA, USA: Academic, 2015, ch. 19,
pp. 439–465.

[48] G. Strang, Linear Algebra and Its Applications. Boston, MA, USA:
Cengage Learning, 2006.

[49] S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient approximations
for the arctangent function,” IEEE Signal Process. Mag., vol. 23, no. 3,
pp. 108–111, May 2006.

[50] M. R. D. Rodrigues, J. H. P. Zurawski, and J. B. Gosling, “Hardware
evaluation of mathematical functions,” IEE Proc. E Comput. Digit.
Techn., vol. 128, no. 4, p. 155, 1981.

[51] R. Lyons, “Another contender in the arctangent race,” IEEE Signal
Process. Mag., vol. 21, no. 1, pp. 109–110, Jan. 2004.

[52] Warpco. (Mar. 2019). Highly Optimized 32-Bit Fixed-Point Math
Library for Embedded Systems. [Online]. Available: https://github.
com/warpco/fix32

[53] Texas Instruments. (2015). IQmathLib Users Guid. Accessed:
Jul. 19, 2023. [Online]. Available: https://software-dl.ti.com/msp430/
msp430_public_sw/mcu/msp430/IQmathLib/latest/exports/MSP430-IQ
mathLib-UsersGuide.pdf

[54] S. Wu and G. Bercu, “Padé approximants for inverse trigonometric
functions and their applications,” J. Inequal. Appl., vol. 2017, no. 1,
pp. 1–12, Dec. 2017.

[55] Arm Ltd. (1996). Fixed Point Arithmetic on the Arm. Accessed:
Aug. 2, 2023. [Online]. Available: https://developer.arm.com/
documentation/dai0033/latest/

[56] O. Kosheleva, “Babylonian method of computing the square root: Justi-
fications based on fuzzy techniques and on computational complexity,”
in Proc. Annu. Meeting North Amer. Fuzzy Inf. Process. Soc. (NAFIPS),
Jun. 2009, pp. 1–6.

[57] ARMv7-M Architecture Reference Manual, Arm Ltd., Cambridge,
U.K., 2021.

[58] Arm Compiler Armclang Reference Guide Version 6.12, Arm Ltd.,
Cambridge, U.K., 2019.

8584 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

[59] I. Johnson. (2022). 10 Useful Tips for Using the Floating Point Unit
on the Cortex-M4. Accessed: May 12, 2022. [Online]. Available:
https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/10-useful-tips-to-using-the-floating-point-unit-on-
the-arm-cortex–m4-processor

[60] Floating Point Unit: Cortex-M4 Technical Reference Manual, Arm Ltd.,
Cambridge, U.K., 2010, ch. 7, pp. 66–74.

[61] Programmers Model: Cortex-M4 Technical Reference Manual, Arm
Ltd., Cambridge, U.K., 2010, ch. 3, pp. 26–49.

[62] Chandlerc. (2012). Aeabi_uldivmod.s—EABI Uldivmod Implementa-
tion. [Online]. Available: https://github.com/llvm/llvm-project/blob/main
/compiler-rt/lib/builtins/arm/aeabi_uldivmod.S

[63] D. Boulby. (May 2018). Udivmoddi4.c—Implement__udivmoddi4.
[Online]. Available: https://github.com/ARM-software/arm-trusted-
firmware/blob/master/lib/compiler-rt/builtins/udivmoddi4.c

[64] A. Pipino, A. Liscidini, K. Wan, and A. Baschirotto, “Bluetooth low
energy receiver system design,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2015, pp. 465–468.

[65] P. Curtis. (2021). Algorithms for Division—Part 4—Using Newton’s
Method. Accessed: Jul. 19, 2023. [Online]. Available: https://blog.segger
.com/algorithms-for-division-part-4-using-newtons-method/

[66] I. McNeil, Matrices Trigonometry, 1st ed. Waltham Abbey, U.K.:
EdTech, 2020.

Tiago Troccoli received the B.Sc. degree in
computer science from the University of São
Paulo (USP), São Paulo, Brazil, in 2017, and
the M.Sc. degree in computer science from the
State University of Campinas (Unicamp), Camp-
inas, Brazil, in 2020.

After a short period as an embedded sys-
tem engineer, he is currently an early stage
researcher in Finland, pursuing a doctorate pro-
gram focused on developing a novel indoor
localization system based on radio direction find-

ing. This research project addresses the challenges of implementing
complex numerical methods in Internet-of-Things networks, particularly
in constrained embedded systems. It involves a collaborative effort
between the industry (WIREPAS Ltd., Tampere, Finland) and academia
(Tampere University, Tampere), supported by the EU H2020 MSCA
funding.

Juho Pirskanen received the M.Sc. degree in
engineering (telecommunications) from the Tam-
pere University of Technology, Tampere, Finland,
in 2000.

He has over 20 years of experience in research
and technology development on wireless radio
technologies, such as 3G, high-speed packet
access (HSPA), long term evolution (LTE), and
wireless local-area network (WLAN), and the
latest on different 5G technologies. In addition,
he has participated actively for several years

in different standardization forums, including 3GPP, IEEE802.11, and
ETSI. Since 2017, after joining WIREPAS Ltd., Tampere, his research
interests have been in wireless Internet-of-Things (IoT) systems and
wireless mesh networks. He currently acts as an Editor and a Rappor-
teur of ETSI TS 103.636-4 DECT-2020 New Radio (NR), Part-4, MAC
Layer Technical Specification.

Jorge Morte received the B.Sc. degree in
telecommunication engineering from the Univer-
sity of Zaragoza, Zaragoza, Spain, in 2017, and
the M.Sc. degree in telecommunication engi-
neering from the Technical University of Madrid
(UPM), Madrid, Spain, in 2019.

He has worked as a researcher in wireless
communications, with a specific focus on phys-
ical and MAC layers in wireless systems. He is
currently a Researcher of layer 2 and 3 protocols
with WIREPAS Ltd., Tampere, Finland. His main

research interests include wireless mesh networks and DECT NR+.

Aleksandr Ometov (Senior Member, IEEE)
received the M.Sc. degree in information
technology and the D.Sc. (Tech.) degree in
telecommunications from the Tampere Univer-
sity of Technology (TUT), Tampere, Finland, in
2016 and 2018, respectively, and the Specialist
degree in information security from the Saint
Petersburg State University of Aerospace Instru-
mentation (SUAI), Saint Petersburg, Russia,
in 2013.

He is a Senior Research Fellow with Tampere
University (TAU), Tampere. He is working on EU H2020 MSCA A-
WEAR and APROPOS projects and coordinating the CONVERGENCE
of Humans and Machines research field. His research interests include
wireless communications, information security, computing paradigms,
distributed systems, and wearable applications.

Elena Simona Lohan (Senior Member, IEEE)
the M.Sc. degree in electrical engineering
from the Politehnica University of Bucharest,
Bucharest, Romania, in 1997, the DEA degree
(French equivalent of master) in economet-
rics from École Polytechnique, Paris, France,
in 1998, and the Ph.D. degree in telecommunica-
tions from the Tampere University of Technology,
Tampere, Finland, in 2003.

She is a Professor with the Electrical Engi-
neering Unit, Tampere University, Tampere. Her

current research interests include global navigation satellite system
(GNSS), low earth orbit positioning, navigation and timing (LEO-PNT),
indoor location techniques, and privacy-aware positioning solutions.

Ville Kaseva received the D.Sc. (Tech.) degree
from the Tampere University of Technology
(TUT), Tampere, Finland, in 2013.

He boasts a wealth of experience spanning
both academic exploration and industrial appli-
cation after nearly two decades of expertise
in the field of low-power wireless mesh net-
works. He has been the CTO, a Co-Founder,
and a Partner of WIREPAS Ltd., Tampere, since
2010, in which his primary areas of engagement
involve the strategic development of the Wirepas

mesh technology roadmap and the landscape of system architecture.
His journey started with extensive research into mesh networks, a path
that he pursued for several years at TUT.

Jari Nurmi (Senior Member, IEEE) received the
D.Sc. (Tech) degree from the Tampere University
of Technology, Tampere, Finland, in 1994.

He has been a Professor with the Electri-
cal Engineering Unit, Tampere University [TAU;
formerly the Tampere University of Technol-
ogy (TUT)], Tampere, Finland, since 1999.
He is working on embedded computing sys-
tems, system-on-chip, approximate computing,
software-defined radio and networks, wireless
localization, and positioning receiver implemen-

tations. He held various research, education, and management
positions at TUT from 1987 to 1994 and was the Vice-President of the
SME VLSI Solution Oy, Tampere, from 1995 to 1998. He is the Director
of the National DELTA Doctoral Training Network of 200 Ph.D. students,
a coordinator of the APROPOS European Doctoral Training Network,
and the Head of the A-WEAR European Joint PhD Program at TAU.

Dr. Nurmi is a member of the Technical Committee on VLSI Systems
and Applications of IEEE Circuits and Systems Society (CASS) and an
associate editor of three international journals.

