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Abstract—During the training of medical operators, form-
ing muscle memory through repetitions is a routine path.
Needle insertion is a fundamental skill for all medical
staff. However, such training courses often require human
resources at a relatively high cost. Therefore, a needle
insertion simulator for large-scale deployment and practical
training is expected. In this article, we design a passive,
compliant force estimator that is low-cost, easily fabricated,
and commonly demanded by needle insertion simulators.
A triaxial decoupling force sensor design comprises com-
mercial force-sensing resistors (FSRs), soft silicon materials,
and a 3-D-printed connector for force decoupling. The total
cost of the sensor and fabrication process is less than 5 USD.
To achieve the prediction of a 3-D force profile when the
corresponding medical tasks are performed, we propose and
compare two data-driven estimators, including least-square
(LS) regression and feedforward neural networks (FNNSs).
We demonstrate that FNN models outperformed the LS model
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regarding devised corresponding evaluation metrics. The predicted accuracy of the FNN is above 90%, while the LS has
a lower average accuracy of 78.02%. Finally, we test the performance of a pretrained model on different angle gaps (15°,
30°). The force profiles of the 15° angle gap present relatively large fluctuations compared to reference with average
accuracy at 84.36%. The test on the 30° angle gap has an error at 35.28%, which also shows randomness deviations from
standard profiles. Therefore, the force information with a 15° or 30° angle gap can warn the trainer that an angle deviation

exists from the standard setting.

Index Terms— 3D tactile sensor, data-driven, machine learning, needle insertion, simulator.

|. INTRODUCTION
N MEDICAL healthcare, training medical operators,
including trainee nurses and surgeons, is crucial for the
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safety of patients, as medical errors can be the reason for death
as well [1], [2]. Therefore, the comprehensive practical courses
provide trainees with prior experience in the corresponding
surgical procedure [3], [4]. In such courses, simulators can be
an effective way for students to become familiar with standard
medical operations. A steeper learning curve for trainees
can be obtained. Besides, flexible training using a simulator
that can avoid experienced clinicians’ direct supervision is
especially suitable for situations where human resources are
insufficient.

Needle insertion, as shown in Fig. 1, is used in medical
applications including retrobulbar anesthesia, punctures of
pericardial effusions, biopsies, and percutaneous dilatational
tracheostomy [5], [6], [7], [8]. Researchers investigate various
methods, including positioning mechanisms [9], trajectory
prediction and tracking [10], [11], and deep reinforcement
learning [12] to reduce placement errors during needle inser-
tion. However, for junior clinicians, it is likely that delicate
body tissue, such as vessels and nerves, can be hurt if the
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Fig. 1. (a) Demonstration of the needle insertion simulator integrated
with proposed force estimator design. (b) lllustration of the needle inser-
tion process: interacting with soft tissue. When the needle is inserted
into the soft tissue at insertion certain angle, the deformable tissues
can result in the reaction force acting on the needle. At the end of the
retraction process, deformable tissue is lifted, which causes a downward
force.

insertion angle is wrong or the force is too large. As needle
insertion is a common and basic skill for nurses and surgeons,
repeated training with effective feedback is required in needle
insertion simulators. Fig. 1 also illustrates that 3-D-force pro-
files during the insertion process can be used in simulators to
inform the trainer that they are in the acceptable range of inser-
tion angle and the magnitude of insertion force. Therefore,
effective force feedback on needle tips can benefit the training
procedure of the simulator. The current experimental data
show that inhomogeneous tool-tissue contacts are inevitable
and expected. Then, obtaining the magnitude and direction of
3-D forces can assist the operator in reducing the deformation
effect between needle and tissue [13].

Previous studies have investigated the direct force mea-
surement system during needle insertion. Commercial sensors
such as the ATI Nano series are widely used in clinical trials
due to their high precision and quick response [14]. In the
simulator platform, the key hardware setup is to mount such
commercial sensors on the needle [15], [16], [17]. Neverthe-
less, the cost of such a device can be as high as 5000 USD.
Thus, researchers investigated strain gauges integrated with
specially designed shaped structures to replace the relatively
expensive commercial device [18]. Piezoelectric sensors made
of piezoelectric ceramics (PZT) and polyvinylidene fluoride
(PVDF) materials are other options for needle insertion appli-
cation. Despite their large force measurement range and small
sizes, the accuracy is limited by the signal drifting caused
by temperature variation and charge leakage [19]. Optical
sensors such as fiber Bragg grating (FBG) are widely used
in high-precision applications, including retinal vein cannula-
tion and retrobulbar anesthesia [20]. To compensate for the

effect of temperature, FBG sensors rely on expensive and
complicated optical signal processing. The contact force sensor
uses optoelectronic sensors and a disk-like sensor mechanical
structure toward a flexible manipulator for minimally inva-
sive surgery [21]. A novel data-driven paradigm proposed
by Sefati et al. [22] including uncalibrated FBG sensors and
related deep neural networks (DNNs) and temporal neural
networks (TNNs) was used for sensing in surgical continuum
manipulator. Besides, a general and convenient tactile cues
paradigm is required for different novel bio-inspired needle
designs [23].

Besides, soft materials are embedded in force-sensing
systems in some medical applications for safety reasons.
However, due to the nonlinearity and hysteresis, there are chal-
lenges in calibrating and controlling such compliant structures.
To overcome the limitations, machine-learning methods have
been implemented in soft tactile sensors for contact localiza-
tion and force prediction [24]. Embedded soft materials are
used for tactile sensing with established relationship modeling
between light reflection and deformation [25]. The comparison
between mathematical models and machine-learning estima-
tors for soft sensors was studied in [26], and a recurrent neural
network (RNN)-based sensing framework was proposed.

Thus, estimating 3-D force information with low hystere-
sis and low cost is crucial for prevalent needle insertion
simulators. In this work, we design a low-cost 3-D-force
estimator with intermediate soft interfaces as force conduction.
We also implement a data-driven algorithm to predict force
profiles during the needle insertion process toward different
penetrating angles. To be specific, our main contributions
include the following.

1) We design a novel soft material embedded force estima-
tor to achieve 3-D sensing. The tripod-like structure is
designed and 3-D-printed as a connector for force decou-
pling. The whole manufacturing process is designed in
an integrated approach which is aimed at fixing the soft
materials, the connector, and the needle.

2) We propose a novel data-driven paradigm for the needle
insertion process. The inputs from the voltages of three
piezoresistive sensors are fed to a data-driven framework
for measuring tip force when interacting with tissues.
The comparison study between the linear method (least-
square (LS) regression) and hypernonlinear method
feed-forward neural network (FNN) is carried out under
different insertion angles. Based on the accuracy tests,
we selected an FNN as a further validation data-driven
framework. The overall accuracy of the FNN framework
is above 90%, while the LS method fails to predict forces
for most cases.

3) We carry out the tests of the FNN model with different
insertion angle gaps. The force profiles with +15° gap
present relatively large fluctuations while can predict
the trends of the reference curve. The force curves
with £30° gap show the unexpected large deviations
from reference forces. Therefore, such features in force
profiles can be used in needle insertion simulators to
inform the trainees that the needle will correct the
insertion angle to the ideal setting.
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[I. MECHANICAL DESIGN AND THE FABRICATION
PROCESS OF THE FORCE ESTIMATOR

A. Triaxial Decoupling Structure Design

Except for accuracy and sensitivity, there are relatively high
requirements for the size of the force estimator for in vivo
medical operations. The size of the estimator can limit the
number of force dimensions as well. Tang et al. [27] designed
a rigid cross structure that can be used to sense the decoupled
triaxial force. Still, the diameter of the proposed structure is
too large, which is unsuitable for interaction with human tissue
during the needle insertion process [27].

The force-sensing resistor (FSR) is a low-cost, high-
sensitivity flexible sensor widely used for normal pressure
measurement. This small-scale FSR rapidly decreases its resis-
tance value when the applied pressure increases. Besides,
it can obtain a more obvious reading change by connecting
a series of resistances.

The design contains three 2.5-mm-wide FSRs (Shenzhen
LEGACT Technology Company Ltd., RP-W2.5-L15.5), a nee-
dle, a 3-D-printed connector, and a 3-D-printed base with a
14-mm diameter and 20-mm length base as shown in Fig. 2.
The design fixes the needle with the connector and aligns its
end with the FSRs. When the needle is inserted into the tissue,
it generates a force in three directions through the devised
connector structure. The force transmission in three directions
of the tip will be carried out by the connection position at
the end of the part. The embedded soft materials are pressed
and squeezed to achieve the final stage of force transmission.
The corresponding relationship of the force in the X-, Y-,
Z-direction can be decoupled from the contact force between
the axes in the connector and the FSRs. The voltage value
is defined as the output through the FSR conversion circuit.
This design enables the fabrication of the estimator in the most
compact size, reaching a diameter of 14 mm. The design uses
three FSRs worth 0.53 USD, allowing repeatable manufac-
turing at a meager cost and disposable medical devices. The
3-D-printed parts cost 4.2 USD, and the total cost to fabricate
the estimator is less than 5 USD.

B. Integrated Fabricated Method

The reliability and stability of the estimator must be consid-
ered. Ecoflex' 00-30 is a highly durable soft silicone material
that can transmit force without plastic deformation and can be
used as an intermediate medium for 3-D-printed connectors
and force estimators. Here, we use a one-piece molding
method to fix the estimator, the connector, and the needle
through Ecoflex! 00-30 to obtain a stable force coupling
relationship. The fabrication process is shown in Fig. 3. After
assembling and positioning the components, pour Ecoflex
0030 into the cavity. It is important to note that a preloaded
weight of 50 g should be added during the curing process.
The purpose of the preloaded weight is to increase the sensing
range of the sensor, allowing the readings to appear even with
forces of a few grams. In Fig. 4(b), when the applied force
is below a certain threshold, it is difficult for the resistance
to exhibit significant changes. This characteristic curve can

1 Registered trademark.
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Fig. 2. (a) Components of proposed novel estimators include the base
holder, FSRs, and a connector for the base and the needle. (b) Prototype
estimator compared to the coin scale.
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Fig. 3. Fabrication process of the proposed estimator design: the first
step is to assemble all the parts and position the connector in the center
of FSRs; the second step is to pour the Ecoflex! 00-30 into the mold;
the third step is to place the initial weight (50 g) by piercing through the
needle; the fourth step is to cure the Ecoflex! 00-30 and take out the
mold.

also be investigated through static load experiments by placing
loads of 10, 20, and 100 g on an FSR with a soft interface.
When a 10-g load is applied, there is no significant change
in the readings. With a 20-g load, there is a sudden spike
in the readings. When a 100-g load is applied, the readings
stabilize within certain fluctuations. Therefore, a preloaded
weight from 20 to 100 g is reasonable, and we select 50 g.
When the Ecoflex! 00-30 is cured, a mold is added under the
connector. When the curing is completed, the lower mold can
be removed to obtain an injectable cavity, which can also be
adapted to broader medical applications.

The curing process requires first positioning the FSR in the
center of the base groove, where the outer shell is waterproof.
Then, we placed the 3-D-printed connector on the bottom
cylindrical mold to ensure that the connector and the estimator
were aligned with a 2-mm gap. The distance can result in
better surface contact making the transmitted forces more
accurate after the silicone cures. Thus, it can ensure the
consistency of properties during repeated manufacturing. After
that, the Ecoflex! 00-30 silicon is poured and cured for 8 h
to obtain an estimator with stable performance. The holes of
its base can be well fixed at the end of the URS robotic
arm. The reserved orifice can be well connected between
the needle and the syringe and can be used as a disposable
device.
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Fig. 4.  Working principle of the force estimator and architecture of the FNN model. (a) FEA results of the connector and soft interfaces.

(b) Relationship between exerted force and resistance. (c) Input layer contains three inputs from FSRs. The inputs are three voltage variations
caused by normal pressure transmitted through the tripod structure and embedded soft materials. The relationship between pressure (g) and the
reciprocal resistance of FSR is captured by a nonlinear curve. There are two hidden layers with 20 neurons in the serial. The reference forces are

used in the output layer for training.

C. Working Principle of the Force Estimator

To demonstrate the working principle of the designed
estimator, we perform the finite-element analysis (FEA) in
SolidWorks 2021 to show how the intermediate soft interfaces
conduct the force to three FSRs. As the hardness of the
material of the connector is high, direct contact between
the connector and FSR can be insensitive. Therefore, the
soft interfaces assist the force transmission and improve the
sensitivity of the designed estimators. Young’s modulus of
Ecoflex! 00-30 is set to 1.38 MPa, and the bottom of embed-
ded soft materials is also fixed. Fig. 4(a) presents the results
of FEA. Under an external force (Fx = 0.3 N, F, = 0.6 N,
and F; = 1 N), the displacements on the Z-direction of soft
interfaces for three corresponding FSRs places are —0.392,
—0.229, and 0.159 mm, respectively. Besides, it shows that
one deformation mode corresponds to a certain external 3-D
force. Therefore, the decoupling of 3-D force can be achieved
through data-driven methods. Fig. 4(b) shows the nonlinear
curve of estimator resistance and the exerted force. It is worth
noting that when the force approaches 0 N, the estimator
fails to show variations in resistance, so we embed the soft
materials to make the defined working area in the middle
of the curve. This is useful for the situation at the end of
the retraction process. When the lifted-up tissue causes the
reaction force in the opposite direction (Fig. 1), readings from

FSRs can change in a small range at the left side of the initial
point.

I11. DATA-DRIVEN METHOD DESIGN AND
IMPLEMENTATION
We employ two data-driven algorithms, the LS regression
method and the FNN, to predict the magnitudes of forces in
the X-, Y-, and Z-directions.

A. LS Regression Method

To consider the linear transformation relationship between
voltages and forces as follows:

[Fe Fy F.]=C [v1 v2 v3] (1)

where Fy, F\,, and F, are 3-D force, and v; is the cor-
responding voltage collected from pressure-sensing resistor
(PSR) sensors. C represents the unknown calibration matrix.
Therefore, the constructive relation of output voltage signals
(V) and tip contact forces (F) is defined by the calibration
matrix (C). Matrix C can be obtained from the LS regression
as follows:

c=rvT (VVT)_I. )

The dataset is divided into a training set and a validation set,
with 85% and 15% of the data, respectively.
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Fig. 5. Experimental setup for data collection of needle insertion.

B. Feed-Forward Neural Networks

The FNN is a typical artificial neural network containing
only input, hidden, and output layers. Compared to a recur-
rent network, the framework has no cycle element. For the
implementation of our model, the overall architecture of the
neural network is shown in Fig. 4(c). The input voltages are
from three evenly distributed FSRs where the gap is set to
120°. A series—parallel architecture is created with two input
variables: voltage signals and reference forces. The signal
vector v = [vg, v2, v3] represents three voltage outputs of
the FSR unit. The reference force vector is represented as
F, = [Fy, Fy, F;]. The advantage of a series—parallel structure
is that input accuracy to FNN is improved. The division of
training data (11224 points) follows the setup as 85% for
training, 5% for validation, and 10% for testing. After the
training, we implemented the model to process the new dataset
(12 546 points).

V. EXPERIMENTAL SETUP

Based on the framework of the sensing system, we will
first obtain adequate data to train the interconnected network
or regression test. Then, the experimental setup is designed as
shown in Fig. 5. A 6-DoF robotic manipulator (URS) performs
the insertion task. The needle with the designed soft force
estimator is attached to the robotic arm, and 3-DoF voltage
signals from FSRs are transmitted to the laptop computer
through the microcontroller unit (Arduino Uno). Artificial
tissue made by Ecoflex! 00-30 is in a holder and attached
to a reference force sensor (ATI Nano 17). Therefore, the
force applied to tissue by the needle will be recorded via a
PCI-6220 data acquisition board (National Instruments, USA)
by the commercial sensor. The real-time monitoring and data
acquisition of three voltage changes and 3-D interaction forces
starts simultaneously at a frequency of 30 Hz.

Six groups of experiments with different insertion angles
(0°, 15°, 30°, 45°, 60°, and 75°) are performed as shown in
Fig. 6. Fig. 6(b) also shows the results of 3-D force informa-
tion (Fy = 0.3 N, F, = 0.5 N, and F; = 0.3 N) when the
needle is inserted at the maximum depth of the tissue. The
coordinate of the tissue center is measured, and then we input
the position coordinates and rotation angles of the end-effector
into the robotic controller program. The insertion speed is set

to 1 mm/s and lasts for 10 s. Then, the retraction speed is set to
2 mm/s until it finishes. For one insertion angle experiment,
we will collect tens of thousands of valid data at different
tissue points to eliminate the errors caused by inhomogeneous
material properties.

V. RESULTS

We evaluate our pretrained LS and FNN models with differ-
ent insertion angles (0°, 15°, 30°, 45°, 60°, and 75°). For each
insertion angle, an external dataset is used to further verify
the reliability and efficacy of the models. Fig. 7 illustrates
the selected 80-s interval of the typical force profile (30°)
of insertion experiments to compare the performance of LS
and FNN models. The predicted value of the LS model has a
large difference between the reference values, especially the
peak forces with a large time delay. The LS model has reverse
predictions during the retraction process because the insertion
process performs a larger weight on peak forces. It will cause
the prediction of force to be the opposite. The FNN model can
successfully predict the insertion force profiles despite small
variations in peak points. Besides, the voltage outputs of the
FSR can predict the pulling force as the start point of voltage
is 0, because we embed the soft materials in the estimator
design. For the initial state of the estimator, FSRs have been
pressed and squeezed by soft materials. However, we can see
the obvious fluctuations of predicted values over the reference
forces in three directions. In Fig. 7, the puncture process can
be divided into stage A (insertion) and stage B (retraction)
based on captured 3-D force information. At the end of the
retraction process, we note that the opposite resultant force
can also be captured by the FNN model. This also proves that
the design of the working area helps the feature capture in the
experimental data-driven fitting.

The root mean squared error (RMSE) and normalized
RMSE are used as evaluation metrics to test the performance
of our proposed models (LS and FNN). The following formu-
las describe the calculation process:

N
1 N 2
RMSE = N;(f _ f) 3)
=
RMSE
NRMSE = — >~ 5 100% (4)
fmax - fmin

where f is the predicted values and f represents the reference
values. The results are shown in Table I. Due to the difference
in angles, the magnitude of RMSE among X, Y, and Z forces
can have large variations. In terms of the LS model, the
average value of RMSE for six groups is 0.0928, 0.2689, and
0.4438 N. The corresponding average NRMSE values for the
X-, Y-, Z-directions is 20.16%, 21.96%, 23.91%, respectively.
For the FNN model, the average value of RMSE is 0.0383,
0.0098, and 0.1476 N for Fy, Fy, and F_, respectively. Besides,
the relative NRMSE for three directions is 8.34%, 8.11%, and
7.95%, respectively. Compared to the LS model, the accuracy
of FNN is approximately two times higher than the LS model
for any insertion degree. Therefore, we select the FNN model
for the force estimation in the simulator.
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Fig. 7. Force profile of the FNN and LS model (30° insertion). A represents the insertion process and B is the retraction process.

TABLE |
COMPARISON OF THE LS METHOD AND THE FNN MODEL

Method Evaluation metrics

NRMSE of Fx  NRMSE of Fy  NRMSE of Fz

LS (0°) 15.94% 14.14% 25.23%
ENN (0°) 9.92% 7.86% 7.35%
LS (15°) 19.03% 20.17% 21.43%
FNN (15°) 10.56% 10.29% 9.74%
LS (30°) 18.82% 21.50% 23.52%
FNN (30°) 4.84% 4.69% 4.48%
LS (45°) 17.76% 18.75% 20.57%
LS (45°) 7.18% 7.06% 7.18%
LS (60°) 24.61% 25.53% 23.54%
FNN (60°) 8.29% 9.42% 9.25%
LS (75°) 24.85% 31.72% 29.15%
FNN (75°) 7.62% 7.47% 7.20%

It can be seen that each insertion angle corresponds to
the different well-trained FNN models. Therefore, a single
insertion angle model with an acceptable covering range is
crucial for practical application. For example, a 0° FNN model
can have a reasonable error when fitting into the 15° insertion
angle dataset. The results are presented in Table II. The RMSE

and NRMSE of the 30° gap can be at 0.5024% and 40.06% at
most for the Y-direction force prediction. The performance in
the X- and Y-directions is not better than that of the average
value of the previously presented LS model. Meanwhile, the
average RMSE for the 15° difference dataset is 0.036, and
NRMSE at 15.64%. From the force profile presented in Fig. 8§,
the results of 15° angle gap show that the fluctuations in
the X-, Y-, and Z-directions are obvious. However, it can
capture the shape of the force curve and predict the peak force.
On the other hand, for the 30° gap dataset, predicted 3-D
force information fails to match the overall trend of reference
values and can have a large deviation from reference values.
Therefore, in the training setting of a simulator, we can use
the force information with different features to inform the
trainee of the range of deviations from the standard insertion
angle.

VI. DISCUSSION
In the research on needle puncture, the angle of entry
becomes a significant issue in medical training. This factor
directly affects the success rate of the puncture, the level
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TABLE Il
COMPARISON OF FNN MODEL PERFORMANCE
ON DIFFERENT ANGLE GAPS

Evaluation metrics

Angle 83D \RMSE of Fx  NRMSE of Fy  NRMSE of Fz
FNN (15%) 15.94% 14.14% 16.84%
FNN (30°) 30.24% 40.06% 35.56%

of pain experienced by the patients, and the magnitude of
tissue stress. Zhu et al. [28] discussed the optimal entry angle
of the dorsal hand intravenous robot and claimed that a
larger entry angle (60°) is preferred to reduce the pain of
the patient. Therefore, the different entry angles have dif-
ferent force profiles. By comparing the force curve obtained
through data-driven training with the actual force curve,
we can determine the deviation range from the ideal angle
(with a unit deviation of 15°). When the angle deviation
is within 15°, it is possible to predict a force curve that
remains consistent with the actual curve in terms of trend
and magnitude. However, there may be a certain degree of
time delay between the predicted and actual force curves.
When the angle deviation reaches 30°, the model’s failure
becomes evident. Therefore, it can be considered as exceeding
the predetermined angle range, requiring operators to make
adjustments.

The presence of a 15° and 30° angle deviation allows for
the prediction of a force curve that maintains consistency
with the actual curve in terms of trend and magnitude, albeit
with a certain degree of time delay. This is why it is used
as a simulator cue. While the predicted force curve may
introduce some error during actual operations due to the
aforementioned angle deviation and time delay, the simulator
serves as a valuable tool to assist operators in selecting
suitable force application angles and anticipating potential
deviations. By comparing the simulator’s predictions with real-
time data, operators can better comprehend and adjust their
actions to achieve a closer approximation to the expected
force application. These simulator cues provide more accurate
references, aiding operators in optimizing their skills and
performance.

TABLE IlI
COMPARISON OF LSTM AND FNN NETWORKS

Evaluation metrics

Method&Dataset  \pyiE of Fx  NRMSE of Fy  NRMSE of Fz
LSTM (30°) 6.11% 5.80% 5.74%
FNN (30°) 4.84% 4.69% 4.48%
LSTM(angle gap 15°) 1438% 12.28% 14.14%
FNN (angle gap 30°) 15.94% 14.14% 16.84%

Since our data is in the time domain, it is worth using an
RNN, such as a long short-term memory (LSTM), to predict
the 3-D force profiles. To compare the performance of LSTM
networks, we selected two datasets: one with a needle insertion
angle of 30° and another where we fit the data with a 15°
deviation to represent a 30° angle gap. From Table III, it can
be observed that the FNN outperformed the LSTM on the
dataset without angle deviation. For the prediction of force in
the X-, Y-, and Z-directions, the FNN achieved an average
NRMSE of 4.67%, while the LSTM had an NRMSE of
5.88%. On the dataset with angle deviation (15°), it can
be observed that the LSTM outperformed the FNN. The
corresponding average NRMSE values were 13.6% for the
LSTM and 15.64% for the FNN. For the FNN, it performs
better on datasets with more regular patterns, such as the one
without angle deviation. The LSTM is well-suited for fitting
time-domain data, and it can handle fluctuations and outliers
present in the dataset with angle deviation. The LSTM can
capture trends and patterns to predict the next point, thereby
reducing errors. It is necessary to clarify that our objective is
to provide 3-D tactile cues for needle insertion. Our primary
criterion for selecting the network is to make the cues more
suitable for the scenario at hand. For the dataset without angle
deviation, we choose the FNN because, in this scenario, the
cues aim to assist the operator in maintaining a stable needle
insertion angle. For the dataset with angle deviation, we need
to provide cues to indicate when the operator is at the incorrect
angle. In this case, having some errors can be helpful for
the cues. However, the presence of outliers at certain points
can lead to incorrect cues, such as indicating a 30° deviation
instead of the actual 15° deviation. Then, the LSTM can be
an alternative when performing angle deviation cues.
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VII. CONCLUSION

Needle insertion tasks for different medical applications are
in high demand. Providing a low-cost simulator with adequate
guidance and feedback is crucial for large-scale deployment
when the workforce is insufficient. From the fabrication per-
spective, the miniaturization and integrated manufacturing of
force-sensing systems are significant challenges for various
applications. Besides, capturing X-, Y-, and Z-direction forces
and reducing the cost of 3-D force estimators are two problems
in practical application. This article proposes a new fabrication
method costing less than 5 USD and data-driven estimators to
obtain 3-D force profiles toward the needle insertion simulator.
A 14-mm triaxial force estimator with an FNN neural network
model can achieve above 90% data fitting accuracy in RMSE
for each insertion angle. On the contrary, the LS has a lower
average accuracy of 80%. The reflection on the graph of the
LS method shows that it can only present the trend of force for
the reference value but with large differences in the numerical
values, especially the static force at 0 N and the peak force
during the insertion process. Therefore, the FNN model has
selected tests with angle gaps. We use the selected single
insertion angle model to test the validity to different ranges and
prove that £15° can have above 85% accuracy. The obvious
fluctuations are presented in the curve, but it can capture
the overall trend and the peak force value. For the test on
+30°, the randomness of the curve and the unexpected outlier
make such an angle gap unsuitable for practical application.
Therefore, we can summarize the functions of force estimators
in the simulator as follows.

1) If the trainee is at the preset correct insertion angle
with the appropriate force magnitude, the simulator
will inform the user to continue as the estimated force
profiles match the reference values.

2) If the insertion angle has deviations from the preset one,
the simulator will warn or inform the user to stop or
correct based on the predicted features of force profiles.

In the future, we expect validation tests on trainees and to
obtain user experience feedback with the user application to
be developed.
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