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An Explainable and Lightweight Improved
1-D CNN Model for Vibration Signals

of Rotating Machinery
Pengfei Pang , Jian Tang , Jiqing Luo , Miao Chen, Hui Yuan, and Lei Jiang

Abstract—Previous 1-D convolutional neural network (1-D
CNN) models for vibration fault diagnosis have high compu-
tational complexity and poor interpretability, which cannot
meet the higher requirements of model storage, computa-
tional efficiency, and reliability for airborne and portable
devices. Considering these challenges, an explainable and
lightweight 1-D CNN (ELCNN) model based on square global
average pooling (S-GAP) and improved vibration signals is
proposed. The feature extraction and classification layers of
1-D CNN are optimized to minimize the model parameters and computational complexity and improve interpretability
while ensuring diagnostic accuracy. The model compresses the number of convolutional layers, removes unnecessary
bias, activation function, and pooling layer, and replaces the fully connected layer (FCL) with S-GAP. Improved 1-D
CNN models of different methods are evaluated and analyzed on public datasets of rolling bearings. Results show that
the ELCNN improved for vibration signals is more lightweight, antinoise, and explainable than other models, and the
diagnostic accuracy is further improved.

Index Terms— Convolutional neural networks (CNNs), explainable, fault diagnosis, lightweight, vibrational signal.

I. INTRODUCTION

W ITH the development of intelligent equipment, it is of
great significance to study how to intelligently perceive

the operating state, detect faults as early as possible, and
avoid losses [1], [2]. Previous fault diagnosis methods can
be divided into two categories: one is based on models (such
as stochastic resonance systems [3] and harmonic detection
models [4]) and the other is based on vibration signals to
extract fault features (such as short-time Fourier transform
(STFT) [5], wavelet transform (WT) [6], and empirical mode
decomposition (EMD) [7]). First, these methods rely on pro-
fessional knowledge, such as mathematics, physical models,
and fault mechanisms, and require a high level of diagnostic
experts. Second, the above methods include signal feature
learning, state feature selection and transformation, fault pat-
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tern recognition, and other links, and many processes require
human participation and do not have incremental and adaptive
learning capabilities [8].

Artificial intelligence (AI)-based intelligent fault diagnosis
methods get rid of the dependence on experts and experience,
and realize intelligent fault diagnosis by learning knowledge
from historical data, such as clustering algorithm (CA) [9]
and principal component analysis (PCA) [10] based on unsu-
pervised learning, decision tree (DT) [11], and support vector
machine (SVM) [12] based on supervised learning. However,
these methods are only applicable to small and medium-sized
datasets and have limited ability to diagnose large-scale and
complex data.

Since 2015, fault diagnosis algorithms based on deep
learning (DL) have become a hot spot [13]. Among these
algorithms, the 1-D convolutional neural network (CNN) is
particularly suitable for the overall optimization of each link
of fault diagnosis and the improvement of the intelligent level
of diagnosis due to its powerful data abstraction, end-to-end
structure, and adaptive learning feature ability based on 1-D
vibrational signals [13], [14], [15], [16], [17]. To make the
1-D CNN model better fit the characteristics of intelligent
fault diagnosis based on vibration signals, the improvement
of the model and algorithm is mainly carried out in two
directions. One is to combine traditional diagnostic mod-
els (such as multidomain feature fault diagnosis [18] and
WaveCluster clustering analysis [19]) and shallow learning
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models (such as logistic regression [20] and SVM [21]) with
1-D CNN for optimization. The second is to introduce
advanced network architectures (such as deep residual learn-
ing (DRL) [22], multibranch multiscale convolutional neural
networks (MBMSCNNs) [23], and multiattention mechanism
(MAM) [24]) from computer images to improve the feature
extraction ability of 1-D CNN. Although the above methods
improve the performance of the model to a certain extent,
there are still deficiencies, such as high computational com-
plexity and poor interpretability, which cannot meet the higher
requirements of airborne and portable devices. Lightweight
and interpretability have always been difficult problems in
intelligent fault diagnosis, which is also a direction worthy
of studies in the future 1-D CNN.

Aiming to achieve the lightweight of the model, many
studies have focused on using depthwise separable convolution
(DSC) [2] and adaptive convolution (AC) [25] to reduce
the network size, but there is no specific analysis of the
network structure for vibration signals to make the extracted
features physically interpretable. On interpretability issues,
many works combine attention mechanisms with multiscale
convolution (MSC) and DRL [26], [27], [28] to remove redun-
dant information. These methods are only based on statistical
probability to guide 1-D CNN learning, without considering
the frequency characteristics of complex faults.

Some scholars have made effective explorations in improv-
ing the 1-D CNN structure and realizing a lightweight
interpretable model. For example, Li et al. [29] selected
sign(x) as the activation function to solve the problem of
gradient disappearance and removed the pooling layer to avoid
feature loss. Kim et al. [30] used global power pooling to make
the model focus on more effective time–frequency features.
These methods only proposed improvement measures for the
model and neither analyzed its internal diagnostic mechanism
nor did they evaluated its performance from the aspects of
lightweight and interpretability.

To meet the above challenges, a new explainable and
lightweight 1-D CNN (ELCNN) diagnostic model for vibra-
tion signals is proposed. The main work of this article is given
as follows.

1) Traditional time–frequency analysis methods, such as
STFT [31] and WT [32], are essentially linear convo-
lution processes. There is no nonlinear mapping such
as bias and activation, and there is no use of a pooling
layer to remove high-frequency features. Therefore, this
article is not limited to the traditional neuron model.
While removing the bias, activation function, and pool-
ing layer, the network scale is compressed as much as
possible, and a single-layer CNN ELCNN is constructed.

2) Considering that low signal-to-noise ratio (SNR) signals
in strong noise environments may affect fault diagnosis
performance, in order to extract fault features more
effectively, a method based on square global average
pooling (S-GAP) enhanced signal time-domain enve-
lope is proposed. This method extracts the frequency
modulation (FM) and amplitude modulation (AM) char-
acteristics of complex faults through multiple square
operations.

3) In order to meet the higher requirements of airborne
and portable devices for the storage, computational effi-
ciency, and reliability of diagnostic models, the perfor-
mance of various models is comprehensively evaluated
on the public bearing datasets to verify the effectiveness
of the improved strategies and the lightweight inter-
pretability advantages of the ELCNN model.

The structure of this article is given as follows. Section II
introduces the improved 1-D CNN network framework for
vibration signals. Section III tests the effectiveness and superi-
ority of the various improved strategies proposed in this article
through the ablation experiments and comparative experiments
of the ELCNN feature extraction layer and the classification
layer. Section IV verifies the advanced nature of the proposed
model in terms of lightweight and interpretability through
comparative experiments of different improved 1-D CNN
models. Finally, Section V summarizes the main work and
innovation of this article.

II. IMPROVED 1-D CNN FOR VIBRATION SIGNALS

As shown in Fig. 1, the 1-D CNN is an end-to-end network,
including an input layer, a convolutional layer, a pooling
layer, a fully connected layer (FCL), and a SoftMax layer.
The convolution layer and the pooling layer correspond to
the feature extraction layer, while the FCL and the SoftMax
layer are used to complete the pattern classification func-
tion (classification layer). Similar to Hilbert–Huang transform
(HHT) [32], which uses EMD to adaptively select the basis
function and extracts the time–frequency characteristics of
the signal through the Hilbert transform [33], 1-D CNN first
adaptively learns the weights, biases, and other parameters
of the model through gradient descent and backpropagation.
Then, the signal features are extracted layer by layer from
low to high through the feature extraction layer, and finally,
the feature dimension reduction and classification are realized
through the classification layer. To ensure the effect of fault
diagnosis and realize the lightweight and interpretability of
a 1-D CNN, we improve the model feature extraction and
classification layers for vibration signals.

A. Improvement of Feature Extraction Layer
Traditional vibration signal feature extraction methods, such

as STFT, WT, and HHT, are essentially convolution operations
based on a certain convolution kernel. A 1-D CNN similarly
relies on the convolutional layer and the pooling layer to
extract (learn, select, and transform) the local features of
the signals [34]. Hence, it is very important to optimize the
convolutional layer and the pooling layer [35].

As shown in Fig. 2, the essence of convolution is a dot
product in the filter weights ω and the local space of input data
x ; then, the bias b is added; and finally, the activation operation
δ is performed. Considering the convolution operation of
traditional feature extraction methods, there is no nonlinear
mapping, such as bias and activation, and there is no feature
extraction by pooling. Based on the above characteristics, this
section analyzes the hyperparameters of the feature extraction
layer for the vibration signal and removes the unnecessary
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Fig. 1. Classic 1-D CNN.

and nonlinear feature extraction links while retaining the
time–frequency characteristics of the vibration signal as much
as possible.

1) Removal of Bias: The output of each neuron in the
1-D CNN convolutional layer is y = δ(ωx + b) [36], where
the bias −b can be regarded as the threshold to control each
neuron and δ is the activation function. The activation function
of the neuron is defined as sign(x), and the output of each
neuron is defined as

sign (ωx + b) =

{
+1, ωx + b ≥ 0
−1, ωx + b < 0.

(1)

When W X < −b and output = −1, the neuron is inhibited,
and when W X ≥ −b and output = 1, it is activated. Therefore,
the essence of convolution is to extract some local information
and discard the information outside the threshold during the
extraction process. The bias is used to adjust the proportion
of discarded local information. Without this parameter, there
is a lack of flexibility to adjust the information discarding
rate. For a vibration signal of rotating machinery, especially
for early faults, the fault characteristics are often very weak,
submerged in normal vibration signals and even noise, and
cannot be ignored. Therefore, in the design of a 1-D CNN for
vibration signals, the bias should be removed to prevent the
loss of weak fault features due to neuron suppression.

2) Removal of Activation Function: Activation functions
commonly used in image recognition include Rectified Linear
Unit (ReLU)(x), Sigmoid(x), Tanh(x), and Softsign(x) [37].
The outputs of ReLU(x) and Sigmoid(x) functions are only
positive [see Fig. 3(b)]. The vibration signal fluctuates up
and down at the equilibrium position, with a positive or
negative amplitude. The positive operation is easy to discard
the negative component of the signal, which weakens the
time–frequency characteristics and introduces the nonfault
characteristics [as shown in the nonfault frequency in the
green box near 1000 Hz in Fig. 4(b)]. The Tanh(x) function is
easily oversaturated in the range (–1,1), resulting in gradient
explosion or overfitting. The Softsign(x) function can better
avoid the above problems, but, because the activation function
is a nonlinear function [38], the features learned by the
convolutional layer will have a certain deviation, and nonfault

TABLE I
STATISTICAL CHARACTERISTICS OF THE SIGNALS LEARNED FROM THE

CONVOLUTIONAL LAYERS USING DIFFERENT ACTIVATION FUNCTIONS.
THE KURTOSIS IS USED TO REFLECT THE SHARPNESS OF THE

VIBRATION SIGNAL WAVEFORM, AND THE PULSE FACTOR IS
USED TO EVALUATE THE IMPACT AND TRANSIENT

CHARACTERISTICS OF THE VIBRATION SIGNAL

features are introduced [as shown in the green box in Fig. 4(c),
especially the nonfault component near 1000 Hz].

Compared with Raw (unprocessed original signal), the
time-domain amplitude features learned by ReLU(x) and
Softsign(x) have errors (Fig. 3(b) introduces weak nonfault
components, and Fig. 3(c) expands the signal amplitude gap)
and generate nonfault components in the frequency domain
[see Fig. 4(b) and (c)]. The impact pulse signal can be detected
by kurtosis and pulse factor. As shown in Table I, the positive
operation of ReLU(x) introduces a sharp nonfault component
[see Fig. 4(b)] to strengthen the impact excitation, while
the nonlinear operation of Softsign(x) learns more stationary
nonfault components [see Fig. 4(c)], and the signal mean is
pulled up, which weakens the impact excitation. Compared
with ReLU(x) and Softsign(x), which introduce nonfault
components, the convolutional layer without an activation
function can better learn the low-frequency feature of Raw
and strengthen the impact excitation [as shown in Fig. 4(d)],
which is more interpretable. The reason for using the activa-
tion function is to prevent gradient explosion and overfitting.
We focus on exploring the lightweight and interpretability of
1-D CNN. First, the network structure is simple, and there is
no gradient explosion. Second, the overfitting problem can be
solved by the S-GAP of the classification layer, so we remove
the activation function.

3) Removal of Pooling Layer: The common pooling in
1-D CNN includes maximum pooling, average pooling, and
GAP [39], which are mainly used to reduce the feature
dimension of the input signal and prevent overfitting [40]. The
essence of the pooling layer is to remove the high-frequency
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Fig. 2. Operation of the 1-D CNN convolutional layer.

Fig. 3. Influence of activation function on time-domain characteristics of signal: (a) original signal, (b) ReLU, (c) Softsign, and (d) no activation.
(a) Time-domain waveform of the unprocessed original signal. (b)–(d) Time-domain waveform of a single cycle.

Fig. 4. Influence of activation function on frequency-domain characteristics of signal: (a) original signal, (b) ReLU, (c) Softsign, and (d) no activation.
(a) Frequency-domain diagram of the original signal. The green box of (b)–(d) is the frequency band to be focused on.

characteristics of the signal and retain the low-frequency
characteristics of the signal, and moderate pooling can
also suppress the high-frequency noise. However, the tra-
ditional pooling operation often suppresses the broadband
low-amplitude fault features (average pooling) or discards
them (maximum pooling). As shown in Fig. 5(b) and (c),
average pooling takes the average value of the signal and
weakens the fault impact excitation, while maximum pooling
ignores the low-amplitude information because of the max-
imum value [30]. Fault characteristics are often hidden in
broadband and low-amplitude impact excitation. To improve
the interpretability of the extracted features, the pooling layer
is no longer used. In Fig. 6(b) and (c), the signals learned by
average pooling and maximum pooling lose the fault frequency
characteristics (greater than 100 Hz). In particular, the average
pooling also introduces pseudofrequency components. It is

obvious that 1-D CNN without a pooling layer can perfectly
retain the time–frequency characteristics of the signal, so the
pooling layer is removed.

B. Improvement of Classification Layer
As shown on the left-hand side of Fig. 7, the FCL can

be understood as a convolution of the previous features to
obtain the output of a neuron. Through the nonlinear map-
ping of the activation function, the FCL can simulate any
nonlinear transformation to achieve dimensionality reduction
and classification. However, it has obvious disadvantages, such
as parameter redundancy and the inability to maintain spatial
structure.

To overcome shortcomings of FCL such as a large number
of parameters and overfitting, the reference [41] and network
models, such as ResNet and GoogLeNet, use GAP instead
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Fig. 5. Influence of different pooling layers on time-domain characteristics of signal: (a) original signal, (b) average pooling, (c) maximum pooling,
and (d) no pooling.

Fig. 6. Influence of different pooling layers on frequency-domain characteristics of signal: (a) original signal, (b) average pooling, (c) maximum
pooling, and (d) no pooling. (a) Frequency-domain feature map of the original signal. (b)–(d) Key frequency band in the green box of (a). The green
parts of (b) and (c) are the spectral features affected by pooling.

Fig. 7. Classification layer of 1-D CNN. (Left) FCL. (Right) GAP.

of FCL to fuse learned deep features (right-hand side of
Fig. 7) and achieve a better prediction performance [30].
However, the above two methods are unsuitable for rotating
machinery fault diagnosis because Flatten in FC concatenates
multiple feature maps and then classifies them, losing the
ability of category feature localization; while GAP has the
ability of feature location [42], it offsets positive and negative
signals and weakens features to reduce the classification effect.
To overcome the above shortcomings and improve the gener-
alization performance of the model, the signal features after
convolution are transformed by square and positive operation,
respectively, and then, the results are sent to the GAP layer to
obtain the output features of the improved model after signal
transformation (see Fig. 8).

From the analysis of Fig. 8, it can be seen that the
square and positive operations of the signal learned by the

convolutional layer overcome the problem of positive and
negative offset caused by the GAP layer. However, from the
perspective of the learning effect, there are obvious differences
between the two. Among them, the ReLU operation removes
the negative information and weakens the model’s ability to
learn fault features; the square operation expands the peak-
to-valley ratio, which not only strengthens the time-domain
envelope of the signal to highlight the characteristics of local
extreme points but also suppresses overfitting, which is more
in line with the characteristics of the vibration signal.

C. Improved ELCNN Architecture
Combined with the various improvement strategies proposed

above, we construct an improved ELCNN model based on
S-GAP. At the same time, to more effectively realize the
lightweight and feature interpretability of the model, the
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Fig. 8. Time-domain waveform obtained by square or positive operation of the features learned by the convolutional layer: (a) square and (b) ReLU.

Fig. 9. Improved ELCNN structure.

convolution layers of the model are further compressed, and
the number of square operations of the S-GAP layer is
increased. The network parameters and structure of ELCNN
are shown in Table II and Fig. 9.

III. EFFECTIVENESS AND SUPERIORITY VERIFICATION
OF THE IMPROVED STRATEGIES

To verify the effectiveness and superiority of the improve-
ment strategies, this section evaluates the performance of
ELCNN based on public datasets.

A. Sources and Classifications of Samples
The signal samples are from the single-condition-bearing

dataset of Case Western Reserve University (CWRU) and the
multicondition-bearing dataset of Xi’an Jiaotong University
(XJTU).

1) CWRU Single-Condition Bearing Dataset: The experi-
mental platform is a motor drive system, including a motor,
a torque sensor (decoder), and a power tester [43]. The driving
end bearing model is SKF6205, and the bearing assembly
consists of inner race (IR), outer race (OR), and balls (B).
Bearing damage is single-point damage by EDM. The bearing
conditions are the motor load of 0 hp, and the rotating
frequency is 29.95 Hz. The experimental data collect the
vibration acceleration signals of the fault bearing through the
acceleration sensor, and the sampling frequency is 12 kHz.
The experimental samples include three types of faults: IR,
OR, and B. The damage degrees of IR, OR, and B faults are
007, 014, and 021, respectively, and the damage diameter cor-
responds to 0.1778, 0.3556, and 0.5334 mm, respectively [44].
To improve the availability of data and avoid contingency, the

original experimental samples are divided at equal intervals.
The 1500 samples are sampled for each type. The training,
validation, and test sets are in a 7:1:2 ratio.

2) XJTU Multicondition Bearing Dataset: The experimental
platform is Spectra Quest, and the bearing model is NSK6203.
The bearing damage is a single-point damage processed by
a grinding pen. The load of the bearing motor is 0 hp, and
there are three kinds of rotating frequencies: 19.05, 29.05, and
39.05 Hz. The experimental data are from the piezoelectric
acceleration sensor, and the sampling frequency is 25.6 kHz.
The signal samples include normal, IR, and OR faults, and
the damage of each fault has three levels: mild, moderate, and
severe. The preprocessing of signal samples is consistent with
the CWRU.

B. Settings of Model Parameters
The model parameters mainly considered include kernel

size, filter number, and signal sampling length.
1) Optimization of Kernel Size and Filter Number: van den

Hoogen et al. [45] used wide convolution kernels to improve
the performance of 1-D CNN. It can be seen that it is necessary
to study the hyperparameters of convolution kernels, such as
the kernel size and number of filters. To select the appropriate
model parameters, we analyze the ELCNN diagnostic perfor-
mance of different sizes of kernels and different numbers of
filters in Fig. 10 and the spectral characteristics of the signals
extracted by different sizes of kernels in Fig. 11.

As shown in Fig. 10, when the size of the convolution kernel
is greater than 8 and the number of filters is greater than 5,
it can basically achieve satisfactory classification results, but
it is not the case that the larger the number of filters and the
larger the kernel size, the better.

An excessive number of filters will increase the compu-
tational burden and is not conducive to classification; the
larger kernel cannot effectively extract signal features by using
translation invariance. As shown in Fig. 11 and Table III,
when the kernel size is equal to 16, the features extracted by
the convolution layer have a good correlation with the original
signal and can learn the fault features more effectively. On the
whole, when the kernel size is 16 and the filter number is 10,
the model performance and the feature learning are the best.

2) Optimization of Signal Sampling Length: There are rich
fault characteristics in the vibration signal, and a reasonable
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TABLE II
NETWORK PARAMETER CONFIGURATION OF THE IMPROVED 1-D CNN

Fig. 10. Classification accuracy of ELCNN under different sizes of convolutional kernels and numbers of filters, where k is greater than 8 and f is
greater than 5; the model diagnosis effect is better. (k denotes the size of the convolutional kernel, and f denotes the number of filters).

Fig. 11. IR fault spectrums of XJTU extracted by kernels of different sizes (Raw is the original input signal that is not processed): (a) kernel = 8,
(b) kernel = 16, (c) kernel = 32, and (d) kernel = 64. When kernel = 8 or kernel = 16, the signal features extracted by the convolution layer have a
good correlation with the Raw signal.

sampling length is the basic condition to ensure that the sample
truly reflects the original signal. The sampling length refers to
the time record length required to be able to analyze the lowest
frequency in the signal. The lowest fault frequency in rolling
bearings is generally the cage fault frequency (11.93 Hz in
CWRU and 17.6 Hz in XJTU). The sample length occupied
by CWRU cage fault is 1006 (12 000/11.93 ≈ 1006 and
1006∗4 = 4024, where 12 kHz is the sampling frequency
of CWRU), and XJTU is 1455 (25 600/17.6 ≈ 1455 and
1455∗2 = 2910, where 25.6 kHz is the sampling frequency of

XJTU). To ensure the integrity of the data cycle and avoid the
marginal effect, we use 4096 as the experimental data length
to ensure that the signal sample has more than two cage fault
cycles.

C. Verification of the Improved Strategies’ Effectiveness
Different combinations of improvement strategies have

different effectiveness. The following will analyze the effec-
tiveness of 1-D CNN improvement strategies from both
internal and external perspectives.
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TABLE III
CORRELATION COEFFICIENT BETWEEN RAW SIGNAL AND SIGNAL FEATURES EXTRACTED BY DIFFERENT DATASETS AND DIFFERENT SIZES OF

KERNELS. COMPARED WITH OTHER SIZE CONVOLUTION LAYERS, THE SIGNAL FEATURES EXTRACTED BY THE KERNEL = 16 CONVOLUTION

LAYER MARKED IN RED HAVE A BETTER CORRELATION WITH RAW

Fig. 12. Classification accuracy and loss of different improvement strategies in the feature extraction layer. (a) Accuracy. (b) Loss. A, B, and C
represent different strategies used by the model, where A represents bias, B represents the Softsign activation function, C represents average
pooling, A represents removing bias, B represents the removing activation function, and C represents the removing pooling layer.

1) Perspective of Feature Extraction Mechanism: The
S-GAP classification layer of the 1-D CNN model is fixed,
and then, the effectiveness of different improvement strategies
of bias, activation, and pooling in the feature extraction layer
is studied.

As shown in Fig. 12 and Table IV (A, B, and C), their
different combinations can accelerate the convergence speed
of the model and improve the classification accuracy. The
combination with A can also reduce the model parameters.
The specific analysis is given as follows.

Firstly, for single improvement strategies A, B and C, C
is better than B, B is better than A, and A is better than
ABC in improving the performance of 1-D CNN. It shows
that the removals of pooling, bias, and activation functions
make the features extracted by the model more effective for
classification, and the removal of pooling is more effective.

Second, for the combination improvement strategy, the
proposed model combining the three strategies has the best
performance, that is, ABC has the fastest convergence speed
and the shortest operation time while ensuring diagnostic
accuracy.

The reasons for the above results are given as follows.
On the one hand, the downsampling operation of the pooling
layer weakens the fault features; especially, the average pool-
ing discards the signal features with weaker amplitude, and
often, the weak features are very important for fault pattern
recognition. On the other hand, when using bias and activation

functions for nonlinear learning, it is possible to discard weak
fault features (such as bias) and learn unnecessary nonfault
features (such as activation functions).

2) Perspective of Influence of Classification Results: This
section mainly studies the influence of different combinations
of improvement strategies of the feature extraction layer
and classification layer on the performance of 1-D CNN.
By comparing and analyzing the combined application effects
of the improved strategies of the feature extraction layer and
classification layer in Fig. 13 and Table V, the following three
conclusions can be obtained.

First, the GAP classification layer is retained, and only
the 1-D CNN feature extraction layer is improved; that is,
the bias, activation function, and pooling layer are removed.
The improved model has fewer calculation parameters and fast
operation speed, but the classification accuracy is low. This is
because, although the bias, activation function, and pooling
layer may lose some fault features, they are obviously easier
to extract nonlinear features and avoid overfitting, thereby
improving the generalization performance of the model.

Second, the bias, activation function, and pooling layer
of the feature extraction layer are retained, and only the
1-D CNN classification layer is improved, that is, the signal
features extracted by the convolutional layer are squared. The
convergence time of the improved model is prolonged, but
the diagnostic effect is significantly improved. This is because
the S-GAP that can strengthen the time-domain envelope of
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TABLE IV
INFLUENCE OF DIFFERENT IMPROVEMENT STRATEGIES OF FEATURE EXTRACTION LAYER ON THE PERFORMANCE OF 1-D CNN, AMONG WHICH

ABC LABELED RED HAS THE BEST PERFORMANCE. A, B, AND C REPRESENT DIFFERENT STRATEGIES USED BY THE MODEL, WHERE A
REPRESENTS BIAS, B REPRESENTS SOFTSIGN ACTIVATION FUNCTION, C REPRESENTS AVERAGE POOLING, A REPRESENTS

REMOVING BIAS, B REPRESENTS REMOVING ACTIVATION FUNCTION, AND C REPRESENTS REMOVING POOLING LAYER

TABLE V
INFLUENCE OF DIFFERENT COMBINATIONS OF FEATURE EXTRACTION LAYER AND CLASSIFICATION LAYER ON THE PERFORMANCE OF 1-D CNN.

AMONG THEM, THE KG MARKED IN BLUE HAS THE LOWEST CLASSIFICATION ACCURACY, AND THE KG MARKED IN RED HAS THE BEST

PERFORMANCE. K REPRESENTS THE RETENTION OF BIAS, ACTIVATION FUNCTION, AND POOLING LAYER; K REPRESENTS THE

REMOVAL OF BIAS, ACTIVATION FUNCTION, AND POOLING LAYER; G REPRESENTS THE MODEL USING GAP
CLASSIFICATION LAYER; AND G REPRESENTS THE MODEL USING S-GAP CLASSIFICATION LAYER

Fig. 13. Classification accuracy and loss of different combinations of feature extraction layer and classification layer. (a) Accuracy. (b) Loss.
K represents the retention of bias, activation function, and pooling layer; K represents the removal of bias, activation function, and pooling layer; G
represents the model using the GAP classification layer; and G represents the model using the S-GAP classification layer.

the signal is more conducive to extracting the instantaneous
frequency characteristics, so the diagnosis effect is better.

Finally, the feature extraction layer and the classification
layer of 1-D CNN are improved, which not only reduces
the model parameters and improves the operation speed and
classification accuracy but also converges faster and more
stable. It can be seen that the improvement based on the

S-GAP classification layer can make up for the overfitting
problem caused by the optimization of the feature extraction
layer, while the optimization of the feature extraction layer
retains the signal features to the greatest extent and improves
the lightweight performance of the ELCNN.

On the whole, improving the 1-D CNN feature extraction
layer or the S-GAP classification layer alone can effectively
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Fig. 14. Classification accuracy and loss of different strategies in the feature extraction layer. (a) Accuracy. (b) Loss.

TABLE VI
INFLUENCE OF DIFFERENT STRATEGIES OF FEATURE EXTRACTION LAYER ON THE PERFORMANCE OF 1-D CNN (MAXIMUM POOLING REFERRED

TO AS MP AND AVERAGE POOLING REFERRED TO AS AP). AMONG THEM, THE AP MARKED IN BLUE HAS THE LOWEST CLASSIFICATION

ACCURACY, AND THE PROPOSED MODEL MARKED IN RED HAS THE BEST OVERALL PERFORMANCE

improve the fault diagnosis performance, but the model perfor-
mance is optimal after improving the feature extraction layer
and the classification layer at the same time.

D. Verification of the Improved Strategies’ Superiority
This section distinguishes the feature extraction layer and

the classification layer, and compares the proposed improve-
ment strategy with other similar strategies to verify the
superiority of the proposed improvement strategy.

1) Feature Extraction Layer: Five different feature extrac-
tion layer strategies are introduced, and the corresponding
parameters in the proposed model are replaced by the control
variable method to analyze their influence on the performance
of ELCNN. The classification accuracy, loss, and overall
performance of the model after applying various strategies
are shown in Fig. 14 and Table VI. First, according to the
number of parameters, the bias uses more parameters. Sec-
ond, from the perspective of convergence time, the proposed
model consumes the shortest time of 9.49 s. Finally, from
the perspective of classification accuracy, Softsign, bias, and
proposed strategies have better diagnostic results, while the
other strategies are relatively worse, especially average pool-
ing has the lowest classification accuracy. This is because
the ReLU of the convolutional layer will lose the negative
component of the signal, and the removal of bias and activation
can significantly improve the computational efficiency of the
model. The maximum pooling operation of the pooling layer
ignores the low amplitude, and the average pooling weakens

the fault impact excitation, resulting in low classification
accuracy of the model.

On the whole, the proposed improved ELCNN neither uses
bias and activation functions for nonlinear learning nor does
it use pooling to reduce the feature dimension and prevent
overfitting. However, it has fewer fault diagnosis steps, fewer
parameters, shorter time, and better model performance.

2) Classification Layer: Six different classification layer
improvement strategies, including Flatten, Flatten+ReLU,
GAP, ReLU+GAP, S-GAP(3) based on three-layer convo-
lution, and S-GAP(1) based on one-layer convolution, are
selected to discuss the influence of classification layers on the
performance of 1-D CNN.

As shown in Fig. 15 and Table VII, the GAP classifica-
tion layer can effectively reduce the number of parameters.
In particular, S-GAP(1) has the least number of convolution
layers, the least parameters, the least convergence time, the
least classification loss, and an accuracy rate of 100%. There
are three main reasons why S-GAP(1) is superior to other
methods.

First, the amplitude of the signal may be positive or neg-
ative. The Flatten and GAP operations retain the amplitude
symbol, so the offset of the positive and negative values
will reduce the classification probability of the SoftMax
calculation.

Second, the positive operation in Flatten + ReLU and
ReLU+GAP can avoid the problem of positive and negative
offset, but it will remove the negative value information of the
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TABLE VII
INFLUENCE OF DIFFERENT CLASSIFICATION LAYERS ON THE PERFORMANCE OF 1-D CNN. AMONG THEM, THE CLASSIFICATION ACCURACY

OF THE MODEL MARKED IN BLUE USING THE FLATTEN OR GAP STRATEGY IS LOW, AND THE S-GAP(1)
LABELED AS RED HAS THE BEST OVERALL PERFORMANCE

Fig. 15. 1-D CNN classification accuracy and loss of different classification layers. (a) Accuracy. (b) Loss.

signal. However, the time-domain information of the signal
is squared by S-GAP, which can perfectly solve the above
problems.

Finally, although the diagnostic effect of S-GAP(3) is good,
some fault features will be lost, and the operation efficiency
will be reduced because of multilayer convolution for non-
linear learning. On the whole, the overall performance of the
model using S-GAP(1) is better.

IV. EVALUATION OF DIAGNOSTIC PERFORMANCE
OF ELCNN

To comprehensively evaluate the advancement of the
ELCNN model, eight improved representative 1-D CNNs were
selected, and comparative experiments were conducted based
on CWRU and XJTU from three aspects: overall model per-
formance, antinoise performance, and feature interpretability.

A. Different Improved 1-D CNN Models
As shown in Fig. 16, MBMSCNN is a multibranch and

multiscale 1-D CNN. The signal features are extracted by
convolution kernels of different sizes and further fused
and transformed by concatenation and pooling operations.
The general CNN (GCNN) uses GAP to replace the FCL
of 1-D CNN (see Fig. 17).

It is a good idea to improve the GCNN network structure
and optimize the parameters for vibration signals. For example,
Li et al. [29] selected a Softsign activation function and

removed the pooling layer to improve a 1-D CNN (explainable
CNN-1 and ECNN-1). Kim et al. [30] replaced FC with global
power pooling (the output signal of the convolutional layer is
first calculated by square, then GAP, and S-GAP) to improve
the classification layer (explainable CNN-2 and ECNN-2).

As shown in Fig. 18, we propose an improved 1-D CNN
(ELCNN) based on S-GAP. The main work is given as follows.

1) We remove unnecessary biases, activation functions, and
pooling layers.

2) We construct only one layer of convolution and select the
convolution kernel size and the number of filters that make the
model perform well, and the learning features are better.

3) We use S-GAP to replace the FCL and perform one to
three square operations on the output of the convolutional
layer, where ELCNN-3 represents three-layer convolution,
ELCNN-1x denotes one-layer convolution, and x denotes the
square operation x times.

Table VIII shows the network structure parameters of the
eight models. There are three kinds of convolution kernel
sizes of MBMSCNN, which are 1 × 1, 8 × 1, and 16 × 1,
respectively. The convolution kernel size of the remaining 1-D
CNNs is 16 × 1, and the number of filters is 10. In addition,
GCNN uses the dropout technique, 1S-GAP in ELCNN refers
to the square operation of the features learned in the last
convolutional layer, 2S-GAP refers to two square operations
(fourth power), and 3S-GAP refers to three square operations
(eighth power).
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Fig. 16. Architecture of MBMSCNN.

Fig. 17. Architecture of GCNN.

TABLE VIII
NETWORK STRUCTURE PARAMETERS OF EIGHT TYPES OF 1-D CNNS

Fig. 18. Architecture of ELCNN.

B. Model Performance Evaluation Based on CWRU
Based on the CWRU, this section compares and ana-

lyzes eight types of improved 1-D CNN from three aspects:
model overall performance, antinoise performance, and feature
interpretability.

1) Overall Performance: As shown in Fig. 19(a) and
Table IX, comparing the convergence of the classification
accuracy of each 1-D CNN, we have the following findings.

First, the classification accuracy of ECNN-1 without pooling
is higher than that of GCNN with pooling.

Second, compared with the ECNN-1 using GAP, the
ECNN-2 using S-GAP has a shorter and more stable conver-
gence time. This is because the square operation transforms
the original signal into a similar power spectrum, which can
better highlight the peak frequencies.

Third, the improved ELCNN-3, ELCNN-11, and
ELCNN-12 classification accuracy curves are smoother
and less volatile than other models. It shows the advancement
of the improved model; especially, ELCNN-12 has fewer
calculation parameters, shorter running time, and smaller
weight files.

Finally, the classification accuracy of ELCNN-13 is reduced,
and the operation time is prolonged, indicating that the
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TABLE IX
PERFORMANCE COMPARISON OF EIGHT TYPES OF 1-D CNNS ON THE CWRU BEARING DATASET, WHERE EPOCHS AND TIMES ARE THE

NUMBER OF STEPS AND TIME REQUIRED FOR THE MODEL TO CONVERGE, RESPECTIVELY. AMONG THEM, ELCNN-12
MARKED IN RED HAS THE BEST PERFORMANCE

Fig. 19. Classification accuracy and loss of eight kinds of 1-D CNNs on the CWRU dataset. (a) Accuracy. (b) Loss.

square operation is not proportional to the performance of the
model.

In summary, compared with the traditional 1-D CNN using
MSC, pooling layer, bias, and activation function (Softsign and
ReLU), the proposed ELCNN framework, especially ELCNN-
12, has a better performance and lighter weight [46].

2) Antinoise Performance: As shown in Table X, the noised
signals are simulated with additive Gaussian white noises that
are proportional to the clean signals [8], and the fault signals
with SNR of 15, 10, 5, 0, and −5 dB are selected to evaluate
the noise immunity of the models.

Through the comparative analysis of the classification accu-
racy, three conclusions are drawn.

First, compared with other models, the antinoise perfor-
mance of GCNN without MSC and only pooling decreases
most obviously, which indicates that pooling loses signal
features while suppressing noises.

Second, the antinoise performance of ECNN-1, ECNN-2,
and ECNN-3 in the orange part of Table X is special. When
the SNR is 15 dB, the antinoise performance of ECNN-1 is
less than that of ECNN-2 and less than that of ELCNN-3.
When the SNR is less than 15 dB, the antinoise performance
of ECNN-1 is greater than that of ECNN-2 and greater than

that of ELCNN-3. It shows that, when the signal is interfered
with by strong noise, compared with ECNN-1, ECNN-2 and
ELCNN-3 with multilayer convolution using S-GAP enhanced
features have no obvious advantages; especially, the classifica-
tion accuracy of ELCNN-3, which removes bias and activation
functions, decreases significantly.

Finally, the proposed ELCNN using single-layer convo-
lution for the feature extraction layer and removing bias,
activation, and pooling and using S-GAP for the classification
layer to enhance the time-domain envelope of the signal is
more antinoise. In particular, ELCNN-12 still has a classifi-
cation accuracy of 78.76% when the SNR is 5 dB, and the
model deviation is smaller (±0.1).

On the whole, CWRU is easily affected by noise. The
improved multilayer convolution model is not as good as the
traditional MSC due to the extraction of nonlinear features
and the introduction of many noises. Single-layer convolution
can overcome the above problems and improve the antinoise
performance of the model.

3) Feature Interpretability: This section mainly analyzes the
interpretability of the features extracted by various improved
1-D CNNs to IR, OR, and B faults from two aspects of
statistical characteristics and frequency characteristics.



PANG et al.: EXPLAINABLE AND LIGHTWEIGHT IMPROVED 1-D CNN MODEL 6989

TABLE X
CLASSIFICATION ACCURACY OF EIGHT KINDS OF 1-D CNNS FOR CWRU BEARING FAULTS WITH DIFFERENT SNRS. AMONG THEM,

ELCNN-12 LABELED AS THE RED PART HAS THE BEST PERFORMANCE, AND THE ORANGE PARTS ARE

1-D CNNS THAT NEED TO BE SPECIFICALLY ANALYZED

TABLE XI
STATISTICAL CHARACTERISTICS OF IR FAULTS IN THE CRWU DATASET LEARNED BY THE LAST LAYER CONVOLUTION OF EIGHT TYPES OF 1-D
CNNS. THE KURTOSIS IS USED TO REFLECT THE SHARPNESS OF THE VIBRATION SIGNAL WAVEFORM, AND THE PULSE FACTOR IS USED TO

EVALUATE THE IMPACT AND TRANSIENT CHARACTERISTICS OF THE VIBRATION SIGNAL. THE BLUE PART INDICATES THAT THE SHOCK

EXCITATION OF THE MODEL IS WEAK, AND THE RED PART INDICATES THAT THE SHOCK EXCITATION OF THE MODEL IS THE STRONGEST

a) IR: Bearing defects often cause impact excitation.
To measure the difference of impact excitation learned by
different models, kurtosis and pulse factors are introduced to
quantitatively analyze the fault of IR.

As shown in Table XI, MBMSCNN, GCNN, and ECNN-1
weaken the impulse excitation, and the remaining models
use S-GAP to strengthen the signal characteristics (among
which ELCNN-13 has the most obvious effect). Among them,
compared with ELCNN-3 without bias and activation function,
the impact excitation of ECNN-2 with bias and activation
function is more obvious, but it does not mean that its model
performance is better. This is because, although the impact
excitation reflects the sensitivity of the model to the learned
fault to a certain extent, the features learned by the model
are not necessarily fault features. Therefore, it is necessary
to analyze the interpretability of the extracted features based
on the frequency characteristics. Fig. 20 shows the spectrum
characteristics of the IR fault learned by the eight types of
models, in which the rotating frequency is 29.95 Hz and the
IR fault frequency is 162.19 Hz. By analyzing the spectral
characteristics of the model in Figs. 20 and 21, the following
conclusions can be drawn.

First, MBMSCNN and GCNN with pooling layer pay more
attention to low-frequency features (29.29 Hz) and discard
many fault features (IR fault frequency: 162.19 Hz and double
frequency: 322.26 Hz) to weaken impact excitation. ECNN-1
and ECNN-2 without pooling can learn more fault features.

Second, although ECNN-1 and ECNN-2 without the pooling
layer can learn more features and they have a large deviation
from the Raw signal (preventing overfitting), the bias and
activation function lead to the loss of some features learned
by the model (rotating frequency: 29.29 Hz), and not all the
features learned are needed for fault diagnosis. For example,
ECNN-2 with more obvious impact excitation in Fig. 21 pays
more attention to high-frequency nonfault characteristics than
ELCNN-3 without bias and activation function, while bearing
defects often cause low-frequency impact excitation [47].
It shows that bias and activation functions can prevent model
overfitting and improve nonlinear learning ability, but, at the
same time, some features will be discarded, and nonfault
high-frequency features will be learned.

Third, compared with ECNN-2, the features learned by
the three-layer convolutional ELCNN-3 are rough, while
the single-layer convolutional ELCNN-11 can better fit the
low-frequency fault features of the signal (such as rotating
frequency: 29.29 Hz and sideband: 131.8 Hz). It shows that
the feature extraction ability of the proposed single-layer con-
volution model is better than that of the multilayer convolution
model, and the feature learning effect of the model is better
after removing the bias and activation function.

Finally, ELCNN-12 and ELCNN-13 with multiple square
operations learn more harmonic features (131.8 and 193.4 Hz)
and cage fault frequency (11.7 Hz). It shows that S-GAP
can indeed strengthen the FM and AM characteristics.
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Fig. 20. Frequency-domain features of IR faults in the CRWU dataset learned by the last layer convolution of eight types of 1-D CNNs.
(a) MBMSCNN. (b) GCNN. (c) ECNN-1. (d) ECNN-2. (e) ELCNN-3. (f) ELCNN-11. (g) ELCNN-12. (h) ELCNN-13.

Fig. 21. Frequency-domain features of the IR fault of the CRWU learned by the last layer convolution of (a) ECNN-2 and (b) ELCNN-3, where
ECNN-2 uses biases and activation functions, while ELCNN-3 does not use.

In particular, the model using multiple square operations not
only effectively avoids overfitting but also has a better impact
on incentive learning and more interpretability for extracting
features.

On the whole, the IR fault is modulated by the rotating
frequency of 29.29 Hz and the cage fault of 11.7 Hz at the
same time, which has a very complex phenomenon of FM
and AM.

b) OR: Similar to the IR fault, the analysis of the OR
fault (108.4 Hz) in Figs. 22 and 23 shows that the single-layer
convolutional ELCNN without bias and activation function
can better fit the Raw signal characteristics (e.g., ELCNN-11
learned 108.4-Hz fault frequency and 46.9-Hz sideband).
In particular, ELCNN-12 and ELCNN-13 with multiple square
operations learn more FM features (such as double frequency:
213.87 Hz), AM features (such as 137.7 Hz), and cage fault
frequency (11.7 Hz).

The OR fault also has a complex FM and AM phenomenon,
which is modulated by the rotating frequency of 29.03 Hz and
the cage fault frequency of 11.7 Hz. For example, the rotating
frequency of 29.03 Hz is modulated by the cage fault to obtain

a frequency of 17.6 Hz; the fault frequency of 108.4 Hz and its
double frequency of 213.87 Hz are modulated by the rotating
frequency of 29.03 Hz to produce 137.7, 184.6, and so on.

c) B: As shown in Fig. 24, 1-D CNN feature extraction
characteristics similar to IR and OR faults can also be obtained
from B faults (141.17 Hz). In multilayer convolution, GCNN
with a pooling layer loses fault features (fault frequency
greater than 100 Hz), while ECNN-1 and ECNN-2 without
a pooling layer learn high-frequency nonfault features due
to bias and activation function [see Fig. 25(a)]. The pro-
posed single-layer convolutional ELCNN can better fit ball
faults (such as ELCNN-11), and the models ELCNN-12 and
ELCNN-13 with multiple square operations can learn more
FM and AM features.

The fault frequency of B is 141.17 Hz, which is not obvious.
It is more affected by the 131.84-Hz frequency modulated by
the cage fault frequency of 11.7 Hz. This may be caused by
the mutual modulation of the rotating frequency of 29.30 Hz
and the cage fault frequency of 11.7 Hz. For example, the
sidebands of 131.84 Hz (131.84-11.7 = 120.14 Hz) and
161.1 Hz (161.1-11.7 = 149.4 Hz) modulated by 11.7 Hz
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Fig. 22. Frequency-domain features of OR faults in the CRWU dataset learned by the last layer convolution of eight types of 1-D CNNs.
(a) MBMSCNN. (b) GCNN. (c) ECNN-1. (d) ECNN-2. (e) ELCNN-3. (f) ELCNN-11. (g) ELCNN-12. (h) ELCNN-13.

Fig. 23. Frequency-domain features of the OR fault of the CRWU learned by the last layer convolution of (a) ECNN-2 and (b) ELCNN-3, where
ECNN-2 uses biases and activation functions, while ELCNN-3 does not use.

learned by the ELCNN-13 model are also 4 times and 5 times
of the rotation frequency of 29.30 Hz. Therefore, the ball fault
has weaker and more complex FM and AM features than IR
and OR faults.

C. Model Performance Evaluation Based on XJTU
To ensure the credibility of the experimental results, the

XJTU is selected, and the comparative experiments are car-
ried out again on the eight types of improved 1-D CNNs.
In addition, considering the similarity of data, this section only
analyzes one of the working conditions, that is, IR and OR
faults with a rotating frequency of 39.05 Hz.

1) Overall Performance: As shown in Fig. 26 and Table XII,
we can see the classification accuracy and model performance
of various improved 1-D CNNs.

First, the performance of GCNN with a pooling layer is
better than that of ECNN-1, ECNN-2, and ELCNN-3 without
a pooling layer, and the convergence is faster and more stable.
Although the convergence effect of ECNN-2 that uses S-GAP
to enhance signal features and ELCNN-3 that removes bias
and activation functions has been improved, the classification

accuracy of these models has not been significantly improved.
It shows that the classification characteristics of the XJTU are
obvious. The multilayer convolution model uses the pooling
layer to achieve classification more easily. After removing the
pooling, bias, and activation functions, the model learning is
not ideal, and the convergence is not stable.

Second, compared with the multilayer convolutional model,
the proposed single-layer convolutional model ELCNN, espe-
cially ELCNN-12, can learn signal features more smoothly
and avoid overfitting. Moreover, it has better lightweight
performance (fewer calculation parameters, shorter running
time, and smaller weight file), which further illustrates the
advanced nature of the proposed model.

2) Antinoise Performance: As shown in Tables X and XIII,
the classification accuracy based on XJTU is significantly
higher than that of CWRU under the same models and the
same SNR fault conditions. It shows that the signal charac-
teristics of the XJTU are more obvious and less affected by
noise. Two conclusions can be drawn from Table XIII.

First, ECNN-1 has the lowest classification accuracy
because only the pooling layer is removed, which brings noise
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Fig. 24. Frequency-domain features of B faults in the CRWU dataset learned by the last layer convolution of eight types of 1-D CNNs.
(a) MBMSCNN. (b) GCNN. (c) ECNN-1. (d) ECNN-2. (e) ELCNN-3. (f) ELCNN-11. (g) ELCNN-12. (h) ELCNN-13.

Fig. 25. Frequency-domain features of the B fault of the CRWU learned by the last layer convolution of (a) ECNN-2 and (b) ELCNN-3, where
ECNN-2 uses biases and activation functions, while ELCNN-3 does not use.

TABLE XII
PERFORMANCE COMPARISON OF EIGHT KINDS OF 1-D CNNS ON THE XJTU DATASET, WHERE EPOCHS AND TIMES ARE THE NUMBER OF

STEPS AND TIME REQUIRED FOR THE MODEL TO CONVERGE, RESPECTIVELY. THE CLASSIFICATION ACCURACY OF ECNN-2, ECNN-3, AND

ELCNN-13 MARKED IN BLUE IS LOW, WHILE THE COMPREHENSIVE PERFORMANCE OF ELCNN-12 MARKED IN RED IS THE BEST

interference while retaining the signal characteristics. S-GAP
is needed to enhance the fault features.

Second, when the signal is interfered with by strong noise,
the ECNN-2 and ELCNN models using S-GAP enhanced

features still have good performance when the SNR is
5 dB for the XJTU with obvious features. It shows that
the S-GAP model can effectively suppress high-frequency
noise.
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Fig. 26. Classification accuracy and loss of eight kinds of 1-D CNNs on the XJTU dataset. (a) Accuracy. (b) Loss.

Fig. 27. Frequency-domain features of OR faults in the XJTU dataset learned by the last layer convolution of eight types of 1-D CNNs.
(a) MBMSCNN. (b) GCNN. (c) ECNN-1. (d) ECNN-2. (e) ELCNN-3. (f) ELCNN-11. (g) ELCNN-12. (h) ELCNN-13.

The single-layer convolutional model (such as ELCNN-11
and ELCNN-12) does not show better performance than
the multilayer convolutional model (such as ECNN-2 and
ELCNN-3). However, the square operation of the S-GAP
classification layer still has significant feature enhancement
advantages. For example, the ELCNN-13 labeled red still has
a classification accuracy of 95.95% when the SNR is up to
5 dB.

3) Feature Interpretability: This section mainly analyzes the
interpretability of the features extracted by various improved
1-D CNNs based on the IR and OR fault frequency characteris-
tics of the XJTU and verifies the credibility of the conclusions
drawn from the CWRU.

a) OR: As shown in the OR fault (119.8 Hz) spectrum
learned by different models in Fig. 27, the feature extraction
characteristics of the improved 1-D CNN based on the XJTU
are similar to those based on the CWTU.

First, the multilayer convolutional GCNN using the pooling
layer only focuses on fewer fault frequencies (cage fault:
17.6 Hz; triple frequency: 52.8 Hz; and rotating frequency:
35.2 Hz). Although it can effectively avoid overfitting and
improve classification accuracy, it loses fault features (fault
frequency greater than 100 Hz).

Second, the multilayer convolution models with removed
pooling layers, especially ECNN-1 and ECNN-2, learn more
fault features (such as fault frequency: 120.1 Hz). However,
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TABLE XIII
CLASSIFICATION ACCURACY OF EIGHT KINDS OF 1-D CNNS FOR XJTU BEARING FAULTS WITH DIFFERENT SNRS. AMONG THEM, THE ECNN-1

MARKED IN BLUE HAS THE WORST ANTINOISE PERFORMANCE, WHILE THE ELCNN-13
MARKED IN RED HAS THE BEST ANTINOISE PERFORMANCE

Fig. 28. Frequency-domain features of the OR fault of the XJTU learned by the last layer convolution of (a) ECNN-2 and (b) ELCNN-3, where
ECNN-2 uses biases and activation functions, while ELCNN-3 does not use.

Fig. 29. Frequency-domain features of IR faults in the XJTU dataset learned by the last layer convolution of eight types of 1-D CNNs. (a) MBMSCNN.
(b) GCNN. (c) ECNN-1. (d) ECNN-2. (e) ELCNN-3. (f) ELCNN-11. (g) ELCNN-12. (h) ELCNN-13.

ECNN-2 learns more high-frequency nonfault features [see
Fig. 28(a)] than ELCNN-3, which removed bias and activation
functions.

Finally, the proposed single-layer convolutional ELCNN
pays more attention to the low-frequency characteristics; espe-
cially, the model using square operation multiple times is
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Fig. 30. Frequency-domain features of the IR fault of the XJTU learned by the last layer convolution of (a) ECNN-2 and (b) ELCNN-3, where
ECNN-2 uses biases and activation functions, while ELCNN-3 does not use.

easier to extract FM and AM characteristics. For example,
ELCNN-13 not only learns the fault frequency of 123 Hz but
also learns the sidebands of 87.9 and 161.1 Hz and the double
frequency of 237.3 Hz.

In summary, XJTU bearing faults also have complex FM
and AM phenomena. The rotating frequency of 35.2 Hz (actual
38.08 Hz) learned by ELCNN-13 is the two times frequency
of cage fault of 17.6 Hz, 52.8 Hz is the three times frequency
of cage fault, and the fault frequency of 123 Hz is the seven
times frequency of cage fault. Therefore, the OR fault of XJTU
is obviously affected by the modulation of cage fault.

b) IR: As shown in Figs. 29 and 30, similar to the OR
fault, we can obtain the feature extraction characteristics of the
1-D CNN model from the IR fault (196.3 Hz) spectrum, which
further confirms that the proposed single-layer convolutional
ELCNN model can better fit the fault features. In particular,
ELCNN-12 and ELCNN-13, which use square operation many
times, can learn more FM and AM features.

From the IR fault learned by ELCNN-13, it can be seen that
the double frequency of the cage fault frequency of 17.6 Hz
is 35.2 Hz, covering the rotating frequency of 38.08 Hz, and
many frequency doublings of 17.6 Hz are generated (such as
11 times the frequency of 17.6 and 193.6 Hz, covering the
fault frequency of 196.3 Hz). Therefore, the IR fault of the
XJTU is more affected by the cage fault frequency of 17.6 Hz
modulation, resulting in regular FM characteristics.

V. CONCLUSION

We are not limited to the traditional neuron model but return
to the essential attributes of fault diagnosis (pattern recognition
problem based on feature extraction). A novel interpretable
and lightweight ELCNN model is proposed to achieve higher
requirements for model storage, computational efficiency, and
reliability of airborne and portable devices. First, a single-layer
CNN is constructed for vibration signal analysis, and the bias,
activation function, and pooling layer of the 1-D CNN feature
extraction layer are removed. Then, the S-GAP classification
layer with multiple square operations is used to replace the
traditional FCL. Finally, the effectiveness and advancement of
the proposed method are proved by ablation experiments and
comparative experiments.

1) Removing the bias, the activation function and the
pooling layer of the feature extraction layer can not
only realize the lightweight of the model but also be
more conducive to the convolution layer to learn the
low-frequency fault features.

2) The multiple square operations of the classification
layer S-GAP are beneficial for the model to extract

the FM and AM characteristics, avoid the overfitting
problem, and improve its antinoise performance and
interpretability.

Experiments show that the model optimization idea of
removing unnecessary hyperparameters of 1-D CNN by
lightweight (improving the operating efficiency of the model
and retaining signal features to the greatest extent) and then
strengthening and extracting fault features by S-GAP is feasi-
ble, which is worthy of reference for other diagnostic models.
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